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The conductivity of the two-dimensional Hubbard model is particularly relevant for high-temperature
superconductors. Vertex corrections are expected to be important because of strongly momentum-dependent
self-energies. To attack this problem, one must also take into account the Mermin–Wagner theorem, the Pauli
principle, and crucial sum rules in order to reach nonperturbative regimes. Here, we use the two-particle
self-consistent approach that satisfies these constraints. This approach is reliable from weak to intermediate
coupling. A functional derivative approach ensures that vertex corrections are included in a way that satisfies
the f-sum rule. The two types of vertex corrections that we find are the antiferromagnetic analogs of the
Maki–Thompson and Aslamasov–Larkin contributions of superconducting fluctuations to the conductivity but,
contrary to the latter, they include nonperturbative effects. The resulting analytical expressions must be evaluated
numerically. The calculations are impossible unless a number of advanced numerical algorithms are used. These
algorithms make extensive use of fast Fourier transforms, cubic splines, and asymptotic forms. A maximum
entropy approach is specially developed for analytical continuation of our results. These algorithms are explained
in detail in the appendices. The numerical results are for nearest-neighbor hoppings. In the pseudogap regime
induced by two-dimensional antiferromagnetic fluctuations, the effect of vertex corrections is dramatic. Without
vertex corrections the resistivity increases as we enter the pseudogap regime. Adding vertex corrections leads to
a drop in resistivity, as observed in some high-temperature superconductors. At high temperatures, the resistivity
saturates at the Ioffe–Regel limit. At the quantum critical point and beyond, the resistivity displays both linear
and quadratic temperature dependence and there is a correlation between the linear term and the superconducting
transition temperature. A hump is observed in the mid-infrared range of the optical conductivity in the presence
of antiferromagnetic fluctuations.
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I. INTRODUCTION

The calculation of transport quantities in strongly correlated
electron systems is particularly challenging, but is a necessary
step to make contact with a wide class of experiments. Even for
the simplest model, namely the single-band Hubbard model,
this is a formidable task. Taking up the challenge is all
the more important for the two-dimensional case (2D) that
acts as the minimal model for the high-temperature cuprate
superconductors,1 layered organic superconductors,2 and a
number of other materials.

Even in cases where one has a good handle on the
single-particle Green’s function, the difficulty of calculating
transport in the 2D Hubbard model stems from the fact that
one cannot neglect the effect of vertex corrections when
strong momentum-dependent correlations are present. Those
vertex corrections are the analog of the self-energy, but for
the two-particle response functions. When vertex corrections
are not included, conservation laws can be violated and
results inaccurate. In the case of small finite systems tractable
by exact diagonalization or quantum Monte Carlo (QMC)
calculations, the correlation function is directly evaluated and
vertex corrections are not an issue. However, those results
are more relevant for finite frequency conductivity and strong
coupling, where correlations are mainly local.3–8

Consider for example the electrical conductivity for the
2D Hubbard model. For the infinite system, optical and DC
conductivity calculations have been performed without vertex
corrections using dynamical mean-field theory (DMFT)9 and

cellular DMFT (CDMFT).10 Those calculations have also
been done with the composite operator method11 but vertex
corrections cannot all be taken into account. For the t − J

model, the strong coupling limit of the Hubbard model,
a number of approaches have been used, in particular the
extended dynamical cluster approximation (DCA),12,13 but
vertex corrections14,15 have been neglected. However, recent
optical conductivity calculations for the Hubbard model with
the DCA took vertex corrections into account.16,17 The effects
were found to be important only at high frequencies. Despite
this recent advance, the calculation of vertex corrections with
DCA or CDMFT, considered the best available ones at strong
coupling,18–20 is still an open problem.

At weak coupling, the Boltzmann equation offers a tractable
approach that satisfies conservation laws when one includes
scattering-in terms. For linear response, its variational for-
mulation has been used for example to compute the effect
of spin fluctuations within the self-consistent renormalized
approach21 and also to investigate the resistivity near the
quantum critical point (QCP) in the clean22 and disordered
cases.23,24 The drawbacks of this approach are that it assumes
the existence of quasiparticles and that this assumption is
not valid in two dimensions, especially near the pseudogap
regime and QCP. Green’s function approaches that do not
assume quasiparticles are preferable. Hence, some resistivity
calculations without vertex corrections were done with the
T-matrix approximation25 and with the fluctuation-exchange
(FLEX) approximation.26 Other FLEX calculations take into
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account some vertex corrections due to spin and charge
fluctuations.27,28 In these works, only the antiferromagnetic
Maki–Thompson (MT) diagrams were included. The antifer-
romagnetic analogs of the Aslamasov–Larkin (AL) diagrams
were neglected, claiming that the latter are negligible. We
will see that in the DC case this is true only in the presence
of particle-hole symmetry. A review on those calculations is
given in Ref. 29. In Ref. 30, which takes into account supercon-
ducting fluctuations, AL diagrams are taken into account for
superconducting fluctuations but they are neglected for the spin
fluctuations. A recent calculation using field-theory methods
of the conductivity at the QCP31 includes all vertex corrections
but only at T = 0. The renormalized classical regime where a
pseudogap appears has also been considered, but focusing only
on the hot spots32 or neglecting the AL contribution.33 There
are also analytical results for the conductivity with vertex
corrections using Fermi-liquid theory.34,35

Despite all these results, the electrical resistivity at weak
to intermediate coupling has not been reliably computed for
all dopings and temperatures because particle-hole symme-
try, where the AL term vanishes, does not generally hold
and because there are regimes where Fermi-liquid theory
is no longer valid. Fermi-liquid theory breaks down in
the pseudogap regime, near the antiferromagnetic QCP and
in the Ioffe–Regel limit. Hence, in this paper, we extend
the two-particle self-consistent (TPSC)36–39 approach to in-
clude the effect of vertex corrections in the calculation
of the resistivity and optical conductivity of the one-band,
square-lattice, nearest-neighbor 2D Hubbard model for weak
to intermediate coupling. This regime corresponds to values
of the interaction strength U below the critical value for the
Mott transition. We present numerical results as examples
and discuss possible links with experiments on cuprates. In
particular, we consider the origin of the mid-infrared hump in
the electron-doped materials, the Ioffe–Regel limit, insulating
behavior in the pseudogap regime, and the link between linear
resistivity, quantum critical behavior, and superconductivity.

The TPSC approach has the following strengths that
make it a good choice for the present purposes. In two
dimensions, the Mermin–Wagner theorem40,41 prevents the
occurrence of antiferromagnetic long-range order at finite
temperature. Not many theories can handle that constraint.
Because long-range order is prohibited, there is a wide range
of temperatures where there are huge antiferromagnetic [or
spin-density wave (SDW)] fluctuations in the paramagnetic
state. It is in this regime that a fluctuation-induced pseudogap
can appear.37,42–44 The standard way to treat fluctuations in
many-body theory, the random-phase approximation (RPA),
leads instead to long-range order and misses this effect.
The RPA also violates the Pauli principle in an important
way.36 The FLEX45,46approximation and the self-consistent
renormalized theory of Moriya–Lonzarich47–49 satisfy the
Mermin–Wagner theorem but they do not satisfy the Pauli
principle and consistency between one- and two-particle
quantities. Strengths and weaknesses of these approaches
are discussed further in Refs. 37,38. Weak coupling renor-
malization group approaches become uncontrolled when the
antiferromagnetic fluctuations begin to diverge.50–53 Other
approaches include the effective spin-Hamiltonian approach.54

The TPSC approach does not assume a Migdal theorem for

spin fluctuations, and Kanamori–Brueckner renormalization
of the bare interaction is included without adjustable pa-
rameters. The conditions for the appearance of a pseudogap
induced by antiferromagnetic fluctuations have been verified
experimentally in electron-doped cuprates.55 In addition to the
above theoretical considerations, the TPSC approach has been
extensively benchmarked against QMC calculations in regimes
where the latter is available.36,37,39,43,56–58 The agreement
between the one-particle spectral function of TPSC and QMC
approaches in the pseudogap regime is remarkable.43 The
TPSC approach, however, fails when the temperature is too
far below that where the pseudogap appears.

In the TPSC method, the calculation proceeds in two
steps. At the first step, spin-spin and charge-charge correlation
functions are obtained with irreducible vertices that are
determined self-consistently. That is the origin of the name
of the approach. At the second level of approximation, a
nontrivial self-energy that is consistent with the spin and
charge fluctuations and that can explain fluctuation-induced
momentum-dependent pseudogaps is then calculated. The
charge-charge correlation function at the first level of approxi-
mation satisfies the f-sum rule with the Green’s function at the
same level, but it misses lifetime effects necessary to obtain
nontrivial conductivity. What is needed is a calculation of the
current-current correlation function that includes the Green’s
functions dressed at the second level of approximation with
the corresponding irreducible vertices. What has been missing
up to now is an expression for the corresponding irreducible
vertices. Following Baym and Kadanoff,59,60 here we use a
functional derivative approach to obtain irreducible vertices
that satisfy conservation laws. We check that the f-sum rule is
then satisfied with the Green’s function obtained at the second
level of approximation. For the conductivity, we show that,
not only the MT-type contributions from SDW fluctuations,
but also the AL contributions are important. The latter have a
dramatic effect in the pseudogap regime.

The paper is structured as follow. The next section contains
the details of the methodology and is divided into five
subsections: II A, the model; II B, the conductivity in linear
response theory; II C, a derivation of the TPSC approach for
the spin and charge response functions and the one-particle
self-energy; II D, the conductivity in the TPSC approach; and
finally II E, a description of the numerical algorithms that
were used to calculate the expression given in Sec. II D.
Section III presents the results for the system considered,
followed by a discussion and a conclusion in Sec. IV and
V, respectively. Also, some useful derivations, such as those
for the conductivity, the f-sum rule, and Ward identities, are
given in the appendices along with details of algorithms
that are of more general applicability, such as calculating
response functions with fast-Fourier transforms (FFTs) and
cubic splines and analytical continuation of numerical data.

II. METHODOLOGY

We first define the model, recall the conductivity formula,
and introduce the TPSC method in the functional derivative
formalism. This approach allows us, in the fourth subsection,
to derive the conductivity formula including vertex corrections.
The last subsection briefly describes the numerical algorithms
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that we implemented. Those are detailed in the appendices. In
this section, we use units where e = 1, h̄ = 1, and a = 1, a

being the lattice parameter. In Sec. III, we use both those
units and physical units to allow comparison with typical
experimental values.

A. Model

Our model is the 2D Hubbard Hamiltonian in the presence
of an electromagnetic field that is treated classically. With the
usual Peierls substitution, we have

H (t) = −
∑
ijσ

tij c
†
iσ cjσ e−i

∫ j

i
drij ·A(r,t) + U

∑
i

ni↑ni↓ , (1)

where rij = ri − rj , tij are the hopping matrix elements
between the sites of the lattice, cjσ destroys a particle with
spin σ at site j and c

†
iσ creates a particle at site i, A(r,t) is

the vector potential, U is the on-site repulsion energy, and
niσ = c

†
iσ ciσ is the spin σ particle number operator at site i.

Note that it is perfectly general to use only the vector potential
to represent the field, since a scalar potential can always be
removed using the proper gauge transformation. The form of
Eq. (1) for the Hamiltonian is justified by gauge invariance.
Further discussion of the Peierls substitution may be found in
Ref. 61.

B. Conductivity in linear response theory

This derivation of the linear response result will allow us
to set the notation. To obtain the conductivity, we first need
the expression for the current operator. In the x direction, for
example, it is given by

jS
x (r,t) = − δH

δAx(r,t)
, (2)

where the superscript S indicates that jx is in Shrödinger
representation, despite its dependance on t . If we apply
this definition to Eq. (1), keep terms up to linear order in
the vector potential, assuming that A(r,t) = Ax(r,t)x̂, with
Ax(r,t) varying slowly on the scale of a lattice spacing so that

∫ j

i

dxijAx(r,t) ≈ xij

2
(Ax(ri ,t) + Ax(rj ,t)) , (3)

where xij is the x component of the vector rj − ri , we obtain

jS
x (rl ,t) = i

2

∑
δσ

δxtδ
(
c
†
lσ cl−δ,σ + c

†
l+δ,σ cl,σ

)

− 1

2
Ax(rl ,t)

∑
δσ

δ2
xtδ
(
c
†
lσ cl−δ,σ + c

†
l+δ,σ clσ

)
(4)

where δx is the projection along x of the vector δ between
neighbors. tδ is the corresponding hopping matrix element.
For a uniform electric field we can take the vector potential

independent of position, which means that we need only the
q = 0 component of the current

jS
x (t) = − 1

N

∑
kσ

∂εk

∂kx

c
†
kσ ck,σ

−Ax(t)
1

N

∑
kσ

∂2εk

∂k2
x

c
†
kσ ck,σ , (5)

where εk is the dispersion relation and N is the number of
lattice sites or wave vectors in the Brillouin zone. For the
following we need to define the paramagnetic current,

jp
x = − 1

N

∑
kσ

∂εk

∂kx

c
†
kσ ck,σ , (6)

and the diamagnetic current,

jd
x (t) = −Ax(t)

1

N

∑
kσ

∂2εk

∂k2
x

c
†
kσ ck,σ , (7)

so that jS
x (t) = j

p
x + jd

x (t).
According to linear response theory, the frequency-

dependent current in response to the field is

〈jx(ω)〉 = 〈ĵx(ω)〉 + χjxjx
(ω)Ax(ω), (8)

where jx(ω) is the Fourier transform of

jx(t) = U †(t, − ∞)jS
x (t)U (t, − ∞) , (9)

where U (t,t ′) is the time-evolution operator for the Hamilto-
nian H (t), Eq. (1),

χjxjx
(ω) = i

N

∫
dt eiω(t−t ′)〈[ĵ p

x (t),ĵ p
x (t ′)

]〉
θ (t − t ′) (10)

is the current-current correlation function, and the notation
Ô(t) stands for the interaction representation of the operator O,
namely, Ô(t) = eiH0tOe−iH0t , where H0 is the Hamiltonian in
Eq. (1) with A = 0. Also, 〈. . .〉 means an equilibrium average,
namely in the system H0.

Since 〈ĵ p
x (t)〉 = 〈jp

x 〉 = 0, the equilibrium average of the
current operator in the interaction representation is given by
the diamagnetic term

〈ĵx(t)〉 = 〈
ĵ d
x (t)

〉 = 〈jd
x (t)

〉
= −Ax(t)

1

N

∑
kσ

∂2εk

∂k2
x

〈
c
†
kσ ck,σ

〉
. (11)

Defining

〈kx〉 = − 1

N

∑
k

∂2εk

∂k2
x

〈nk〉 , (12)

where nk = c
†
kσ ck,σ , we have

〈ĵx(t)〉 = 〈kx〉Ax(t), (13)

or, in frequency,

〈ĵx(ω)〉 = 〈kx〉Ax(ω) , (14)

and Eq. (8) therefore becomes

〈jx(ω)〉 = [〈kx〉 + χjxjx
(ω)]Ax(ω) . (15)
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Note that, in the case where the Hamiltonian has only nearest-
neighbor hoppings, 〈kx〉 is proportional to the local kinetic
energy,8 but in general it cannot be regarded as such, as is
clear from Eq. (12).

To find the conductivity, it suffices to relate the electric field
to the vector potential through

Ex(ω) = i(ω + iη)Ax(ω) , (16)

where η is positive and infinitesimal. Thus the current is related
to the electric field by

〈jx(ω)〉 = 〈kx〉 + χjxjx
(ω)

i(ω + iη)
Ex(ω). (17)

Finally, since 〈jx(ω)〉 = σxx(ω)Ex(ω) by definition, the ex-
pression for the optical conductivity in linear response theory
is

σxx(ω) = 〈kx〉 + χjxjx
(ω)

i(ω + iη)
. (18)

In this paper, we calculate only the real part of σ (ω), the
dissipative part, and the expression that we use in practice is

Re σxx(ω) = χ ′′
jxjx

(ω)

ω
, (19)

which is derived in Appendix A from Eqs. (A14)–(A16). If
one is interested in the imaginary part, it can be obtained using
Kramers–Krönig relations.

C. Two-particle self-consistent approach

In the TPSC approach, one- and two-particle Green’s
functions for the Hubbard model are calculated in a non-
perturbative way. The approach enforces conservation laws,
key sum rules, and the Pauli principle. It was shown, from
benchmarks with QMC results36,37,43,56,58,62 to be accurate
within a few percent for interaction strengths up to about
U = 6t . We will derive the TPSC approach below, but the
reader can also resort to Refs. 37– 39 for a more detailed
discussion of the approach itself and a comparison with other
approaches.

In this subsection, we present the key equations for the
theory. The following subsection contains details of the
derivation. We use the shorthand notation 1 = (r1,τ1) for space
and imaginary-time coordinates and q = (q,iqn) for reciprocal
space and Matsubara frequency coordinates.

The spin and charge response functions must be computed
first from the expressions

χsp(q) = 1

N

∫
dτeiωnτ 〈TτS

z(q,τ )Sz(−q)〉

= χ0(q)

1 − Usp

2 χ0(q)
, (20)

χch(q) = 1

N

∫
dτeiωnτ 〈Tτn(q,τ )n(−q)〉 − 〈n〉2

= χ0(q)

1 + Uch

2 χ0(q)
, (21)

where Tτ is the imaginary-time-ordering operator and χ0(q) is
the Lindhard function, given by

χ0(q) = −2
T

N

∑
k

G(1)(k + q)G(1)(k) . (22)

Here, G(1) corresponds numerically to a noninteracting
Green’s function because the self-energy Eq. (49) is constant
and the chemical potential is adjusted to obtain the correct
filling. This point will become clear below. Note that we
assume here that the system is paramagnetic so that the spin
index will often be omitted and the sum over it replaced by
a factor of two, as in Eq. (22). In Eqs. (20) and (21), the
parameters Usp and Uch are the spin and charge irreducible
vertices, respectively. First, Usp is defined by

Usp = U
〈n↑(1)n↓(1)〉

〈n↑(1)〉〈n↓(1)〉 , (23)

(this definition is used for hole doping, electron doping will
be discussed below) so that it can be determined from the
fluctuation-dissipation theorem

T

N

∑
q

χsp(q) = 〈SzSz〉 = 〈n〉 − 2〈n↑n↓〉

= 〈n〉 − Usp

U

〈n〉2

2
, (24)

where we have used the Pauli principle 〈n2
σ 〉 = 〈nσ 〉. Note

that all quantities on right-hand side of Eq. (24) are local
ones. Then, once the double occupancy is known, Uch can be
determined from

T

N

∑
q

χch(q) = 〈n〉 + 2〈n↑n↓〉 − 〈n〉2 . (25)

We also call Eqs. (24) and (25) the local spin and local charge
sum rules.

Finally, with response functions (20) and (21) we can obtain
the one-particle self-energy,

�(2)
σ (k) = Un−σ + U

8

T

N

∑
q

[3Uspχsp(q) + Uchχch(q)]

×G(1)
σ (k + q), (26)

whose form will be explained below. Expressions (20), (21),
and (26) are the basic equations of the TPSC approach.

1. First step: Spin and charge susceptibilities

First let us derive expressions (20) and (21) for the spin
and charge susceptibilities. In the following, we use Einstein’s
convention for the sums (or integrals), namely that an index
appearing twice or more in an expression is summed over
lattice sites and integrated over imaginary time. An overbar
helps clarify which indices are involved. The approach follows
the Martin–Schwinger techniques63 described in Kadanoff and
Baym’s book.60

It is convenient to introduce a “source field” φσ (1,2) that
couples to one-particle excitations in the system. It allows us to
easily obtain correlation functions from functional derivatives.
The source field can be set to zero at the end of the calculation.
The source-field-dependent Green’s function in the grand
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canonical ensemble is then given by

Gσ (1,2; {φ}) = −Tr
[
e−βKTτ e

−c
†
σ̄ (1̄)φσ̄ (1̄,2̄)cσ̄ (2̄)cσ (1)c†σ (2)

]
Tr
[
e−βKTτ e−c

†
σ̄ (1̄)φσ̄ (1̄,2̄)cσ̄ (2̄)

]
= −〈Tτ cσ (1)c†σ (2)

〉
φ
, (27)

where K = H − μN , μ is the chemical potential, and N is
the number operator. We have also used the notation 〈. . .〉φ
which means that the average is taken with the source field
turned on. Response functions can be obtained from functional
derivatives of Gσ with respect to φσ ′ since

δGσ (1,2; {φ})
δφσ ′(3,4)

= Gσ ′(4,3; {φ})Gσ (1,2; {φ})

− 〈Tτ c
†
σ ′(3)cσ ′(4)c†σ (2)cσ (1)

〉
φ
. (28)

We also have

χsp(1,2) = 〈TτS
z(1)Sz(2)〉

= 〈Tτ [n↑(1) − n↓(1)][n↑(2) − n↓(2)]〉
= 2(〈Tτn↑(1)n↑(2)〉 − 〈Tτn↑(1)n↓(2)〉) , (29)

where we have used spin-rotation symmetry to obtain the last
line from the previous one. For the charge response function,
the corresponding expression is

χch(1,2) = 〈n(1)n(2)〉 − 〈n(1)〉〈n(2)〉
= 2(〈Tτn↑(1)n↑(2)〉 + 〈Tτn↑(1)n↓(2)〉)

−〈n(1)〉〈n(2)〉 . (30)

According to Eq. (28), the last two results, Eqs. (29) and (30),
can be written as

χch/sp(1,2)

= −2

(
δG↑(1,1+; {φ})

δφ↑(2+,2)
± δG↑(1,1+; {φ})

δφ↓(2+,2)

) ∣∣∣∣
{φ}=0

, (31)

where the expressions with the plus and minus sign correspond
respectively to the charge and spin response functions. Here,
1+ = (r1,τ1 + ε), where ε is positive and infinitesimal. For the
remainder of this section, we implicitly assume that derivatives
with respect to φ are evaluated at {φ} = 0.

To obtain integral equations for the response functions, we
begin with

Gσ (1,1̄)G−1
σ (1̄,2) = δ(1 − 2) . (32)

Taking the functional derivative of this equation with respect to
φσ ′(3,4), taking 2 → 2̄, multiplying on the right by Gσ (2̄,2),
and summing over 2̄, we obtain

δGσ (1,2)

δφσ ′(3,4)
= −Gσ (1,1̄)

δG−1
σ (1̄,2̄)

δφσ ′(3,4)
Gσ (2̄,2) . (33)

On the other hand, Dyson’s equation in the presence of the
field φ reads

G−1
σ (1,2) = G(0)−1

σ (1,2) − φσ (1,2) − �σ (1,2) , (34)

where G(0)
σ is the noninteracting Green’s function and �σ is

the self-energy, so that

δG−1
σ (1,2)

δφσ ′(3,4)
= −δ(1 − 3)δ(2 − 4)δσσ ′ − δ�σ (1,2)

δφσ ′(3,4)
, (35)

and therefore, from Eq. (33),

δGσ (1,2)

δφσ ′(3,4)
= Gσ (1,3)Gσ (4,2)δσσ ′

+Gσ (1,1̄)
δ�σ (1̄,2̄)

δφσ ′(3,4)
Gσ (2̄,2) . (36)

Following Luttinger and Ward,64 �σ is a functional of Gσ and
G−σ , and we find, applying the chain rule, that

δGσ (1,2)

δφσ ′(3,4)
= Gσ (1,3)Gσ (4,2)δσσ ′

+Gσ (1,1̄)
δ�σ (1̄,2̄)

δGσ̄ (3̄,4̄)

δGσ̄ (3̄,4̄)

δφσ ′(3,4)
Gσ (2̄,2). (37)

This is the analog of the Bethe–Salpeter for the particle-hole
channel. Defining the particle-hole irreducible vertex

�σσ ′(1,2; 3,4) = δ�σ (1,2)

δGσ ′ (3,4)
, (38)

Eq. (37) reads

δGσ (1,2)

δφσ ′(3,4)
= Gσ (1,3)Gσ (4,2)δσσ ′ + Gσ (1,1̄)

×�σσ̄ (1̄,2̄; 3̄,4̄)
δGσ̄ (3̄,4̄)

δφσ ′(3,4)
Gσ (2̄,2) . (39)

The spin and charge response functions in Eq. (31) are special
cases of the more general functions

χ±(1,2; 3,4) = −2

(
δG↑(1,2; {φ})

δφ↑(3,4)
± δG↑(1,2; {φ})

δφ↓(3,4)

)
.

(40)

It is straightforward to show, from the Bethe–Salpeter equa-
tion, Eq. (39), and spin-rotational invariance, that

χ±(1,2; 3,4) = −2G(1,3)G(4,2) ± �ch/sp(1̄,2̄; 3̄,4̄)G(1,1̄)

×G(2̄,2) χ±(3̄,4̄|3,4) (41)

where

�ch/sp(1̄,2̄; 3̄,4̄) = δ�↑(1̄,2̄)

δG↓(3̄,4̄)
± δ�↑(1̄,2̄)

δG↑(3̄,4̄)
(42)

and G = G↑ = G↓.
Up to now, all the results are exact. The first step in the TPSC

approach is to obtain a first approximation for the self-energy
that will be used to obtain irreducible vertices. First, let us
rewrite Dyson’s equation, Eq. (34), with zero source field in
the form

G(0)−1
σ (1,3̄)Gσ (3̄,2) = δ(1 − 2) + �σ (1,3̄)Gσ (3̄,2) . (43)

Then, note that the equation of motion for the Green’s function
reads ∑

l

[(
− ∂

∂τ
+ μ

)
δil + til

]
Gσ (l − j,τ )

= δ(τ )δij − U 〈Tτniσ̃ (τ )ciσ (τ )c†jσ 〉, (44)

or, in compact form,

G(0)−1
σ (1,3̄)Gσ (3̄,2) = δ(1 − 2) − U 〈Tτnσ̃ (1)cσ (1)c†σ (2)〉,

(45)
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where σ̃ = −σ . By comparing Eqs. (43) and (45) we conclude
that

�σ (1,3̄)Gσ (3̄,2) = −U 〈Tτnσ̃ (1)cσ (1)c†σ (2)〉 . (46)

Now comes our first approximation. We replace the last
expression of Eq. (46) by

�σ (1,1̄)Gσ (1̄,2) ≈ Ug↑↓(1)Gσ̃ (1,1+)Gσ (1,2) , (47)

where, for the hole-doped case,

g↑↓(1) = 〈n↑(1)n↓(1)〉
〈n↑(1)〉〈n↓(1)〉 . (48)

For the electron-doped case, we replace nσ in this expression
by 1 − nσ . Thus, when the lattice is bipartite, particle-hole
symetry of the phase diagram is preserved. It also gives a
better agreement with QMC results when the lattice is not
bipartite. Those two different approximations are equivalent to
assuming that approximation (47) is made for holes when the
hole density is smaller than the particle density and for particles
otherwise. Now, substituting definition (48) into Eq. (47), it
is clear that we recover the exact result for the self-energy of
Eq. (46) in the special case 2 = 1+. The approximation36,65 is
justified if it is correct to assume that the four-point correlation
function factorizes only when points 1 and 2 are different.

Within this approximation, the self-energy can be obtained
by multiplying Eq. (47) by G−1

σ (2,3) from the right and
summing over 2 to obtain

�(1)
σ (1,2) = Ug↑↓(1)Gσ̃ (1,1+)δ(1 − 2) , (49)

which is the self-energy ansatz that is used to define the
Green’s function G(1) in Lindhard function (22), from which
are defined TPSC susceptibilities (20) and (21). Note that once
the source field φ is turned off and translational invariance
is restored, �(1)

σ (1,2) becomes independent of position and
its Fourier transform (FT) is simply a constant that can be
absorbed in the chemical potential in G(1)

σ (k), so that this
Green’s function is in practice a noninteracting one.

Given the self-energy, as well as the result

δg↑↓(1)

δGσ (2,3)
= δg↑↓(1)

δG−σ (2,3)
, (50)

valid in the paramagnetic phase, and the definition of the spin
vertex, Eq. (42), we obtain the spin vertex

�sp(1,2; 3,4) = Uspδ(1 − 3)δ(1+ − 4)δ(1− − 2), (51)

where Usp = Ug↑↓(1). It is possible to obtain an analytical
expression for δg↑↓(1)/δGσ (3,4) to compute the charge vertex
from definition (42) and ansatz (49), but to this day the most
successful approach has been to approximate this functional
derivative as local, i.e., proportional to δ(1 − 3)δ(1 − 4), which
leads to

�ch(1,2; 3,4) = Uchδ(1 − 3)δ(1+ − 4)δ(1− − 2). (52)

Substituting into the Bethe–Salpeter equation for the suscepti-
bilities, Eq. (41), we find the corresponding TPSC expressions
for the spin [Eq.(20)] and charge [Eq.(21)] susceptibilities.
They suffice to determine also Uch.

2. Second step: Improved self-energy

Collective modes are generally less influenced by details of
the single-particle properties than the other way around since
collective modes depend more strongly on general principles
like conservation laws. We thus wish now to obtain an im-
proved approximation for the self-energy that takes advantage
of the fact that we have found accurate approximations for the
low-frequency spin and charge fluctuations. We begin from the
general definition of the self-energy Eq. (46), obtained from
Dyson’s equation.

We start with the longitudinal channel (φ diagonal in
spin indices) and use the corresponding expression for the
correlation function in terms of the response function, Eq. (28).
In that case, the right-hand side of the general definition of the
self-energy, Eq. (46), may be written as

�σ (1,1̄)Gσ (1̄,2)

= −U

[
δGσ (1,2)

δφ−σ (1+,1)
− G−σ (1,1+)Gσ (1,2)

]
. (53)

The last term is the Hartree–Fock contribution, which gives the
exact result for the left-hand side in the limit ω → ∞.37 The
δGσ/δφ−σ term is thus a contribution to lower frequencies,
and it comes from the spin and charge fluctuations. Right-
multiplying the last equation by G−1, replacing the lower-
energy part δGσ/δφ−σ by its general expression in terms of
irreducible vertices, Eq. (37), and taking � and G on the
right-hand side to be the first-level approximations �(1) and
G(1), respectively, we find

�(2)
σ (1,2) = UG

(1)
−σ (1,1+)δ(1 − 2)

−UG(1)
σ (1,3̄)

δ�(1)
σ (3̄,2)

δG
(1)
σ̄ (4̄,5̄)

δG
(1)
σ̄ (4̄,5̄)

δφ−σ (1+,1)
. (54)

If we expand the sum over spins on the right-hand side to
express the irreducible vertices in terms of their spin and charge
versions, Eq. (42), we find, after using the TPSC vertices,
Eqs. (51),(52),

�l(2)
σ (k) = Un−σ + U

4

T

N

∑
q

[Uspχsp(q) + Uchχch(q)]

×G(1)
σ (k + q) . (55)

There is, however, an ambiguity in obtaining the self-energy
formula. Indeed, we can obtain an expression for the self-
energy by using a transverse source field φ−σσ in Eq. (27). By
taking functional derivatives of G with respect to this φ, we first
obtain the transverse spin correlation functions χ+−(1,2) =
〈TτS+(1)S−(2)〉 and χ−+. Then, using a derivation analogous
to that for the longitudinal case,38 we find

�t(2)
σ (k) = Un−σ + U

2

T

N

∑
k

Uspχsp(q)G(1)
−σ (k + q) . (56)

During the derivation, χ+−(1,2) = χ−+(1,2) = 1
2χsp(1,2) was

used, taking spin-rotational invariance into account.
The two previous expressions for the self-energy clearly

show that our approximations for the fully reducible vertex do
not preserve crossing symmetry, that is, the symmetry under
the exchange of two particles or two holes. To improve our
approximation and restore crossing symmetry,43 we average

085128-6



OPTICAL AND DC CONDUCTIVITY OF THE TWO- . . . PHYSICAL REVIEW B 84, 085128 (2011)

the two expressions, (55) and (56), which give the final result,
Eq. (26), that we use in the rest of this paper. It turns out
that this “symmetric” expression of the self-energy gives a
better agreement with QMC results.43 In addition, we verify
numerically that the exact sum rule (Appendix A in Ref. 37)

−
∫

dω′

π
Im �R

σ (k,ω′) = U 2n−σ (1 − n−σ ) , (57)

determining the high-frequency behavior of �, is satisfied to
a higher degree of accuracy with the symmetrized self-energy
expression, Eq. (26).

3. Internal accuracy checks

Our final expression for the self-energy �(2), Eq. (26),
is in principle an improvement over the constant self-energy
entering the calculation of the susceptibilities. But clearly the
approach is not one-particle self-consistent. All the Green’s
functions entering the right-hand side of Eq. (26) are evaluated
with G(1), which has a constant self-energy. The advantage is
that all quantities, including the vertices, on the right-hand side
of Eq. (26) are computed at the same level of approximation.
In fact, one can miss some important physics if this is not the
case.37

Apart from comparisons with QMC calculations, we can
check the accuracy in other ways. For example, the f-sum rule,∫

dω

π
ωχ ′′

ch(q,ω) = 1

N

∑
kσ

(εk+q + εk−q − 2εk)〈nkσ 〉 , (58)

is exactly satisfied at the first level of approximation (i.e., with
〈nkσ 〉(1) on the right-hand side) and the charge susceptibility
obtained with Uch. Suppose that on the right-hand side of that
equation, one uses 〈nkσ 〉 obtained from G(2) instead of the
Fermi function. In cases where the agreement with QMC is
good, one should find that the right-hand side does not change
by more than a few percent.

When we are in the Fermi-liquid regime, another way to ver-
ify the accuracy of the approach is to verify if the Fermi surface
obtained from G(2) satisfies Luttinger’s theorem very closely.

Finally, the consistency relation between one- and two-
particle quantities (� and 〈n↑n↓〉), Eq. (46), should be satisfied
exactly in the Hubbard model. In the special case where 2 =
1+, this relation can be written as

1

2
Tr(�G) = lim

τ→0−

T

N

∑
k

e−iknτ�σ (k)Gσ (k) = U 〈n↑n↓〉.

(59)

In standard many-body books,66 this expression is encountered
in the calculation of the free energy through a coupling-
constant integration. In the TPSC approach, it is not difficult
to show (Appendix B of Ref. 37) that the following equation,

1
2 Tr(�(2)G(1)) = U 〈n↑n↓〉, (60)

is satisfied exactly with the self-consistent U 〈n↑n↓〉 obtained
from the sum rule of Eq. (24). An internal accuracy check
consists of verifying by how much 1

2 Tr(�(2)G(2)) differs from
1
2 Tr(�(2)G(1)). Again, in regimes where we have agreement
with QMC calculations, the difference is only a few percent.

The above relation between � and 〈n↑n↓〉 gives us another
way to justify our expression for �(2), Eq. (26). Suppose one
starts from Eq. (55) to obtain a self-energy that contains only
the longitudinal spin fluctuations and the charge fluctuations,
as was done in the first papers on the TPSC method.36 One
finds that the spin part and the charge part each contribute
an amount U 〈n↑n↓〉/2 to the consistency relation Eq. (60).
Similarly, if we work only in the transverse spin channel,38,43

we find that each of the two transverse spin components also
contributes U 〈n↑n↓〉/2 to 1

2 Tr(�(2)G(1)). Hence, averaging the
two expressions also preserves rotational invariance since each
spin component contributes equally to Eq. (60). Note that
Eq. (26) for �(2) is different from so-called Berk–Schrieffer-
type expressions67 that contain only bare vertices and do not
satisfy (Appendix E in Ref. 37) the consistency condition
between one- and two-particle properties, Eq. (59).

D. Conductivity in the two-particle self-consistent approach

To compute Re σ (ω) from the Kubo formula, Eq. (19),
we have to obtain the current-current correlation function
given by Eq. (10), which contains the q = 0 component of
the paramagnetic current. From the general expression for the
current, Eq. (4), we have

jp
x =

∑
l

jp
x (rl) = i

∑
δσ

δxtδ
∑

l

c
†
lσ cl−δ,σ . (61)

Since the actual calculation is done in Matsubara frequency
instead of the real-frequency definition of χjxjx

, Eq. (10), we
use

χjxjx
(iqn) = 1

N

∫
dt eiqn(τ−τ ′)〈Tτ ĵ

p
x (τ )ĵ p

x (τ ′)
〉
, (62)

where ĵ
p
x (τ ) = eτH0j

p
x e−τH0 and qn = 2nπT , with n an

integer, is a bosonic Matsubara frequency. Substituting Eq.(61)
into this expression gives〈

Tτ ĵ
p
x (τ )ĵ p

x (τ ′)
〉 = −

∑
ilδ1δ2σ1σ2

δx1δx2tδ1 tδ2

×〈Tτ c
†
iσ (τ )ci−δ1,σ (τ )c†lσ (τ ′)cl−δ2,σ (τ ′)〉.

(63)

If we substitute the functional derivative expression for the
correlation function, Eq. (28), in this equation, we obtain

〈
Tτ ĵ

p
x (τ1)ĵ p

x (τ2)
〉 = ∑

r1r2δ1δ2σ1σ2

δx1δx2 tδ1tδ2
δGσ2 (2′,2)

δφσ1 (1,1′)
,

(64)

where have used the notation 1 = (r1,τ1) and 1′ = (r1 −
δ1,τ1). Note that the first term on the right-hand side of Eq. (28)
does not contribute to the sum since 〈jp

x 〉 = 0. Now, summing
over spin indices and using spin rotational invariance, we
obtain〈

Tτ ĵ
p
x (τ1)ĵ p

x (τ2)
〉 = −

∑
r1r2δ1δ2

δx1δx2 tδ1tδ2 χ+(2′,2; 1,1′),

(65)

where we have used the definition Eq. (40) for the generalized
susceptibility χ+.
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The most general way of thinking about the last result is
that it comes from a functional derivative of the current with
respect to an applied vector potential representing the electric
field. The remaining of the derivation, that we give in the rest of
this subsection, is based on the idea that we should evaluate this
functional derivative in a systematic way to obtain a conserving
approximation, as shown by Baym59. We will keep working
with the source field φσ but it is useful to remember that within
simple prefactors, it is equivalent to working with the vector
potential as the source field.

The susceptibility χ+ is defined in terms of a functional
derivative in Eq. (40). That functional derivative leads to a
Bethe-Salpeter like equation (36) that contains two different
types of terms

χ+(1,2|3,4) = −2G(1,3)G(4,2)

−2G(1,1̄)

(
δ�σ (1̄,2̄)

δφσ (3,4)
+ δ�σ (1̄,2̄)

δφ−σ (3,4)

)
G(2̄,2) .

(66)

The product GG comes from the explicit dependence of G−1

on the source field while the last one comes from the implicit
dependence of the self-energy on that source field. The product
GG is what leads to the “bubble” in standard conductivity
calculations. The other term is the vertex correction.

Up to now, everything is exact in the present subsection. To
work within the TPSC method, it suffices to use everywhere the
results obtained at the second level of approximation, namely
G(2)

σ and �(2)
σ , since at the first level of approximation the

conductivity is infinite. Our explicit formula for �(2)
σ , Eq. (26),

is a functional of G(1)
σ . We can thus write

δ�(2)
σ (1̄,2̄)

δφσ ′(3,4)
= δ�(2)

σ (1̄,2̄)

δG
(1)
σ̄ (3̄,4̄)

δG
(1)
σ̄ (3̄,4̄)

δφσ ′(3,4)
. (67)

Expanding the sum over spin, using the chain rule, spin-
rotation invariance and the definition of χ+, Eq. (40), we obtain

δ�(2)
σ (1̄,2̄)

δφσ (3,4)
+ δ�(2)

σ (1̄,2̄)

δφ−σ (3,4)
= −1

2

(
δ�(2)

σ (1̄,2̄)

δG
(1)
σ (3̄,4̄)

+ δ�(2)
σ (1̄,2̄)

δG
(1)
−σ (3̄,4̄)

)

×χ
(1)
+ (3̄,4̄|3,4) (68)

where χ
(1)
+ is computed with G(1)

σ . Substituting in the exact
expression for χ+, Eq. (66), we find

χ
(2)
+ (1,2|3,4) = −2G(2)(1,3)G(2)(4,2) + G(2)(1,1̄)G(2)(2̄,2)

×
(

δ�(2)
σ (1̄,2̄)

δG
(1)
σ (3̄,4̄)

+ δ�(2)
σ (1̄,2̄)

δG
(1)
−σ (3̄,4̄)

)
χ

(1)
+ (3̄,4̄|3,4).

(69)

If �(2)
σ had been a functional of G(2) we would have had an

infinite series to sum. Instead, here the series ends as we now
show. First note that, from Eq. (41) and approximation (52)
for the charge vertex,

χ
(1)
+ (3̄,4̄|3,4) = −2G(1)(3̄,3)G(1)(4,4̄)

+G(1)(3̄,5̄)G(1)(6̄,4̄)�(1)
ch (5̄,6̄,7̄,8̄)χ (1)

+ (7̄,8̄|3,4)

=−2G(1)(3̄,3)G(1)(4,4̄)

+UchG
(1)(3̄,5̄)G(1)(5̄,4̄)χ (1)

+ (5̄,5̄+|3,4). (70)

From this expression, only the first term has to be included in
our calculation because the second term will not contribute
to the q = 0 current-current correlation function. This is
because �

(1)
ch is local in space and local vertex corrections

do not contribute to the uniform conductivity. To see why, one
can represent the correlation function, Eq. (65), as a series
of diagrams with current vertices at their ends and vertex
functions inserted between them. Whenever a vertex function
in a diagram does not depend on q, a bubble is closed with
the local vertex on one end and the current vertex on the other.
Since a current vertex is an odd function in space and the
product of the Green’s function is even because the bubble
does not carry any momentum, the integral vanishes.

Inserting the first term of χ
(1)
+ , Eq. (70), into χ

(2)
+ , Eq. (69),

we obtain

χ
(2)
+ (1,2|3,4) = −2G(2)(1,3)G(2)(4,2) − 2G(2)(1,1̄)G(2)(2̄,2)

×
(

δ�(2)
σ (1̄,2̄)

δG
(1)
σ (3̄,4̄)

+ δ�(2)
σ (1̄,2̄)

δG
(1)
−σ (3̄,4̄)

)

×G(1)(3̄,3)G(1)(4,4̄) . (71)

The last step is in principle straightforward, but very tedious.
We must obtain an expression for the functional derivatives
in parenthesis in this expression. The self-energy, Eq. (26), in
real space is

�(2)
σ (1,2) = UG

(1)
−σ (1,1+)δ(1 − 2)

+ U

8
[3Uspχsp(2,1) + Uchχch(2,1)]G(1)

σ (1,2),

(72)

so that

δ�(2)
σ (1,2)

δG
(1)
σ ′ (3,4)

= Uδ(1 − 2)δ(1 − 3)δ(1+ − 4)δ−σ,σ ′

+ U

8

[
3Uspχsp(2,1) + Uchχch(2,1)

]
× δ(1 − 3)δ(2 − 4)δσσ ′ + U

8
G(1)

σ (1,2)

×
[

3Usp

δχsp(2,1)

δG
(1)
σ ′ (3,4)

+ Uch

δχch(2,1)

δG
(1)
σ ′ (3,4)

]
.

(73)

In this expression, the terms involving the functional
derivatives of �sp and �ch have been omitted because they
do not contribute to the conductivity. Fundamentally, what
is needed is δ�sp/ch

δAx
, where Ax is the vector potential. Since

�sp and �ch are local, this is the correlation function of a
local operator that is thus even under parity, and the current
operator, that is odd. The q = 0 component of this correlation
function that enters the current-current correlation function,
Eq. (62), therefore vanishes.

Now, we need an explicit expression for
δχch/sp(2,1)/δG(1)

σ ′ (3,4) to know the vertex correction,
Eq. (73), completely. Let us start with χch. One can obtain
an expression for this function by taking 2 = 1+ and 3 = 4+
in the expressions for χ+/−, Eq. (41). But this expression
has been simplified using spin-rotational invariance. If we
separate the spin contributions, we have
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χch(2,1) = −Gσ (2,1+)Gσ (1,2+) − G−σ (2,1+)G−σ (1,2+) + 1
2UchGσ (2,2̄+)Gσ (2̄,2+) χch(2̄,1)

+ 1
2UchG−σ (2,2̄+)G−σ (2̄,2+) χch(2̄,1), (74)

so that
δχch(2,1)

δGσ ′(3,4)
= −δ(2 − 3)δ(1+ − 4)Gσ ′(1,2+) − Gσ ′(2,1+)δ(1 − 3)δ(2+ − 4)

+ 1

2
Uchδ(2 − 3)Gσ ′(4,2) χch(4,1) + 1

2
Uchδ(2 − 4)Gσ ′(2,3) χch(3,1)

+ 1

2
UchGσ (2,2̄+)Gσ (2̄,2+)

δχch(2̄,1)

δGσ ′(3,4)
+ 1

2
UchG−σ (2,2̄+)G−σ (2̄,2+)

δχch(2̄,1)

δGσ ′(3,4)
, (75)

where, again, the functional derivatives of Uch have been omitted, for the same reason as in Eq. (73). Using again spin-rotational
invariance, this gives

δχch(2,1)

δGσ ′(3,4)
= −δ(2 − 3)δ(1+ − 4)G(1,2+) − G(2,1+)δ(1 − 3)δ(2+ − 4)

+ 1

2
Uchδ(2 − 3)G(4,2) χch(4,1) + 1

2
Uchδ(2 − 4)G(2,3) χch(3,1) + UchG(2,2̄+)G(2̄,2+)

δχch(2̄,1)

δGσ ′(3,4)
. (76)

By Fourier transforming this equation with respect to 2, we obtain an algebraic equation that is trivial to solve. Fourier transforming
back the result, we obtain

δχch(2,1)

δGσ ′(3,4)
= 1

1 + Uch

2 χ0
(2,3) G(4,3)

[
− δ(1 − 4) + 1

2
Uch χch(4,1)

]

+ 1

1 + Uch

2 χ0
(2,4) G(4,3)

[
− δ(1 − 3) + 1

2
Uch χch(3,1)

]
, (77)

where
1

1 + Uch

2 χ0
(1,2) = T

N

∑
q

eiq·(1−2) 1

1 + Uch

2 χ0(q)
. (78)

The expression for δχsp(2,1)/δGσ ′ (3,4) is obtained by simply replacing Uch by −Usp and χch by χsp in the right-hand side of
expression (77):

δχsp(2,1)

δGσ ′(3,4)
= 1

1 − Usp

2 χ0

(2,3) G(4,3)
[

− δ(1 − 4) − 1

2
Usp χsp(4,1)

]

+ 1

1 − Usp

2 χ0

(2,4) G(4,3)
[

− δ(1 − 3) − 1

2
Usp χsp(3,1)

]
. (79)

Substituting Eqs. (77) and (79) in our expression for the vertex, Eq. (73), we obtain

δ�(2)
σ (1,2)

δG
(1)
σ ′ (3,4)

= Uδ(1 − 2)δ(1 − 3)δ(1+ − 4)δ−σ,σ ′ + U

8

[
3Uspχsp(2,1) + Uchχch(2,1)

]
δ(1 − 3)δ(2 − 4)δσσ ′ − U

8
G(1)(1,2)

×G(1)(4,3)

[
3Usp

(
1

1 − Usp

2 χ0

(2,3)
[
δ(1 − 4) + 1

2
Usp χsp(4,1)

]
+ 1

1 − Usp

2 χ0

(2,4)
[
δ(1 − 3) + 1

2
Usp χsp(3,1)

])

+ Uch

(
1

1 + Uch

2 χ0
(2,3)

[
δ(1 − 4) − 1

2
Uch χch(4,1)

]
+ 1

1 + Uch

2 χ0
(2,4)

[
δ(1 − 3) − 1

2
Uch χch(3,1)

])]
, (80)

and therefore,
δ�(2)

σ (1̄,2̄)

δG
(1)
σ (3̄,4̄)

+ δ�(2)
σ (1̄,2̄)

δG
(1)
−σ (3̄,4̄)

= Uδ(1̄ − 2̄)δ(1̄ − 3̄)δ(1̄+ − 4̄) + U

8
[3Uspχsp(2̄,1̄) + Uchχch(2̄,1̄)]δ(1̄ − 3̄)δ(2̄ − 4̄)

− U

4
G(1)(1̄,2̄)G(1)(4̄,3̄)

[
3Usp

(
1

1 − Usp

2 χ0

(2̄,3̄)

[
δ(1̄ − 4̄) + 1

2
Usp χsp(4̄,1̄)

]
+ 1

1 − Usp

2 χ0

(2̄,4̄)

×
[
δ(1̄ − 3̄) + 1

2
Usp χsp(3̄,1̄)

])
+ Uch

(
1

1 + Uch

2 χ0
(2̄,3̄)

[
δ(1̄ − 4̄) − 1

2
Uch χch(4̄,1̄)

]

+ 1

1 + Uch

2 χ0
(2̄,4̄)

[
δ(1̄ − 3̄) − 1

2
Uch χch(3̄,1̄)

])]
. (81)
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We now have everything to write an explicit form for the susceptibility χ
(2)
+ in Eq. (71):

χ
(2)
+ (1,2|3,4) = −2G(2)(1,3)G(2)(4,2) − 2UG(2)(1,1̄)G(2)(1̄,2)G(1)(1̄,3)G(1)(4,1̄+)

− U

4
G(2)(1,1̄)G(2)(2̄,2)[3Uspχsp(2̄,1̄) + Uchχch(2̄,1̄)]G(1)(1̄,3)G(1)(4,2̄)

− U

2
G(2)(1,1̄)G(2)(2̄,2)G(1)(1̄,2̄)G(1)(4̄,3̄)G(1)(3̄,3)G(1)(4,4̄)

×
[

3Usp

(
1

1 − Usp

2 χ0

(2̄,3̄)
[

− δ(1̄ − 4̄) − 1

2
Usp χsp(4̄,1̄)

]
+ 1

1 − Usp

2 χ0

(2̄,4̄)
[

− δ(1̄ − 3̄) − 1

2
Usp χsp(3̄,1̄)

])

+Uch

(
1

1 + Uch

2 χ0
(2̄,3̄)

[
− δ(1̄ − 4̄) + 1

2
Uch χch(4̄,1̄)

]
+ 1

1 + Uch

2 χ0
(2̄,4̄)

[
− δ(1̄ − 3̄) + 1

2
Uch χch(3̄,1̄)

])]
.

(82)

To evaluate the current-current correlation function entering the conductivity, it is clearly necessary to go to Fourier space.
Inserting then this last result into Eq. (65) for the current-current correlation function and using

δxtδ = i

N

∑
k

eik·δ ∂εk

∂kx

, (83)

1 + Usp

2
χsp(q) = 1

1 − Usp

2 χ0(q)
, 1 − Uch

2
χch(q) = 1

1 + Uch

2 χ0(q)
, (84)

we finally obtain for the Fourier–Matsubara transformed expression at q = 0,

χjxjx
(iqn) = −2T

N

∑
k

(
∂εk

∂kx

(k)

)2

G(2)(k)G(2)(k + iqn)

−U

4

(
T

N

)2∑
k1k2

G(2)(k1)G(2)(k1+iqn)G(1)(k2)G(1)(k2+iqn)
∂εk

∂kx

(k1)
∂εk

∂kx

(k2)[3Uspχsp(k2−k1)+Uchχch(k2 − k1)]

+U

2

(
T

N

)3 ∑
k1,k2,q1

∂εk

∂kx

(k1)
∂εk

∂kx

(k2)G(2)(k1)G(2)(k1+iqn)G(1)(k2)G(1)(k2+iqn)[G(1)(k2+q1+iqn)+G(1)(k2−q1)]

×G(1)(k1+q1+iqn)

(
3Usp

1

1 − Usp

2 χ0(q1)

1

1 − Usp

2 χ0(q1 + iqn)
+Uch

1

1 + Uch

2 χ0(q1)

1

1 + Uch

2 χ0(q1 + iqn)

)
. (85)

In this expression, we use the compact notation k + iqn =
(k,ikm + iqn). Note that the second term on the right-hand
side of Eq. (82) does not contribute to χjxjx

because it has a
local vertex.

Equation (85) is our final result for the current-current
correlation function in Matsubara space, including both bubble
and vertex corrections. It is useful for the intuition and to
verify the Fourier transforms to represent it schematically, as
we have done in Fig. 1. We stress that this representation is
not the result of a perturbative calculation. It exists merely
because we are working with Green’s functions and response
functions. This representation helps us note that an analogy
can be made between the different contributions to χjxjx

and
the diagrams considered in the theory of paraconductivity.68 In
the latter theory, we consider the effect of the superconducting
fluctuations on the conductivity of the normal state, while
in our case, the bosons exchanged are spin and charge
fluctuations. The diagram with a single boson propagator on
the first line of Fig. 1 is the analog of the MT contribution,69–72

while the diagrams on the second and third lines are analogs

of the AL contributions.73 However, it is important to note
that, because our approach is not perturbative, some electron
propagators are at the second level of approximation and
some are at the first level, and the boson propagators are
the susceptibilities computed with the renormalized spin and
charge irreducible vertices.

In the system considered in this paper, the relevant col-
lectives modes are magnetic fluctuations with a wave vector
close to Q = (π,π ). First, when those fluctuations become
strong, they scatter quasiparticles, which has a dramatic effect
on the single-particle spectrum and therefore the conductivity
obtained from the bubble alone. But the magnetic fluctuations
also lead to important vertex corrections because they correlate
the regions of the Fermi surface that are connected by wave
vectors close to Q. For the MT diagram in Fig. 1, in the DC
limit, the exchange of such a fluctuation between the particle
and the hole created by the field causes the pair to be scattered
from a region of the Fermi surface where it carries a positive
current along the direction of the field to a region where it
carries a negative current. This correlation between currents
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=

k + iqn

k

+

k1 + iqn

k2

k2 + iqn

k1

k2 − k1

+

k1 + iqn

k2

k1 + q1 + iqn

k1
q1 + iqn

q1
k2 + iqn

k2 + q1 + iqn +

k1 + iqn k2

k1 + q1 + iqn

k1
q1 + iqn

q1

k2 − q1

k2 + iqn

+

k1 + iqn

k2

k1 + q1 + iqn

k1
q1 + iqn

q1
k2 + iqn

k2 + q1 + iqn +

k1 + iqn k2

k1 + q1 + iqn

k1
q1 + iqn

q1

k2 − q1

k2 + iqn

FIG. 1. Schematic representation of the var-
ious terms in the current-current correlation
function, Eq. (85). Simple fermion lines repre-
sent the Green’s function G(1) (in practice it has
the same form as the bare Green’s function), dou-
ble fermion lines are dressed Green’s function
G(2), the simple wiggly line in the last diagram
on the first line is the function [3Uspχsp +
Uchχch], the double wiggly lines in the third
and fourth diagrams on the right-hand side are
the function 1/(1 − Uspχ0/2), and the zigzag
lines in the last two diagrams are the function
1/(1 + Uchχ0/2). Those diagrams serve only as
a graphical representation of Eq. (85); they are
not obtained in a perturbative way.

flowing in opposite directions degrades the DC conductivity.
In the case of the AL diagrams in Fig. 1, a particle-hole pair
creates another one via two magnetic fluctuations. If they have
a large correlation length, this will tend to correlate currents
on large distances. However, the particle-hole pair created by
the fluctuations can carry a current that is either positive or
negative. Keeping in mind that when quasiparticles create or
absorb magnetic fluctuations, their velocity along the direction
of the field changes sign, one finds that the first diagram in
the second line of Fig. 1 correlates currents flowing in the
same direction, while the second diagram correlates currents
in opposite directions. In addition, the former contribution is
large if the single-particle spectral density is large below the
Fermi level in regions connected by wave vectors around Q,
while the latter is large if the spectral density is large above
the Fermi level. When both processes are summed up, there
will therefore be a net effect on the conductivity only if there
is an asymmetry in the relevant parts of the density of states.

E. Calculation algorithms

Let us recall that we have used the shorthand notation
k = (k,ikn), with k = (kx,ky), in the general expression for
the current-current correlation function, Eq. (85). Thus, each
sum over a trivector k is over the 2D Brillouin zone and
over Matsubara frequencies. The second and third sums are
therefore six-and nine-dimensional, respectively. The six-
dimensional sum would be extremely long to do in a direct way
for relevant system sizes and temperatures. For example, for a
finite system of 512 × 512 sites with about 4000 frequencies,
which would allow going down to temperatures of about
T = 0.01t (without finite-size effects), it would take of the
order of 30 years to compute one frequency iqn, if 109 terms are
summed per second. Of course, this is using pure brute force,
when all wave vectors and frequencies are summed, which is
not necessary in practice. In the case of the nine-dimensional
sum, it would take about 40 billion years to compute a single
frequency in the same conditions. If one was to keep the direct

summation approach, but optimizing the procedure by using
a very efficient adaptive scheme, it would still be extremely
hard to do the six-dimensional sum to obtain, for example,
100 frequencies in a reasonnable time, namely, of the order
of a few days. In the case of the nine-dimensional sum, it is
obviously impossible to do this way.

One thus has to resort to a numerical approach completely
different from direct summation to succeed in calculating all
the terms of Eq. (85) for a useful number of frequencies
iqn. The main tool that we use to make this calculation
possible is the fast Fourier transform (FFT), which changes the
scaling of Fourier transforms (FTs) from N2 to N log N . But
other mathematical and numerical tricks are also necessary
to make the calculation both fast and precise. Precision is
critical here since we have to numerically perform the analyt-
ical continuation of the computed Matsubara current-current
correlation function and numerical analytical continuation is
inherently an ill-conditioned problem. For this analytical con-
tinuation procedure that produces the real-frequency optical
conductivity from the Matsubara current-current correlation
function, a maximum entropy algorithm is also developed to
maximize the accuracy of the result. The calculation algo-
rithms for χjxjx

(iqn) and our analytical continuation algorithm
are summarized in the next two subsections and detailed in
Appendices C–F.

1. Fast Fourier transforms, cubic splines,
and asymptotic expansions

The key property that allows us to compute Eq. (85) is that
some of its sums are convolutions. Since the convolution of two
functions can be written as the FT of the product of their FTs,
we can use FFTs to do those convolutions in a very efficient
way. However, FFTs are discrete transforms, while some of the
transforms we have to do are continuous ones. In the case of the
spatial FTs, we can use a finite system with periodic boundary
conditions, so that all the transforms are discrete and FFTs
can be used directly. Since we work at finite temperature in
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two dimensions, all correlation lengths are finite and we can
use a system large enough to reach interesting regimes. The
system size we use in this paper is 512 × 512 and the lowest
temperature we reach is 0.008t , which corresponds to 32 K if
t = 0.35 eV. At this temperature, the thermal de Broglie wave-
length is about 100 in lattice units, so that no finite-size effects
are seen unless the magnetic correlation length becomes large.

In the case of imaginary time, if it is discretized, then
the FT will be periodic in Matsubara frequencies, which is
unphysical. In fact, the lowest frequencies will be acceptable,
though not very precise, but the precision will decrease rapidly
with increasing frequency, so that the high frequencies will
be completely wrong. To overcome this problem, we use a
cubic spline to interpolate the function between the discrete
imaginary-time points and we do a continuous FT on the spline.
This technique has already been used in the context of DMFT
calculations.74 However, to our knowledge, it has not been
pointed out that, because the spline is only twice continuously
differentiable, after integrating by parts three times the Fourier
integral, we are left with an expression containing a discrete
Fourier transform (DFT) that can be done with a FFT. Using
the more general formula derived in Appendix E, the final
formula for the FT of the cubic spline of an imaginary-time
function g(τ ) is

g(iωn) =
∫ β

0
dτ g(τ )eiωnτ ≈

N∑
j=1

∫ τj

τj−1

dτ Sj (τ )eiωnτ

= −g(0) − eiωnβg(β)

iωn

+ S ′
1(0) − eiωnβS ′

N (β)

(iωn)2

− S ′′
1 (0) − eiωnβS ′′

N (β)

(iωn)3

+ 1 − eiωn�τ

(iωn)4

N−1∑
j=0

S
(3)
j+1e

iωnτj , (86)

where N is the number of intervals in the discretized imaginary
time between 0 and β, �τ is the size of an interval, Sj (τ ) is
the cubic polynomial in the j th interval, and S ′

j (τ ), S ′′
j (τ ), and

S
(3)
j are, respectively, the first, second, and third derivatives of

Sj (τ ). If g is a fermionic function, eiωnβ = −1, while eiωnβ = 1
if it is bosonic.

When using formula (86), we work explicitly with the high-
frequency expansion up to the 1/(iωn)3 term, which can be
very useful, as will be explained shortly. Up to which term this
expansion will be exact depends on how the spline is defined.
As shown in Appendix E, there are two conditions defining
the spline that can be chosen depending on the information
available. If the derivatives at the boundaries g′(0) and g′(β)
are known, we can fix S ′

1(0) and S ′
N (β) to those values. That is

what we do in our calculations. Otherwise, we have to use exact
results for the second and third high-frequency coefficients of
g, i.e., the second and third moments of its spectral function.
Another important point about Eq. (86) is that the last term
containing the DFT contributes to only the low frequencies
because of its factor 1/(iωn)4; therefore the error at high
frequency that comes from the discretization of τ rapidly
vanishes.

Given the above considerations, it should now be clear
that we can compute convolutions both in wave vector and
Matsubara frequency using FFTs. Before the calculation
of χjxjx

, Eq. (85), this technique is used to compute the
Lindhard function, Eq. (22), and then the self-energy, Eq. (26).
The computation of those functions with FFTs is relatively
straightforward to implement, although some care must be
taken in the definition of the splines. Those details are given
in Appendices C1 and C2. In the case of Eq. (85), we seek
only the q = 0 component of χjxjx

(q,iqn) so that, in each
term, the last sum over the Brillouin zone to be performed is
a simple sum and FFTs are not useful there. Regarding the
other sums, it is not obvious which one can be put in the form
of a convolution, except for the bubble which has the same
form as the Lindhard function. In the case of the second term
of Eq. (85), represented by the second diagram (MT) on the
right-hand side of Fig. 1, it is possible to put all those sums in
the form of convolution and thus to compute all of them with
FFTs. This means that all the external frequencies iqn can be
obtained at once when the last FFT is performed. The scaling
of this calculation with system size and inverse temperature is
thus the same as for the bubble. That is not the case however
of the last term of Eq. (85), represented by the last four (AL)
diagrams in Fig. 1. For this term, each frequency has to be
calculated separately, and it is the calculation time of only one
frequency that has the same scaling as the bubble. Calculating
this term for 100 values of iqn therefore takes hundreds of
times the calculation time of all frequencies of the bubble.
The calculation of the bubble is nevertheless very quick, of the
order of a few minutes at most for our 512 × 512 system at
low temperatures.

Note, however, that quite a large amount of analytical
work is needed to put the last two terms of Eq. (85) in a
form suitable for computation with FFTs. This work involves
some transformations, and a certain number of sums over
Matsubara frequencies must be performed exactly. The details
of those transformations and analytical calculations are given
in Appendix C3.

Still, it is impossible to calculate the third term of
Eq. (85) for thousands of frequencies, namely the number of
frequencies below the cutoff used in the calculation. Therefore,
to reduce the number of frequencies to be calculated, we
have used a nonuniform Matsubara frequency grid in which
the frequency spacing increases with frequency magnitude.
We give the definition of this grid in Appendix D. We have
verified that the function χjxjx

(iqn) evaluated on this grid has
enough information for the analytically continued conductivity
Re σ (ω) to be converged.

Using formula (86) for our functions in Matsubara frequen-
cies has the advantage is that we always have at our disposal
their high-frequency expansion. Thus if we want the inverse
FT (from Matsubara frequencies to imaginary time) of a more
complex function, for example the product of two functions of
the form of Eq. (86), we can always use the asymptotic form
to perform the sum over Matsubara frequencies up to infinity
using contour integrals in the complex plane and the residue
theorem. In a lot of cases, this is necessary since the sum
does not converge otherwise. As will be explained in the next
subsection, precision is important in our calculations since we
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have to extract Re σ (ω) from the Matsubara function χjxjx
(iqn)

and analytical continuation is a very ill-conditioned problem.
Finally, as one will notice from Appendix C3, the calcula-

tion of Eq. (85), especially the second and third terms, contains
many steps. The debugging part of the work is therefore
considerable. To make sure formula (85) is implemented
correctly, we have compared its brute force implementation,
term by term, with its fast one given in Appendix C3. Here,
brute force means that it is coded exactly as written in
Eq. (85), with one exception that will be explained shortly.
Therefore, we compare the results of two calculations that
are completely different numerically, but mathematically
equivalent. Of course, those verifications can be done for only
very small systems at very high temperatures, since otherwise
the brute force calculation is impossible to do in a reasonable
time. But even then, the third term of Eq. (85) takes too much
time to compute with brute force. In that case, the procedure is
to first verify that the sum over k2 for some random values of
qn and q1 gives the same result with the two implementations
and then to replace this sum in the brute force version by its
fast implementation. After that step we compare this modified
brute force implementation with the fast implementation of
the whole third term.

2. Analytical continuation

Expression (85) gives the current-current correlation func-
tion in Matsubara frequencies while we need it in real
frequencies to compute the conductivity from Eq. (18) or
Eq. (19). Thus we need a reliable analytical continuation
method. To do so, we use a maximum entropy approach.
This kind of analytical continuation procedure is often used
to extract real-frequency results from imaginary-time QMC
data using some information known a priori such as sum rules
and a default model which contains some known properties
of the expected function.75 This information is included in the
algorithm in the form of constraints or in the entropy definition.
This kind of approach is well suited for QMC calculations
since the results are usually in discretized imaginary time
and the amount of noise can be important, so that any
additional information is welcome. In our case, the original
data are in Matsubara frequencies and the noise level is much
lower since it comes only from finite precision rounding
errors accumulating throughout the calculation. However, our
calculation of χjxjx

contains many steps so that the final result
may have an amount of noise such that Padé approximants will
not work. Those approximants are very sensitive to noise76

and their reliability is not very good except at very low
temperatures. In any case, we have noticed that they give
unstable results as a function of temperature for our data while
our maximum entropy procedure is in general stable.

We give here the main features of our approach. The details
are given in Appendix F. As usual we minimize the function
χ2 − αS, where S is the entropy, α is a weighting parameter
for S, and χ2 is the quadratic error between χjxjx

(iqn) and the
quantity χ̄jj (iqn) computed from the spectral representation
of χjxjx

(iqn) with a trial-real frequency conductivity Re σ (ω).
First, an accurate numerical integration scheme has to be
chosen to compute χ̄jj (iqn) from Re σ (ω) known on a fixed
discrete grid in real frequency ω. We use a cubic spline to

approximate Re σ (ω). Since we work in Matsubara frequen-
cies instead of imaginary time, the spectral form is simple and
can be integrated analytically if Re σ (ω) is approximated by a
piecewise cubic polynomial function. Also, because we want
to integrate Re σ (ω) in the interval [0,∞, we integrate the
low-frequency part with respect to ω and the high-frequency
part with respect to 1/ω. To do so, we use a spline cubic in
ω for low frequencies and cubic in 1/ω for high frequencies.
As for the choice of grid, we take it to be uniform in ω for the
low-frequency part and uniform in 1/ω for high frequencies.
This choice of grid ensures that the matrix for the spline linear
system is well conditioned and keeps the number of values
Re σ (ωj ) reasonable, so that the minimization procedure is
not too heavy. The integration using the spline turns out to
be very accurate compared with a simple piecewise linear
approximation. In our tests with a well-defined analytical form
for Re σ (ω) for which χjxjx

(iqn) could be computed very
accurately with an adaptive integration routine, the relative
precision was typically five orders of magnitude smaller with
the spline than the piecewise linear approximation. The reason
we have to use a very accurate integration method is that the
relative difference between χ̄jj (iqn) and χjxjx

(iqn) has to be
very small, typically <10−5 in our calculation, for Re σ (ω)
to be converged in the optimization procedure. The precision
of the numerical integral for a given Re σ (ω) clearly has to
be smaller than this required relative error on χ̄jj (iqn) for the
result to be reliable.

The fact that the spline is integrated analytically has the
great advantage that low temperatures are not more difficult
to handle, while it is the case with standard numerical inte-
gration because the integrand becomes sharper as temperature
decreases. Note that all those precision issues are important if
one is interested in quantitative results. For instance, we want to
obtain the resistivity as a function of temperature, but since the
results at different temperatures are numerically completely
independent, the quantitative aspect becomes crucial. If one is
interested only in the shape of Re σ (ω) at a given temperature,
simpler and cruder approximations can be sufficient.

III. NUMERICAL RESULTS

Before we show the results of this paper, let us recall
some important former results of the TPSC approach. First,
the theory respects the Mermin–Wagner theorem, so that no
phase transition occur at finite temperatures. However, with
proper values of U and hopping parameters, antiferromagnetic
correlations are present up to very high temperatures around
half-filling. For example, with U = 6t and nearest-neighbor
hopping only, for dopings smaller than pc = 0.205 a crossover
to a renormalized classical regime appears. This regime
appears when kBT 
 h̄ωsp, where ωsp is the characteristic
frequency of the antiferromagnetic fluctuations, i.e., the
frequency at which the imaginary part of the spin correlation
function χ ′′

sp(ω) is maximum. In this regime, the antiferromag-
netic correlation length has the form ξsp ∝ exp(C/T ), where
C has a very weak temperature dependence. Therefore, at a
certain temperature T ∗, ξsp becomes larger than the single-
particle thermal de Broglie wavelength ξth = h̄vF /(πkBT ).
When this happens, the parts of the Fermi surface that are
connected by the antiferromagnetic wave vector, called the
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hot spots, are strongly scattered by the magnetic fluctuations
and eventually destroyed, producing a gap in those regions
of the Brillouin zone.37,62 However, before the correlation
length becomes infinite, which is the case only at T = 0 in
two dimensions, there is still spectral weight at the Fermi level
and thus no real gap exits, but what is observed instead is
a pseudogap, namely, a depression of the density of states
at the Fermi level. Therefore, the crossover temperature to
the renormalized classical regime T ∗ can also be called a
pseudogap temperature. When T = 0, long-range SDW order
exists for p < pc and thus pc is a QCP. Depending on band
parameters and doping, this SDW state can be commensurate
or incommensurate. Usually it is commensurate close to
half-filling and a transition to incommensurate appears at a
certain doping.77

Benchmarks of TPSC results were made against QMC
results for quantities such as the spin and charge structure
factors,36 the quasiparticle renormalization factor and the
imaginary time Green’s function,62 the finite frequency spin
susceptibility, the double occupancy and the one-particle occu-
pation number,37 and finally, the one-particle spectral weight.43

Those benchmarks were made in the weak to intermediate
coupling regime for a large range of doping around half-filling
and for temperatures where no finite-size effects are seen in
the QMC results and, at finite doping, when the sign problem
is not too strong. In general, a good quantitative agreement
is obtained for all quantities at a coupling U = 4t . For some
quantities such as the spin structure factor, the agreement is
almost perfect above T ∗ for couplings up to U = 8t . Since
the TPSC method has some mean-field aspects78 coming from
the ansatz, Eq. (49), it slightly overestimates T ∗ (see Fig. 7 of
Ref. 37), but the qualitative behavior just below T ∗, when the
spin correlation length grows exponentially, is still very well
reproduced. The spectral weight at half-filing in this regime is
also very well reproduced by the TPSC method.43 This is the
regime where precursors of the antiferromagnetic bands are
formed and a pseudogap appears in the spectral weight.

The results we present in this section are for the one-
band Hubbard model with nearest-neighbor hopping only. All
numerical examples are for U = 6t and various dopings and
temperatures. We begin by showing the accuracy with which
the f-sum rule is satisfied. We then give a few typical examples
of the frequency-dependent conductivity. The last subsection
will focus on the temperature-dependent resistivity for various
dopings.

A. f-sum rule

Although our expression for the conductivity, Eq. (85),
was obtained from functional derivative methods that lead to
results that satisfy conservation laws,59 usually this method is
applied to perturbative one-particle self-consistent schemes.
In the TPSC method, all the functional dependence on
vector potential is in G(1). One may question whether this
preserves conservation laws. The full Ward identity is derived
in Appendix B where one also finds comments on why it
cannot be used to find the vertex corrections in the limiting
case we are interested in. Given the difficulty of computing
the current-current correlation function alone for only the
wave vector q = 0, it will be clear why the full Ward identity
cannot be verified. As a test of particle conservation, we focus

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T/t

kx

χ
(0)
jj (iqn = 0)

χvc
jj(iqn = 0)

χ
(0)
jj (iqn = 0) + χvc

jj(iqn = 0)

FIG. 2. Contributions to the zero-Matsubara-frequency value of
the current-current correlation function compared with the sum-rule
value −〈kx〉 for p = 0.17.

instead on how accurately the f-sum rule, Eq. (A19) derived in
Appendix A,

χjxjx
(iqn = 0) = 1

N

∑
kσ

∂2εk

∂k2
x

〈nkσ 〉 , (87)

is satisfied numerically. In this equation, the occupation prob-
ability 〈nkσ 〉 is computed with G(2), while the left-hand side
is the zero-Matsubara-frequency current-current correlation
function χjxjx

, Eq. (85), obtained with the functional derivative
approach that gives us ∂�(2)/∂G(1) as an irreducible vertex.

Typically, using 500t as the cutoff Matsubara frequency,
i.e., about 60 times the bandwidth, the above equation is
satisfied to a relative accuracy of 10−7. By increasing the
cutoff, the accuracy can be increased at will. We have
reached an accuracy of 10−10. The separate contributions
of the different terms of expression (85), also represented
schematically in Fig. 1, are shown in Fig. 2 as functions of
temperature for 17% doping, i.e., on the left-hand side of the
QCP. As one would expect, the bubble contribution is dominant
at high temperatures, although the first vertex correction is not
negligible. At low temperatures, in the renormalized classical
regime, the two terms give comparable contributions. The
contribution of the third term in Eq. (85), the AL-like diagrams
in Fig. 1, vanishes at all temperatures. This is discussed
further at the end of Appendix B. As will be seen in the next
subsections, despite this vanishing contribution of this term
to χjxjx

(iqn = 0), i.e., to the integral of the real part of the
conductivity, this term contributes in a nontrivial way both to
the DC and the finite frequency conductivity.

B. Optical conductivity

The optical conductivity and the effect of the vertex
corrections are different depending on which side of the QCP
the system is and on the temperature. On the left-hand side
of the critical point, the conductivity changes qualitatively as
the temperature approaches the crossover temperature to the
renormalized classical regime T ∗. Here T ∗ is defined as the
temperature at which ξsp = ξth. As shown in Fig. 3(a), at high
temperatures it has a Lorentzian-like shape at low frequencies,
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FIG. 3. Optical conductivity with and with-
out vertex corrections at different dopings
and temperatures. From (a) to (d) the dop-
ing is p = 0.17 < pc and the temperatures are
(a) T = 0.3t > T ∗, (b) T = 0.08t > T ∗, (c)
T = 0.06 ≈ T ∗, and (d) T = 0.04t < T ∗. The
other dopings are p = 0.205 = pc at tempera-
tures (e) T = 0.2t and (f) T = 0.01t and p =
0.32 > pc at (g) T = 0.2t and (h) T = 0.2t . All
panels on the right-hand side contain a blowup of
the low-frequency region of the rightmost plot.
The symbols are shown for only a small fraction
of the total number of points in the grids.

whether we look at the bubble alone, the bubble with the
first vertex correction, or with both vertex corrections. In this
region of the phase diagram, the low-frequency conductivity
is smaller if the vertex corrections are included. Then, as seen
in the left-hand part of Fig. 3(b), as T is lowered toward T ∗
but still above it, the effect of the first vertex correction is to
strongly decrease the low-frequency conductivity, while the
second correction does not just compensate for this effect,
but makes the total even higher than the bubble alone. At
higher frequencies, in the right-hand part of Fig. 3(b), a hump,
not present without vertex corrections, appears in the total
conductivity. Note that, at this temperature, the spin fluctuation
frequency ωsp is about T/2. When T is around T ∗, in Fig. 3(c),
the hump is more pronounced, and finally, when T < T ∗, in
Fig. 3(d), it becomes a very distinct peak. At this temperature,
a hump similar to the one seen with vertex corrections at
higher temperatures appears in the bubble term alone. At this
temperature, T ≈ 600ωsp and ξsp = 147 ≈ 6ξth. If we were to

compare our result with experiments, assuming an energy scale
t = 350 meV, the hump seen around 0.5t would correspond
to the feature observed in the mid-infrared frequency range in
the optical conductivity of electron-doped cuprates.79,80 Note
that another clear hump appears in the conductivity with vertex
corrections in Fig. 3(d). At this doping and temperature, the
spin fluctuations are incommensurate; hence their effect on the
spectral weight at finite energies can be quite complex. This
additional structure in the conductivity may be a consequence
of this incommensurability.

At the critical doping, Figs. 3(e) and 3(f), the low-frequency
conductivity is lower than the bubble result when only the first
vertex correction is taken into account, while it is higher with
both corrections. This effect is much more pronounced at low
temperatures in Fig. 3(f). New secondary peaks also appear at
low temperatures. Those peaks are at frequencies considerably
smaller than the peak seen at p = 0.17 below T ∗ and, as will
be clear from the DC resistivity results in the next subsection,

085128-15



BERGERON, HANKEVYCH, KYUNG, AND TREMBLAY PHYSICAL REVIEW B 84, 085128 (2011)

there is no pseudogap regime at this doping. Those peaks
may nevertheless be caused by correlations that are present
far beyond the critical doping, at least at finite temperatures.
The effects of those correlations are also clear in the resistivity
results in the following subsection.

Finally, at a doping higher than the critical doping, in
Figs. 3(g) and 3(h), the conductivity with the first vertex
correction can be almost the same as the bubble result at
low frequencies both at high and low temperatures, although
this correction does not vanish in Matsubara frequency [at
T = 0.01t , χvc1

jxjx
(0) is about 7% of χ

(0)
jxjx

(0) and χvc1
jxjx

(i2πT )

is about 14% of χ
(0)
jxjx

(i2πT )]. Adding the other correction
makes the low-frequency conductivity increase substantially.
However, while the finite frequency conductivity stays finite
when the doping is closer to pc or smaller, at low temperatures,
in Fig. 3(h), it vanishes completely just after the main low-
frequency peak when both vertex corrections are included.
This peak is also sharper and higher at high doping (not
shown). As will be confirmed in the next subsection, this means
that the system becomes closer to a Fermi liquid, although it
has not yet reached this regime at this doping. When it does,
the DC conductivity will be inversely proportional to T 2 at
low-temperatures so that, to conserve the weight which is
roughly constant with respect to temperature, i.e. to respect
the f-sum rule, the width has to be proportional to T 2. At zero
temperature, since there is no impurity scattering in our model,
the low-frequency part becomes a delta function. Note that
an absoption band remains at finite frequency at the highest
doping since there is still an incoherent part in the one particle
spectrum. However, one must also note that the highest values
of the conductivity in that band are about a thousand times
smaller than the DC value and that the total optical weight
of this band is about 10 times smaller than the weight of the
low-frequency peak.

The frequency region where the effect of vertex corrections
is important becomes smaller as the doping increases. For
p = 0.17, the difference between the different results vanishes
around ω = 4t , at the critical point, this happens around ω =
2t , and at p = 0.32, around ω = 1.5t .

As the doping increases, the conductivity at low tempera-
tures becomes extremely sharp and it becomes very hard to do
the maximum entropy analytical continuation. That is because
a very fine grid must be used at low frequency, while one
still needs a cutoff larger that the bandwidth. This makes the
number of points in the real-frequency grid explode, as well
as the time for the optimization process.

C. DC resistivity as a function of temperature and doping
close to the quantum critical point

Figure 4 shows five interesting doping regimes for the DC
resistivity. The left vertical axis is in units of the Ioffe–Regel
maximum metallic resistivity. The right vertical axis translates
the result in micro-ohms-centimeters by taking d = 5 Å as
the interplane lattice constant. For the temperature scale, we
use t = 350 meV. The resistivity without vertex corrections
(bubble) appears as red circles, with the first correction, namely
the second term in expression (85) or the MT-like diagram
in Fig. 1, in purple squares (bubble + VC1) and the total
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FIG. 4. (Color online) Resistivity as a function of temperature
for (a) p = 0.15 (b) p = 0.17 (c) p = 0.205 (critical doping) (d)
p = 0.26 and (e) p = 0.32. The dashed vertical line in (a) and (b)
indicates the temperature at which the internal accuracy starts failling
as T decreases. Dashed curves in (c), (d), and (e) are the results of
fits of the low-T resistivity to the form AT + BT 2.
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resistivity appears as blue triangles. The insets of the last three
figures display the low temperature behavior. The position of
each doping is indicated by an arrow for each figure on a
schematic “phase diagrams” with the quantum critical point
and the crossover line.

At the smallest doping, p = 0.15 in Fig. 4(a), one ob-
serves at high temperature the expected Ioffe-Regel maximum
metallic resistivity saturation. The value is about 2 h̄d/e2. The
resistivity is higher when vertex corrections are included at
high temperature. Without vertex corrections, it increases with
decreasing temperature below the crossover temperature to the
renormalized classical regime T ∗, which is about 400 K (0.1t)
at this doping. The effect of vertex corrections is dramatic
at low temperatures, essentially changing the resistivity from
insulating to metallic. An important point is that this effect
can be obtained only when both corrections are included.
When only the first correction is included, the scattering
effect of magnetic correlations is largely overestimated and the
resistive behavior thus amplified. At p = 0.17, closer to the
QCP, Fig. 4(b) exhibits essentially the same behavior except
that, given the overall smaller resistivity, the saturation at
high temperatures occurs beyond the range displayed. At low
temperatures in Figs. 4(a) and 4(b), the resistivity with vertex
corrections seems to extrapolate to negative values. However,
as indicated by the vertical dashed lines in those figures, this
happens in a region where the TPSC result is no longer
quantitatively reliable because the internal accuracy check
starts to fail when the magnetic correlation length becomes
too large compared with the thermal de Broglie wavelength.
The results at those temperatures and dopings, namely, deep
in the peudogap regime, can thus at most be considered as
qualitative tendencies.

At the QCP, p = 0.205, one observes in Fig. 4(c) that,
without vertex corrections, the resistivity is quite linear at
low temperatures, as found previously in spin fluctuation
theories.21,81 When all the corrections are included, the
most obvious effect is that the resistivity decreases at all
temperatures. The linear behavior remains at low temperatures,
but the vertex corrections tend to reduce the linear contribution
and a T 2 behavior appears at a lower temperature than that
without vertex corrections. Note that, with only the first
correction, there is a change in curvature. Also, the resistivity
is larger than the bubble result at all temperatures instead of
smaller as found when all vertex corrections are included.

As the doping becomes larger than the quantum critical
doping, Figs. 4(d) and 4(e) show that a linear T behavior
is still present at the lowest temperatures, but gradually
disappears as the doping increases and the Fermi-liquid-like
T 2 behavior becomes dominant. The resistivity with the first
vertex correction only is omitted in Fig. 4(e) because it is
almost equal to the bubble result at all temperatures.

The result of fits of the temperature dependence of
the resistivity to the functional form AT + BT 2 over the
range 0.008t < T < 0.05t (30K < T < 200K) is illustrated
in Figs. 5(a) and 5(b). Those fits were done using two other
resistivity curves in addition to those shown in Fig. 4, namely,
at p = 0.22 and p = 0.24. The linear coefficient A decreases
as one moves away from the QCP. This decrease is correlated
with the superconducting transition temperature, shown in the
inset, estimated from TPSC calculations of the dx2−y2 -wave
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FIG. 5. Coefficients (a) A and (b) B in the fit of the form AT +
BT 2 to the resistivity, as a function of doping, starting at the QCP.
The inset in (a) shows the superconducting transition temperature as a
function of doping estimated with the TPSC approach, from Ref. 82.
The doping region relevant for our fits is indicated with dashed lines
in this inset.

susceptibility.82 As for the coefficient B, it seems to have
a rapid increase as we move away from the QCP and then
to remain roughly constant as the doping increases. Note,
however, that this coefficient is hard to obtain precisely close to
the QCP. For example, if we change the number of points used
in the fit, the value of B in this doping region can change by
about 20%. This is because, at low temperatures, the region of
interest here, the quadratic term has a very small contribution
compared with the linear term close to the QCP. Also, there
is always some noise in the resistivity, a consequence of the
fact that those results are obtained by analytical continuation
of Matsubara response functions, a procedure very sensitive to
finite precision noise in these response functions. Therefore,
the values of B for the two smallest dopings in Fig. 5(b)
are rough estimations. However, as the doping increases, the
quadratic contribution becomes more important and thus B is
more accurate.

IV. DISCUSSION

Starting with the self-energy at the second level of ap-
proximation, Eq. (72), the only nonstraightforward part of the
derivation is the neglect of the functional derivatives of the
irreducibles vertices �sp and �ch in the derivative of �(2) with
respect to the field or with respect to G(1). However, as was
explained in Sec. II D, following Eq. (73), the vanishing of
those contributions to the conductivity is exact. Therefore,
starting from approximation (26) for the self-energy that
contains the local spin and charge irreducible vertices �sp

and �ch, Eqs. (51) and (52), the rest of the calculation is exact.
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In fact, purely from our numerical results, with the
Green’s function at the second level of approximation and
the irreducible vertex generated from the corresponding self-
energy, we would have strong reasons to suggest that the
f-sum rule is satisfied exactly in our approach. At all dopings
and temperatures, that sum rule is satisfied with very high
accuracy and the precision increases with the cutoff Matsubara
frequency. Since the f-sum rule is a consequence of particle
conservation (see Appendix A), this means that our approach
is consistent with particle number conservation. This result
is a consequence of our use of functional derivatives to
calculate the Green’s function and correlation functions, as
in conserving approximations.59 However, unlike in those
approaches, there is no self-consistency at the one-particle
level, i.e., our self-energy �(2) is calculated with G(1) and not
G(2). Thus one-particle self-consistency is not necessary to
ensure particle conservation.

The saturation of the resistivity to the Ioffe–Regel maxi-
mum value at high temperatures is a general constraint, this
time based on general physical considerations, that is satisfied
by our approach and not by Boltzmann-based approaches. At
high doping the Fermi-liquid T 2 resistivity is also recovered,
as expected.

From the fact that the first vertex correction, the MT-like
diagram in Fig. 1, is sufficient to respect the sum rule, one
would be tempted to assume that the other type of vertex
corrections will not contribute, as was done in previous
calculations.27 It is clear from our results that this is not the
case. In the pseudogap regime, the AL-like contribution has a
drastic effect on the DC resistivity, making the system metallic
instead of insulating. If only the first correction is included, we
would wrongly assume that the system is even more insulating
than without any correction. On the right-hand side of the QCP,
it is also very important to include both vertex corrections
since their total effect is to reduce the resistivity, while it
would increase, for a large range of doping, if only the first
correction was taken into account. Also, when both corrections
are included, the T 2 Fermi-liquid resistivity is recovered at a
lower doping. The importance of including both corrections
is also very clear in the optical conductivity, especially on the
left of the QCP, where the result is qualitatively very different
with only the first vertex correction.

One may ask whether it is enough to include only those two
vertex corrections. To answer that question we recall that our
expression for the current-current response function Eq. (85),
is not derived perturbatively, but using functional derivatives.
Since the calculation of χjxjx

is exact starting from the TPSC
self-energy, Eq. (49), as long as the TPSC calculation is valid,
all the terms needed are the ones that we have used. The region
of the phase diagram where the TPSC calculation breaks down
is deep in the pseudogap regime, when some parts of the Fermi
surface are destroyed and, thus, the one-particle spectrum is
dramatically different from the noninteracting one. Therefore,
in this regime, the TPSC results should be regarded as more
qualitative than quantitative.

Since we have not used realistic band parameters, we cannot
directly compare our results with any real material. However,
some tendencies can help us understand experiments and
provide some hints on what would be interesting to investigate
using more realistic band structures.

First, there is a pseudogap in the TPSC approach. For
electron-doped cuprates, it was shown that the pseudogap
has properties predicted by this approach, namely it appears
when the antiferromagnetic correlation length becomes larger
than the single-particle de Broglie wavelength or the mean
free path.55 The hump around ω = 0.5t , seen in Figs. 3(b),
3(c), and 3(d), thus corresponds to the analogous feature seen,
for example, in Nd2−xCexCuO4 in the mid-infrared energy
range.79,80 If we use t = 0.35 eV, the location in energy
of this structure is also in the correct energy range. Those
optical conductivity results and previous comparison of TPSC
spectral weights with photoemission experiments on electron-
doped cuprates add to the evidence that those materials are
well described by the accurate solutions of the Hubbard
model provided by the TPSC approach at intermediate
coupling.44,83

An interesting aspect of our results is the linear low-
temperature resistivity observed at the quantum critical doping.
As mentioned in Sec. III C, linear T resistivity has already been
obtained in spin fluctuation theory within the so-called self-
consistent renormalization approach.21,81 This is discussed in
the review in Ref. 24. However, this theory is based on the
variational approach to the Boltzmann equation. It has been
shown with a better variational ansatz that the resistivity should
be in T 2.22 That variational ansatz is better because it takes
into account that hot regions on the Fermi surface that are
strongly influenced by spin scattering should be short circuited
by the cold regions. Indeed, it is the conductivities of the
different Fermi surface regions that are integrated and not the
resistivities. Thus, like parallel resistors, the total resistivity
depends on only the more conductive regions. In our results,
vertex corrections tend to make the resistivity more quadratic,
but a linear term remains at low temperatures. This result
tells us that, at least for the parameters used in this paper,
the region of the Fermi surface with the lowest resistivity
has linear T resitivity. This is coherent with our observation,
from spectral density calculations (not shown), that the whole
Fermi surface seems incoherent, or hot, over a range of
dopings that extends beyond the QCP at the temperatures
considered.84

Another important question is whether, in the quantum
critical region above the QCP, the whole Fermi surface is
always incoherent, as suggested by some experiments.85,86

This is possible because what characterizes this region is
that the magnetic fluctuations are strong, but not yet strong
enough to destroy any part of the Fermi surface. In other
words, instead of having spin excitations that are well defined,
they are broad in energy and wave vector, which means that
they affect large parts of the Fermi surface and possibly all
of it. To understand the transport, it is important to make
the distinction between this regime and the pseudogap regime,
where the well-defined hot spots appear. This distinction is not
made in Ref. 22. In the present paper, the incoherence of the
whole Fermi surface may come, however, from the fact that we
have included only nearest-neighbor hoppings and that large
parts of the Fermi surface are almost nested. More calculations
of the conductivity using second and third nearest-neighbor
hoppings will be necessary to verify if this global incoherence
of the Fermi surface in the quantum critical region is universal.
Note that this is a subtle question that cannot be answered using
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approaches with adjustable parameters, like those of Refs. 21
and 22, which can give qualitatively different results depending
on how those parameters are chosen.

Another interesting point about the linear term in the
resistivity is its correlation with the superconducting transition
temperature Tc. This correlation seems to be present in all
the unconventional superconductors. It has been observed in
the cuprates, the pnictides, and the organics.87–90 In those
materials, it seems that the linear coefficient A disappears
exactly at the end of the superconducting dome on the
overdoped side, which strongly suggests a common origin
for linear resistivity and superconductivity. In the Hubbard
model, in the weak to intermediate coupling regime, the TPSC
approach finds that superconductivity and linear resistivity also
have the same origin, namely the interaction of quasiparticles
with antiferromagnetic fluctuations. However, from Fig. 5, it
does not seem that A disappears completely with Tc, which
vanishes at around p = 0.25, as shown in the inset of the
figure. Note that there is some uncertainty in the values of
A that could come from a small systematic error in the
resistivity. This is possible because it is difficult to obtain
very precise analytically continued results. Nevertheless, it
is clear that the most important drop in A is before Tc

vanishes.
One striking result we obtain in the pseudogap regime on

the left-hand side of the QCP is the change of the resistivity
from an insulating to a metallic behavior when the vertex
corrections are taken into account. This is an effect of the
AL-like contribution which, as mentioned at the end of
Sec. II D, gives a positive contribution to the conductivity
when the density of states below the Fermi level is larger
than above. In the present case the Fermi level is just above
the Van Hove singularity. The density of states is therefore
extremely asymmetric at the Fermi level, and that explains why
the AL term is so large that it counters both the effect of the
one-particle self-energy that makes the bubble result insulating
and the effect of the MT-like term that tends to make the system
even more insulating. From preliminary results with second
and third nearest neighbor hoppings t ′ and t ′′, we notice that
the second vertex corrections cannot always compensate for
the first correction and the resistivity for p < pc can be higher
than the bubble result even with both vertex corrections. This
happens when the Fermi level is farther from the Van Hove
singularity, so that the density of states is much less asymmetric
around ω = 0 and thus the AL term is weaker. Those results
tell us that the behavior observed in the pseudogap regime
on the left-hand side of the QCP in Figs. 4(a) and 4(b) is
not universal. However, on the right-hand side of the QCP,
the results should be qualitatively the same since eventually
Fermi-liquid physics dominates. That is effectively what we
observe so far.

Another interesting question is the effect of disorder on the
importance of vertex corrections. In our case, as mentioned in
Sec. II D, if the vertices do not depend on the wave vector, i.e.,
they are isotropic, they have no effect on the conductivity.
Adding disorder would probably make the vertices more
isotropic, and therefore their effect should be smaller. It would
be very interesting to see if, by adding enough disorder, we
could reduce the effect of vertex corrections to the point where
the resistivity recovers its insulating behavior in the pseudogap

region. This would also provide one possible explanation for
the fact that, in less clean cuprates, such as La2−xSrxCu2O4

the resistivity increases below T ∗, while it increases in cleaner
systems such as YBa2Cu3O7−y . That contrasting behavior can
be seen in Ref. 91 when, for the latter compound, we take
the pseudogap line to end at optimal doping. However, from
our preliminary results with hoppings t ′ and t ′′ relevant for
cuprates, we have noticed that, on the hole-doped side, the
qualitative behavior with and without vertex corrections can
be inverted with respect to the results of Figs. 4(a) and 4(b).
That is, the resistivity without vertex corrections decreases
below T ∗, while it increases with vertex corrections. By
changing the band parameters and the doping we can therefore
change dramatically the transport properties in the pseudogap
regime.

V. CONCLUSION

To satisfy current conservation, conductivity calculations
must include vertex corrections that are consistent with the
self-energy. A systematic way of achieving this proceeds with
functional derivatives with respect to the vector potential. We
have shown how this approach can be generalized to the
nonperturbative TPSC approach. The various terms of the
resulting algebraic expression, Eq. (85), have the physical
interpretation illustrated schematically in Fig. 1. One type
of vertex correction has the structure of the MT term in
fluctuation superconductivity, while the other has the structure
of the AL term. These diagrams contain many elements
that are not computed perturbatively, as for example the
irreducible spin and charge vertices and the vertex cor-
rections. With this approach, the f-sum-rule is satisfied in
principle exactly. We verified the agreement to the accuracy
of the numerical calculations (a typical relative precision
of 10−7).

The numerical evaluation of the conductivity with vertex
corrections can be done only if FFTs and other advanced
numerical algorithms are employed. Brute force calculations
are impossible with any kind of computing resource cur-
rently available. Analytical continuation is performed with
a specialized maximum entropy technique that we have
described in detail in the appendices, along with all other
algorithms.

We have shown that our approach allows us to compute
the optical conductivity and DC resistivity of the nearest-
neighbor 2D one-band Hubbard model in a variety of
regimes, without adjustable parameters or phenomenological
assumptions. There is no need to assume the existence
of quasiparticles, as is the case in Boltzmann equation
approaches.

For illustrative purposes, we have presented the results of
calculations for U = 6t and nearest-neighbor hoppings only.
For the DC resistivity, we find at high temperatures that it
saturates at the Ioffe–Regel value, namely when the mean free
path is of the order of the interlattice spacing. The existence of
this Ioffe–Regel limit is usually assumed on phenomenological
grounds. Here we have demonstrated it. That limit may be
exceeded in strong coupling,92,93 but that is beyond the TPSC
approach. Vertex corrections have a dramatic influence for
dopings smaller than the quantum critical doping. They can
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change the temperature dependence of the resistivity from
insulating to metallic when the antiferromagnetic correlation
length becomes larger than the thermal de Broglie wavelength,
namely in the pseudogap regime. At the QCP, the resistivity is
linear at low temperatures, although vertex corrections tend to
reduce the temperature range of the linearity compared with
the calculation with the bubble only. At low temperatures, the
linear term persists at dopings larger than the QCP, although
we cannot exclude that it disappears at temperatures lower
than those accessible to us. The coefficient of this linear term
is also correlated with the vanishing of the superconducting Tc

obtained with the TPSC method, in qualitative agreement with
experimental results on the cuprates, the pnictides, and the
organics.88,89 For dopings equal to or greater than the critical
doping, the resistivity with all vertex corrections is always
smaller than the simple bubble result. In general, for most
of the dopings and temperatures considered, the first vertex
correction has the tendency to increase the resistivity, while
the second has the opposite effect. Therefore the results of each
type of term are always very different and one cannot neglect
the AL-like contribution in those regimes. The latter contribu-
tion vanishes only when there is exact particle-hole symmetry.

We observe in the optical conductivity that vertex correc-
tions are important at all the dopings considered and that no
term can be neglected. The effect is the strongest for dopings
smaller than the critical doping near and below the pseudogap
temperature. We also observe that the frequency at which the
results with and without vertex corrections cease to differ
decrease with increasing doping. The hump structure in the
mid-infrared frequency range, related to the pseudogap, is
observed both with and without vertex corrections, but with
different amplitudes at a given temperature. At the quantum
critical point and beyond, the effect is important both at
high and low temperatures, though more important at low
temperatures. The low-frequency part of the conductivity is
higher with the vertex corrections and increases quite rapidly
with doping.

This work is currently being extended in several directions.
For example, one can study more realistic band parameters
for high-temperature superconductors and investigate the
connection between the single-particle scattering rate along
the Fermi surface and the temperature dependence of the
resistivity. The sensitivity of the resistivity to the details of
the model in the pseudogap regime would also be interest-
ing to investigate. Using a similar approach, one can also
envisage calculating the thermopower and other transport
properties.
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APPENDIX A: f-SUM RULE FOR THE CONDUCTIVITY

In this appendix, we derive the general expression for the
real part of the conductivity, Eq. (19), and we show that
the zero-Matsubara-frequency value of the current-current
correlation function suffices to check numerically the validity
of the f-sum rule. We begin from the continuity equation,

∂ρ(r,t)
∂t

+ ∇ · j(r,t) = 0 , (A1)

which, in Fourier space, reads

−ωρ(q,ω) + q · j(q,ω) = 0 . (A2)

If j(q,ω) = jx(q,ω)x̂, we have

qxjx(q,ω) = ωρ(q,ω) . (A3)

Using space translational invariance, the two-particle spectral
function corresponding to an observable A can be written
formally as

χ ′′
AA(q,ω) = 1

N�〈[A(q,ω),A(−q, − ω)]〉, (A4)

with � → ∞, so that, from continuity equation (A3), we have
the relation between current and charge correlation functions,

χ ′′
jxjx

(q,ω) = ω2

q2
x

χ ′′
ρρ(q,ω) , (A5)

and thus,∫
dω

π

χ ′′
jxjx

(q,ω)

ω
= 1

q2
x

∫
dω

π
ωχ ′′

ρρ(q,ω) . (A6)

The right-hand side can be obtained from equal-time commu-
tators since∫

dω

π
ωχ ′′

ρρ(q,ω) =
(

i
∂

∂t

∫
dω

2π
e−iωt2χ ′′

ρρ(q,ω)

) ∣∣∣
t=0

, (A7)

and, by definition,∫
dω

2π
e−iωt2χ ′′

ρρ(q,ω) = 1

N
〈[ρ(q,t),ρ(−q,0)]〉 , (A8)

so that∫
dω

π

χ ′′
jxjx

(q,ω)

ω
= 1

q2
x

1

N

〈[
i

∂

∂t
ρ(q,t),ρ(−q,0)

]〉∣∣∣
t=0

= 1

q2
x

1

N

〈[
[ρ(q),H ](t),ρ(−q,0)

]〉 ∣∣∣
t=0

.

(A9)

Taking for H the Hubbard Hamiltonian and calculating the
commutators, we get∫

dω

π

χ ′′
jxjx

(q,ω)

ω
= 1

q2
x

1
N

∑
kσ (εk+q + εk−q − 2εk) 〈nkσ 〉 ,

(A10)

We are interested in the long wavelength limit, namely q → 0,
so that

εk+q ≈ εk + ∂εk

∂kx

qx + ∂εk

∂ky

qy + 1

2

∂2εk

∂k2
x

q2
x

+1

2

∂2εk

∂k2
y

q2
y + ∂2εk

∂kx∂ky

qxqy , (A11)
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and, if we consider the longitudinal conductivity q = qxx̂, we
obtain∫

dω

π

χ ′′
jxjx

(qx,ω)

ω
= 1

N

∑
kσ

∂2εk

∂k2
x

〈nkσ 〉 = −〈kx〉 , (A12)

using the earlier definition, Eq. (12).
To derive the general results for the real part of the

conductivity, Eq. (19), we begin with the spectral form for
χjxjx

(qx,ω) that reads

χjxjx
(qx,ω) =

∫
dω′

π

χ ′′
jxjx

(qx,ω)

ω′ − ω − iη
, (A13)

so that, from Eqs. (18) and (A12), we have

σxx(qx,ω) = 〈kx〉 + χjxjx
(ω)

i(ω + iη)

= 1

i(ω + iη)

(
−
∫

dω′

π

χ ′′
jxjx

(qx,ω
′)

ω′

+
∫

dω′

π

χ ′′
jxjx

(qx,ω
′)

ω′ − ω − iη

)

= 1

i(ω + iη)

∫
dω′

π

(ω + iη)χ ′′
jxjx

(qx,ω
′)

ω′(ω′ − ω − iη)

= 1

i

∫
dω′

π

χ ′′
jxjx

(qx,ω
′)

ω′(ω′ − ω − iη)
, (A14)

and since
1

ω′ − ω − iη
= P

1

ω′ − ω
+ iπδ(ω′ − ω) , (A15)

we obtain the desired result:

Re σxx(qx,ω) = χ ′′
jxjx

(qx,ω)

ω
. (A16)

Substituting in the form found earlier, Eq. (A12), the f-sum
rule for the conductivity is∫ ∞

−∞

dω

π
Re σxx(qx,ω) = 1

N

∑
kσ

∂2εk

∂k2
x

〈nkσ 〉 (A17)

for qx → 0. Since the spectral form for χjxjx
(qx,iqn) is

χjxjx
(qx,iqn) =

∫ ∞

−∞

dω

π

χ ′′
jxjx

(qx,ω)

ω − iqn

, (A18)

we have the desired result:

χjxjx
(qx,iqn = 0) = 1

N

∑
kσ

∂2εk

∂k2
x

〈nkσ 〉 . (A19)

It is thus sufficient to look at the zero-Matsubara-frequency
value of χjxjx

to check whether the sum rule is satisfied
(assuming that 〈kx〉 has been calculated).

Since the results in Eq. (A17), or equivalently Eq. (A19),
are a consequence of the continuity equation, it means this sum
rule must be respected when there is conservation of particle
number.

APPENDIX B: WARD IDENTITY

In this appendix, we derive the general Ward identity that
follows from charge conservation. It is far too complicated to

be verified in full generality numerically within our approach.
We also indicate that the Ward identity suffices to find
the vertex correction simply in cases where frequency and
momentum variations are smooth. These assumptions are not
fulfilled in our case; hence these simplifications cannot be
used.

We begin from linear response theory in imaginary time.
We omit the diamagnetic term, which is not relevant for the
present discussion. We find

〈
jq (τ )

〉 = ∫ β

0
dτ ′ 〈Tτ ĵq (τ ) ĵ−q

(
τ ′)〉 · Aq

(
τ ′) , (B1)

where ĵ is the paramagnetic current in the interaction repre-
sentation. Take a single (bosonic) Matsubara frequency for the
vector potential

Aq
(
τ ′) = T Aq (qm) e−iqmτ ′

(B2)

and extract the corresponding Matsubara frequency for the
current; then the quantity to evaluate is

〈jq (qm)〉 = T

∫ β

0
dτ

∫ β

0
dτ ′eiqm(τ−τ ′)〈Tτ ĵq (τ ) ĵ−q(τ ′)〉·Aq(qm)

= T

∫ β

0
dτ

∫ β

0
dτ ′eiqm(τ−τ ′) 1

N

∑
k,σ

∑
k′

∇kεk

×〈Tτ c
†
kσ (τ ) ck+qσ (τ ) c

†
k′+qσ (τ ′)ck′σ (τ ′)〉

×∇k′εk′ · Aq (qm) (B3)

where, in the last equality, we have also used spin con-
servation with the fact that only the connected piece
will contribute because the average current in equilibrium
vanishes.

The Ward identity that we need can be obtained from the
single-spin-component version of following equality that can
be derived from current conservation:94

∑
k

[
∂

∂τ
+(εk+q−εk)

]
〈Tτ c

†
kσ (τ ) ck+qσ (τ ) c

†
k′+qσ (τ1) ck′σ (τ2)〉

= δ (τ − τ1) Gk′σ (τ2 − τ ) − δ (τ − τ2) Gk′+qσ (τ − τ1) .

(B4)

Current conservation, which we saw in the first two equations
of Appendix A, would give a vanishing right-hand side
were it not for the theta functions whose derivatives give
delta functions and ultimately equal-time commutators that
can be evaluated. Define the fermionic Matsubara frequency
four-point correlation function:

�σ (k,k + q;km,k′ + q;k′
n,k

′)

≡
∫ β

0
dτ1

∫ β

0
dτ2e

ikm(τ−τ1)eik′
n(τ2−τ )

×〈Tτ c
†
kσ (τ ) ck+qσ (τ ) c

†
k′+qσ (τ1) ck′σ (τ2)〉. (B5)

Then, taking the same fermionic components of the Ward
identity and integrating by parts, it takes the form∑

k

[(−ikm + ik′
n)+(εk+q−εk)]�σ(k,k + q;km,k′+q;k′

n,k
′)

= Gk′σ (k′
n) − Gk′+qσ (km) . (B6)
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We need the amputated function that is summed over all wave
vectors to compute the current-current correlation function. So
let us define the charge and current three-point vertices (for a
single-spin component), valid in the small q limit:

�ρ(km,k′ + q;k′
n,k

′)

=−
∑

k

�σ (k,k + q;km,k′+q;k′
n,k

′)G−1
k′σ (k′

n)G−1
k′+qσ (km),

(B7)

q · �J (km,k′ + q;k′
n,k

′)

= −q·
∑

k

∇kεk�σ (k,k + q;km,k′ + q;k′
n,k

′)

× G−1
k′σ (k′

n)G−1
k′+qσ (km) . (B8)

Then, in the long wavelength limit, the general Ward identity,
Eq. (B6), can be rewritten for the three-point functions as
follows:

(ikm − ik′
n)�ρ − q · �J = G−1

k′+qσ (km) − G−1
k′σ (k′

n)

= (ikm − ik′
n) − q · ∇k′εk′

−�k′+qσ (km) + �k′σ (k′
n) (B9)

We can obtain the four-point function that we need in
the expression for the current, Eq. (B3), from the fermionic
Matsubara expression, Eq. (B5), for the four-point function at
τ1 = τ2 = τ ′ as follows:

〈jq (qm)〉 = T

∫ β

0
dτ

∫ β

0
dτ ′eiqm(τ−τ ′)

× 1

N

∑
k,σ

∑
k′

T
∑
km

T
∑
k′
n

e−ikm(τ−τ ′)e−ik′
n(τ ′−τ )

×∇kεk�σ (k,k+q;km,k′+q;k′
n,k

′)∇k′εk′ ·Aq(qm)

= 1

N

∑
k,σ

∑
k′

T
∑
k′
n

∇kεk

×�σ (k,k+q;k′
n+qm,k′+q;k′

n,k
′)∇k′εk′ ·Aq (qm) .

(B10)

The sum over wave vectors k allows one to rewrite the latter
in terms of the current vertex defined in Eq. (B8)

〈jq=0 (qm)〉 = − 2

N

∑
k′

T
∑
k′
n

�J (k′
n + qm,k′;k′

n,k
′)

×Gk′(k′
n)Gk′(k′

n + qm)∇k′εk′ · Aq=0 (qm) .

(B11)

We have performed the sum over spins, which explains the
factor of two, and taken the q = 0 limit first to represent a
constant electric field.

There is a simple case where the Ward identity suffices
to find the vertex correction. Consider the Ward identity for
the three-point function, Eq. (B9). The rest of this appendix is
correct only if we can assume that in the q → 0 finite frequency
ikm − ik′

n limit, the charge vertex �ρ(km,k′ + q;k′
n,k

′) and
current vertex �J (km,k′ + q;k′

n,k
′) are analytical in q and

have a finite limit at q = 0. It can be checked that this is
the case for the noninteracting system. In that case, all the
nonanalyticities are contained in the product of the Green’s

functions appearing in our last expression for 〈jq=0(qm)〉.
While these kinds of analytic properties can be assumed for
Fermi liquids, this is not appropriate in our case, which is
more singular in the presence of strong antiferromagnetic
fluctuations.

In the case where we can assume analyticity, the expansion
for �ρ in powers of q must begin at order q2 because it is a
scalar. Then, the long wavelength limit of the vertices can be
found by identifying the coefficients of the (ikm − ik′

n) and of
the q on the left- and right-hand sides of the Ward identity for
the three-point function, Eq. (B9). For the charge three-point
function we thus find

�ρ(km,k′;k′
n,k

′) = 1 − �k′σ (km) − �k′σ
(
k′
n

)
(ikm − ik′

n)
, (B12)

while for the current vertex, taking the q → 0 limit, we
obtain

�J (km,k′;k′
n,k

′) = ∇k′εk′ + ∇k′�k′σ (km) . (B13)

The first term in the last two equations is the bare vertex and
the last term the vertex correction. These results for the vertex
corrections are valid, for example, for impurity scattering or
electron-phonon interactions where the assumptions on which
they were derived are valid,95 but not in our case where the
gradient of the self-energy with respect to wave vector can
be very large, for example near hot spots. The above two
equations by themselves are often called the Ward identities.95

Note that at zero external Matsubara frequency, as long as
the charge vertex does not diverge, Eq. (B13) becomes exact for
km = k′

n. This form for the vertex generates ladder diagrams
only, demonstrating that the Aslamasov-Larkin contribution
vanishes, as found numerically in Sec. III A.

APPENDIX C: FAST FOURIER TRANSFORMS, CUBIC
SPLINES, AND ASYMPTOTIC EXPANSIONS

The use of FFTs is absolutely essential for this calculation.
We begin by describing their use for obtaining the Lindhard
function, Eq. (22), and the self-energy, where the convolutions
that render the use of FFTs possible are apparent. The
convolutions are not so apparent in the case of the conductivity,
particularly the AL-like terms, that require an elaborate
discussion in the third subsection.

A. The Lindhard function

The Lindhard function, Eq. (22), is needed to compute the
spin and charge susceptibilities, Eqs. (20), and (21), which is
defined in a more explicit way as

χ0(q,iqn) = −2
T

N

∑
k,ikn

G(1)(k + q,ikn + iqn)G(1)(k,ikn),

(C1)

with

G(1)(k,ikn) = 1

ikn − εk + μ0
, (C2)

where εk is the bare particle dispersion relation, kn = (2n +
1)πT is a fermionic Matsubara frequency and μ0 is the
bare chemical potential. Expression (C1) could be calculated
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by first performing analytically the sum over Matsubara
frequencies to obtain

χ0(q,iqn) = − 2

N

∑
k

f (ξk) − f (ξk+q)

iqn + ξk − ξk+q
, (C3)

where ξk = εk − μ0 and f (ξk) is the Fermi–Dirac distribution,
and then integrating numerically over k for each value of
(q,iqn). While it may seem that we have saved some work
by doing exactly the Matsubara sum, by doing so we do not
use a property of Eq. (C1) that can make our calculation much
easier. This is the fact that this expression is a convolution, and
convolutions can be calculated in a very efficient way using
FFTs. For instance, Eq.(C1) can be written as

χ0(q,iqn)=−2
∫ β

0
dτeiqnτ

∑
r

e−iq·rG(1)(r,τ )G(1)(−r,− τ ),

(C4)

where β = T −1.
To compute χ0(q,iqn) on a grid of size NqNqn

using
the form where Matsubara sums have been done, Eq. (C3),
one needs to do this number of integrals over the Brillouin
zone, a number of operations that scales like N2

qNqn
if we

consider that each integral scales like Nq. On the other hand,
using the convolution form, Eq. (C4), we need to do a 2D
FFT on G(1)(k,τ ) to obtain G(1)(r,τ ) [here, G(1)(k,τ ) is
known analytically], a task that scales like NqNqn

log Nq, and
then the three-dimensional FFT in Eq. (C4) that scales like
NqNqn

log NqNqn
. We therefore have a gain proportional to

Nq/ log NqNqn
.

There is one delicate point. Equation (C4) contains a
continuous FT on the imaginary time τ while FFTs are
discrete transforms. The simplest thing to do would be to
discretize τ and perform an ordinary FFT. This would give
acceptable results for the low Matsubara frequencies but the
high frequencies would be completely wrong since χ0(q,iqn)
would be periodic in qn while it has to decrease as a series
in even powers of 1/qn. To solve this problem we make use
of cubic splines to approximate the integrand between the
discrete imaginary-time points and perform a continuous FT
on this spline. In Appendix E, we show how to compute the
continuous FT of a cubic spline using in fact only a DFT. Let
us consider first the imaginary-time FT in Eq. (C4). Using the
form of Eq.(E7) given in Appendix E, we obtain

χ0(r,iqn) = χ ′
0(r,τ = β) − χ ′

0(r,τ = 0)

q2
n

+ 1 − eiqn�τ

q4
n

N−1∑
j=0

S
(3)
j+1(r)eiqnτj , (C5)

where N is the number of intervals in the imaginary time grid,
�τ is the size of an interval, Sj (r,τ ) is the cubic polynomial
in the jth interval and S

(3)
j (r) is the third derivative of Sj (r,τ ).

Notice that Eq. (C5) contains the discrete Fourier transform
of S

(3)
j (r), so that the result of this transform itself will be

periodic in qn. But the factor 1/(q4
n) in front makes this term

important for only low frequencies. Expression (C5) contains
the derivatives of χ0(r,τ ) with respect to τ at the boundaries.
It is explained in Appendix E how those derivatives are used

to complete the linear system that must be solved to obtain the
spline coefficients. They thus have to be calculated before the
spline and must be known when Eq. (C5) is used. Here since
χ0(r,τ ) = −2G(1)(r,τ )G(1)(−r, − τ ), and we have analytical
expressions for G(1)(k,τ ), it is straightforward to calculate this
derivative. For 0 < τ < β, we have

G(1)(k,τ ) = −e−ξkτ f (−ξk) = −eξk(β−τ )f (ξk) , (C6)

so that

∂G(1)(r,τ )

∂τ
= 1

N

∑
k

eik·rξk e−ξkτ f (−ξk)

= 1

N

∑
k

eik·rξk eξk(β−τ )f (ξk) . (C7)

Then, still for 0 < τ < β,

G(1)(k, − τ ) = eξkτ f (ξk), (C8)

and, therefore,

∂G(1)(−r, − τ )

∂τ
= 1

N

∑
k

e−ik·rξke
ξkτ f (ξk) . (C9)

If we have inversion symmetry,

G(1)(−r, − τ ) = G(1)(r, − τ ) , (C10)

then

∂G(1)(−r, − τ )

∂τ
= 1

N

∑
k

eik·rξke
ξkτ f (ξk) , (C11)

and we have

∂G(1)(−r, − τ )

∂τ
= −∂G(1)(r,β − τ )

∂τ
. (C12)

B. The self-energy

The next function we can calculate using FFTs is the self-
energy, Eq. (26), that can be written as

�(2)
σ (k,ikn)=Un−σ +

∫
dτeiknτ

∑
r

e−ik·rV (−r,−τ )G(1)
σ (r,τ ) ,

(C13)

where

V (r,τ ) = U

8
[3Uspχsp(r,τ ) + Uchχch(r,τ )] . (C14)

To calculate V (r,τ ) accurately, we can use the fact that
χsp(q,iqn) and χch(q,iqn) approach asymptotically χ0(q,iqn)
as qn increases and that χ0(r,τ ) is known once G(1)

σ (r,τ ) is.
Then V (r,τ ) is computed from

V (r,τ )= U

8

T

N

∑
q,iqn

eiq·re−iqnτ [3Uspχsp(q,iqn)+Uchχch(q,iqn)

− (3Usp + Uch)χ0(q,iqn)]

+ U

8
(3Usp + Uch)χ0(r,τ ) , (C15)

where χ0(r,τ ) = −2G(1)
σ (r,τ )G(1)

σ (−r, − τ ). Because the
asymptotic part is removed in the FT, it converges as the
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transform of 1/(q4
n) instead of 1/(q2

n), so that a smaller cutoff
can be used.

In Eq. (C13), there is a continuous FT so that we have to use
cubic splines to represent the τ dependence of the integrand.
To compute the splines and then use formula (E7) we need to
compute the derivatives of V (−r, − τ )G(1)

σ (r,τ ) at τ = 0 and
τ = β, i.e., those derivatives of V (−r, − τ ) and G(1)

σ (r,τ ).
The latter were already computed using Eq. (C7) to calculate
χ0. For V (−r, − τ ), since this function is symmetric with
respect to τ = β/2, we only need the derivative at τ = 0. If
we differentiate expression (C15) with respect to τ and set
τ = 0, we notice that the sum disapears since χsp(q,iqn) and
χch(q,iqn) are even functions of qn while the derivative makes
a factor qn appear in the sum. In other words, at τ = 0 (and thus
τ = β), the derivatives of χsp(τ ), χch(τ ), and χ0(τ ) are equal,
which comes from the fact that they have the same asymptotic
limit as can be seen from Eq. (E7) (with k = qn), considering
that there are no odd terms for those functions. Therefore, we
have

∂V (r,τ )

∂τ

∣∣∣∣
τ=0

= U

8
(3Usp + Uch)

∂χ0(r,τ )

∂τ

∣∣∣∣
τ=0

. (C16)

Once the self-energy of Eq. (C13) is obtained, we have
to calculate the interacting chemical potential μ to define the
Green’s function G(2) as

G(2)(k,ikn) = 1

ikn − εk + μ − �
(2)
σ (k,ikn)

. (C17)

For a given filling 〈n〉, μ is defined implicitly by the equation

〈n〉 = 2
1

N

∑
k

G(2)(k,τ = 0−)

= 2
T

N

∑
k,ikn

e−ikn0−
G(2)(k,ikn). (C18)

However, this expression is not very practical numerically
because of the convergence factor e−ikn0−

that is not well
defined numerically. We use instead

2
T

N

∑
k,ikn

[G(2)(k,ikn) − G(1)(k,ikn)] = 0, (C19)

where it is assumed that G(1) contains the chemical potential μ0

that gives the desired filling. No convergence factor is needed
since the sum converges as the sum of 1/(k2

n).

C. The current-current correlation function

Finally we come to the calculation of χjxjx
, Eq. (85).

The first term, called the “bubble” contribution because

of its bubble shape in Fig. 1, can be written as

χb
jxjx

(iqn)

= −2T

N

∑
k

(
∂εk

∂kx

)2∑
ikm

G(2)(k,ikm)G(2)(k,ikm + iqn)

= −2

N

∑
k

(
∂εk

∂kx

)2 ∫ β

0
dτ eiqnτG(2)(k,τ )G(2)(k, − τ ) .

(C20)

To use this formula we first have to compute G(2)(k,τ ) from
G(2)(k,ikn) defined in Eq. (C17). To do that we cannot simply
perform a FT with respect to ikn on G(2)(k,ikn) including
only a finite number of frequencies. This is because G(2)(k,τ )
has a discontinuity at τ = 0 that will produce oscillations (the
Gibbs phenomenon) close to τ = 0 and τ = β [remember that
G(k,β − τ ) = −G(k, − τ )]. This problem can be solved by
using the asymptotic form of G(2)(k,ikn) to perform the trans-
form on all frequencies. First, let us define Ḡ(k,τ ), the FT of
some Green’s function G(k,ikn), on a finite set of frequencies:

Ḡ(k,τj ) = T
∑′

ikn

e−iknτj G(k,ikn)

= eiπ(Nτ −1)j/Nτ T

Nτ −1∑
n=0

e−i2πnj/Nτ G(k,ikn− Nτ
2

).

(C21)

where
∑′ means that the sum is finite, Nτ is the number

of values of τ , and we have used kn = (2n + 1)πT and
τj = j/(NτT ). The sum in the second line has the form used
in standard FFT routines. Now, to compute the self-energy,
Eq. (C13), we have used FTs of cubic splines so that
�(2)(k,ikn) has the form of Eq. (E7). The asymptotic form of
G(2)(k,ikn) is therefore

G
(2)
inf (k,ikn) = 1

ikm − ε̃k − �inf (k,ikn)

= 1

ikn − ε̃k −
(

s1
ikn

+ s2(k)
(ikn)2 + s3(k)

(ikn)3

) , (C22)

where ε̃k = εk − μ. The FT over ikn of this function can be
done analytically using the residue theorem. For a function
g(z) having only simple poles, we have

T
∑
ikm

e−ikmτ g(ikm)

=
⎧⎨
⎩

−∑j Res
z=zj

[g(z)] f (−zj )e−zj τ , 0 < τ < β∑
j Res

z=zj

[g(z)] f (zj )e−zj τ , −β < τ < 0 ,
(C23)

which, applied to Eq. (C22), gives

G
(2)
inf (k,τ ) = ∓

4∑
j=1

e−zj (k)τ f (∓zj (k))
[zj (k)]3

[zj (k) − z1(k)] . . . [zj (k) − zj−1(k)][zj (k) − zj+1(k)] . . . [zj (k) − z4(k)]
, (C24)
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where the minus sign is for 0 < τ < β and the plus sign for
−β < τ < 0. The zj (k) are the roots of the polynomial

z4 − ε̃kz
3 − s1z

2 − s2(k)z − s3(k) . (C25)

Those roots are given by quite imposing, but analytical,
formulas. Finally, assuming that Ḡ

(2)
inf (k,τ ) is the finite FT of

G
(2)
inf (k,ikn) as defined in Eq. (C21), we use

G(2)(k,τ ) = Ḡ(2)(k,τ ) + [G(2)
inf (k,τ ) − Ḡ

(2)
inf (k,τ )

]
(C26)

where the term between the brackets is the contribution
from frequencies beyond the cutoff used in Eq. (C21).
This expression will be very accurate if the asymptotic
behavior is well obeyed beyond the cutoff. Using expression
(C22) as the asymptotic form of G(2)(k,ikn) may seem to
complicate the calculations needlessly since the first term
of the high-frequency expansion of G(1)(k,ikn) is identical
to that of G(2)(k,ikn). However, to compute the cubic spline
of the integrand in Eq. (C20), and then its FT, we need the
derivatives of G(2)(k,τ ) at τ = 0 and τ = β and, for that
purpose, we have to use a more accurate asymptotic form.
The reason will be explained shortly.

As we have just mentioned, we need to compute derivatives
of Eq. (C26) with respect to τ at the boundaries. Let us first
rewrite expression (C26) using Eq. (C21):

G(2)(k,τ ) = T
∑′

ikn

e−iknτ
[
G(2)(k,ikn) − G

(2)
inf (k,ikn)

]
+G

(2)
inf (k,τ ), (C27)

so that

∂G(2)(k,τ )

∂τ

∣∣∣
τ=0

= T
∑′

ikn

(−ikn)
[
G(2)(k,ikn) − G

(2)
inf (k,ikn)

]

+ ∂G
(2)
inf (k,τ )

∂τ

∣∣∣
τ=0

, (C28)

where the last term is obtained from the derivative of Eq. (C24).
If G

(2)
inf was taken to be G(1), the sum in Eq. (C27) would

converge like the sum of 1/(ikn)2, but the sum in Eq. (C28)
would not converge. Thus, G

(2)
inf must have at least the same

first two terms in its high-frequency expansion as G(2). If we
use Eq. (C22), the first five terms in the expansion are equal;
the sum in Eq. (C27) thus converges as the sum of 1/(ikn)6,
while the sum in Eq. (C28), converges as the sum of 1/(ikn)5.
This gives us a very precise evaluation of G(2)(k,τ ) and its
derivatives. To obtain the derivatives at τ = β we use the
relation

∂G(k,τ )

∂τ

∣∣∣∣
τ=β

= ε̃k + Un−σ − ∂G(k,τ )

∂τ

∣∣∣∣
τ=0

(C29)

that is derived from the spectral representation of G(k,τ ).
Once G(2)(k,τ ) and its derivatives are obtained, the integrals

in expression (C20) are evaluated by computing the cubic
splines for G(2)(k,τ )G(2)(k, − τ ) and using formula (E7) for
the FT. The rest of the calculation is simply a sum over the
Brillouin zone, where, of course, it is preferable to use the
symmetries of the system to save computational resources.

The second term of Eq. (85) is

χ
v1
jxjx

(iqn) = −U

4

(
T

N

)2∑
k1k2

G(2)(k1)G(2)(k1 + iqn)

×G(1)(k2)G(1)(k2 + iqn)
∂εk

∂kx

(k1)
∂εk

∂kx

(k2)

× [3Uspχsp(k2 − k1) + Uchχch(k2 − k1)] (C30)

where k1 + iqn = (k1,ikm + iqn). If we define

fn(k2) = ∂εk

∂kx

(k2)G(1)(k2)G(1)(k2 + iqn),
(C31)

V (k2 − k1) = U

8
[3Uspχsp(k2 − k1) + Uchχch(k2 − k1)] ,

then Eq. (C30) becomes

χ
v1
jxjx

(iqn) = −2
T

N

∑
k1

∂εk

∂kx

(k1)G(2)(k1)G(2)(k1 + iqn)

× T

N

∑
k2

fn(k2)V (k2 − k1) . (C32)

The sum over k2 being a convolution, we have

χ
v1
jxjx

(iqn) = − T

N

∑
k

∂εk

∂kx

G(2)(k)G(2)(k + iqn)

×
∑

1̄

e−ik·1̄fn(1̄)V (1̄) . (C33)

Note that the sum over 1̄ written in explicit form is

∑
j

∫ β

0
dτ e−ik·rj eikmτ fn(rj ,τ )V (rj ,τ ), (C34)

where the function fn(r,τ ) is given by

fn(r,τ ) = 1

N

∑
k

eik·r ∂εk

∂kx

× T
∑
ikm

e−ikmτG(1)(k,ikm)G(1)(k,ikm + iqn).

(C35)

Since G(1)(k,ikm) is the noninteracting Green’s function, the
Fourier transform over ikm can be done analytically. Using
Eq. (C23), we obtain, for qn �= 0,

T
∑
ikm

e−ikmτG(1)(k,ikm)G(1)(k,ikm + iqn)

= eiqnτ − 1

iqn

e−ε̃kτ [θ (τ )(1 − f (ε̃k)) − θ (−τ )f (ε̃k)] . (C36)

For qn = 0, there is a double pole so that the calculation with
the residue theorem is slightly different. However, we can use
the following simple trick:

T
∑
ikm

e−ikmτG(1)(k,ikm)2 = T
∑
ikm

e−ikmτ

(
1

ikm − ε̃k

)2

= ∂

∂ε̃k
T
∑
ikm

e−ikmτ

(
1

ikm − ε̃k

)
(C37)
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= ∂

∂ε̃k

(−e−ε̃kτ [(1 − f (ε̃k))θ (τ ) − f (ε̃k)θ (−τ )])

= e−ε̃kτ

(
τ [(1 − f (ε̃k))θ (τ ) − f (ε̃k)θ (−τ )] + ∂f (ε̃k)

∂ε̃k

)
.

For τ > 0 and qn �= 0, we have

fn(r,τ ) = eiqnτ − 1

iqn

1

N

∑
k

eik·r ∂εk

∂kx

f (−ε̃k)e−ε̃kτ

= eiqnτ − 1

iqn

1

N

∑
k

eik·r ∂εk

∂kx

f (ε̃k)e(β−τ )ε̃k

= gn(τ )h(r,τ ). (C38)

The functions fn(r,τ ) for different values of n are thus obtained
by multiplying the n independent function

h(r,τ ) = 1

N

∑
k

eik·r ∂εk

∂kx

f (ε̃k)e(β−τ )ε̃k (C39)

by gn(τ ) = (eiqnτ − 1)/(iqn). Using this result, we find

∑
1̄

e−ik1·1̄fn(1̄)V (1̄) =
∫

dτ eikmτ gn(τ )

×
∑

j

e−ik1·rj h(rj ,τ )V (rj ,τ ) . (C40)

Inserting this back into Eq. (C33), we obtain for the qn �= 0
terms,

χ
v1
jxjx

(iqn)=−2
T

N

∑
k

∑
ikm

∂εk

∂kx

G(2)(k,ikm)G(2)(k,ikm + iqn)

×
∫

dτ eikmτ gn(τ )
∑

j

e−ik·rj h(rj ,τ )V (rj ,τ )

=− 2

iqn

1

N

∑
k

∂εk

∂kx

T
∑
ikm

G(2)(k,ikm)G(2)(k,ikm+iqn)

×
(∫

dτ ei(km+qn)τ
∑

j

e−ik·rj h(rj ,τ )V (rj ,τ )

−
∫

dτ eikmτ
∑

j

e−ik·rj h(rj ,τ )V (rj ,τ )

)
. (C41)

To make the convolutions more apparent, we define

J (k,ikm)=G(2)(k,ikm)
∫

dτ eikmτ
∑

j

e−ik·rj h(rj ,τ )V (rj ,τ )

(C42)

so that

χ
v1
jxjx

(iqn) = − 2

iqn

1

N

∑
k

∂εk

∂kx

(
T
∑
ikm

G(2)(k,ikm)J (k,ikm+iqn)

−T
∑
ikm

G(2)(k,ikm+iqn)J (k,ikm)

)
(C43)

and we can use the convolution theorem to obtain

χ
v1
jxjx

(iqn)= − 2

iqn

1

N

∑
k

∂εk

∂kx

(∫ β

0
dτ e−iqnτG(2)(k,τ )J (k, − τ )

−
∫ β

0
dτ eiqnτG(2)(k,τ )J (k, − τ )

)
. (C44)

Note that, since all the Matsubara sums have been trans-
formed into FTs that can be done with FFTs and that an FFT
gives all N values of an N point transform at the same time,
we obtain the values of χ

v1
jxjx

(iqn) for all iqn except iqn = 0 at
the same time when the last FFT is done.

We still need to do the FT over τ in Eq. (C42) using cubic
splines. For that we need the derivatives of h(rj ,τ )V (rj ,τ ) at
τ = 0 and τ = β. The derivatives of V (rj ,τ ) have already
been used to compute the self-energy and are obtained
using Eq. (C16). For h(rj ,τ ), the derivative is obtained from
definition (C39).

Next, we have to compute J (k, − τ ). First, we define the
function

Q(k,ikn) =
∫

dτ eiknτ
∑

j

e−ik·rj h(rj ,τ )V (rj ,τ ) (C45)

so that definition (C42) reads as J (k,ikm) =
G(2)(k,ikm)Q(k,ikn). The FT over τ is done using the
method described in Appendix E. The asymptotic form of
Q(k,ikn) is

Qinf (k,ikn) = q1(k)

ikn

+ q2(k)

(ikn)2
+ q3(k)

(ikn)3
, (C46)

so that, using Eq. (C22) for G
(2)
inf (k,ikm), the asymptotic form

for J (k,ikm) is,

Jinf (k,ikn) = 1

ikn − ε̃k −
(

s1
ikn

+ s2(k)
(ikn)2 + s3(k)

(ikn)3

)
×
(

q1(k)

ikn

+ q2(k)

(ikn)2
+ q3(k)

(ikn)3

)
(C47)

and its FT is

Jinf (k, − τ ) =
4∑

j=1

ezj (k)τ f (zj (k))

× q1(k)[zj (k)]2+q2(k)zj (k)+q3(k)∏
i �=j [zj (k)−zi(k)]

, (C48)

where the zj (k) are the roots of polynomial (C25). By analogy
with our previous calculations, the function J (k, − τ ) is then
obtained from

J (k, − τ )=T
∑′

ikn

eiknτ [J (k,ikn)−Jinf (k,ikn)]+Jinf (k,−τ )
(C49)

where
∑′ means that the sum is done up to a cutoff frequency.

Once these results are substituted into the expression
for the MT term, Eq. (C44), we need the derivatives of
G(2)(k,τ )J (k, − τ ) at τ = 0 and τ = β. For G(2)(k,τ ), they
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are given by Eqs. (C28) and (C29). As for the deriva-
tives of J (k, − τ ), they are obtained by differentiating
Eq. (C49).

Finally, we need to evaluate separately the qn = 0 term for
τ > 0. We have, from Eq. (C37),

f0(r,τ ) = 1

N

∑
k

eik·r ∂εk

∂kx

(k) T
∑
ikm

e−ikmτG(1)(k,ikm)2

= 1

N

∑
k

eik·r ∂εk

∂kx

(k) e−ε̃kτ

(
τf (−ε̃k)) + ∂f (ε̃k)

∂ε̃k

)
.

(C50)

so that

χ
v1
jxjx

(0) = −2
1

N

∑
k

∂εk

∂kx

(k) T
∑
ikm

G(2)(k,ikm)G(2)(k,ikm)

×
∫ β

0
dτ
∑

j

e−ik1·rj eikmτ f0(rj ,τ )V (rj ,τ ). (C51)

Using our previous definition, Eq. (C31), for fn(k2), the
third term in Eq. (85) can be rewritten as

χ
v2
jxjx

(iqn)= U

2

(
T

N

)2∑
k1,q1

∂εk

∂kx

(k1)G(2)(k1)G(2)(k1 + iqn)

×G(1)(k1 + q1 + iqn)

×
(

3Usp

1

1 − Usp

2 χ0(q1)

1

1 − Usp

2 χ0(q1 + iqn)

+Uch

1

1 + Uch

2 χ0(q1)

1

1 + Uch

2 χ0(q1 + iqn)

)

× T

N

∑
k2

fn(k2)[G(1)(k2+q1+iqn)+G(1)(k2−q1)].

(C52)

The sum over k2 is the sum of two convolutions and can be
written as

T

N

∑
k2

fn(k2)[G(1)(k2 + q1 + iqn) + G(1)(k2 − q1)] =
∑

1̄

(ei(q1+iqn)·1̄ + e−iq1·1̄)fn(1̄)G(1)(−1̄)

=
∑

j

∫ β

0
dτ (eiq1·rj e−i(qm+qn)τ + e−iq1·rj eiqmτ )fn(rj ,τ )G(1)(−rj , − τ )

=
∫ β

0
dτ (−e−i(qm+qn)τ + eiqmτ )

∑
j

e−iq1·rj fn(rj ,τ )G(1)(rj , − τ ) , (C53)

where we have used fn(−rj ,τ ) = −fn(rj ,τ ) and G(1)(−rj , − τ ) = G(1)(rj , − τ ). Using fn(r,τ ) = gn(τ )h(r,τ ), Eq. (C38), we
have

T

N

∑
k2

fn(k2)[G(1)(k2 + q1 + iqn) + G(1)(k2 − q1)] =
∫

dτ (−e−i(qm+qn)τ + eiqmτ )gn(τ )
∑

j

e−iq1·rj h(rj ,τ )G(1)(rj , − τ )

= 1

iqn

∫
dτ (−e−iqmτ + e−i(qm+qn)τ + ei(qm+qn)τ − eiqmτ )

×
∑

j

e−iq1·rj h(rj ,τ )G(1)(rj , − τ ), (C54)

assuming qn �= 0. Inserting this expression into Eq. (C52), we get

χ
v2
jxjx

(iqn) = 1

iqn

U

2

(
T

N

)2 ∑
k1,q1

∂εk

∂kx

(k1)G(2)(k1)G(2)(k1 + iqn)G(1)(k1 + q1 + iqn)

×
(

3Usp

1

1 − Usp

2 χ0(q1)

1

1 − Usp

2 χ0(q1 + iqn)
+ Uch

1

1 + Uch

2 χ0(q1)

1

1 + Uch

2 χ0(q1 + iqn)

)

×
∫

dτ (−e−iqmτ + e−i(qm+qn)τ + ei(qm+qn)τ − eiqmτ )
∑

j

e−iq1·rj h(rj ,τ )G(1)(rj , − τ ) . (C55)

Using the definitions

Ḡ(1)
n (k1 + q1) = G(1)(k1 + q1 + iqn) (C56)
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and

Hn(q1) =
(

3Usp

1

1 − Usp

2 χ0(q1)

1

1 − Usp

2 χ0(q1 + iqn)
+ Uch

1

1 + Uch

2 χ0(q1)

1

1 + Uch

2 χ0(q1 + iqn)

)

×
∫

dτ (ei(qm+qn)τ + e−i(qm+qn)τ − eiqmτ − e−iqmτ )
∑

j

e−iq1·rj h(rj ,τ )G(1)(rj , − τ ) , (C57)

Eq. (C55) reads

χ
v2
jxjx

(iqn) = 1

iqn

U

2

T

N

∑
k1

∂εk

∂kx

(k1)G(2)(k1)G(2)(k1 + iqn)
T

N

∑
q1

Ḡ(1)
n (k1 + q1)Hn(q1)

= 1

iqn

U

2

T

N

∑
k1

∂εk

∂kx

(k1)G(2)(k1)G(2)(k1 + iqn)
∑

1̄

eik1·1̄Ḡ(1)
n (−1̄)Hn(1̄), (C58)

where the sum over q1 was written as a FT. Unfortunately, since
this transform does not give a function of k1 or k1 + iqn, or a
sum of either, because the dependence on iqn in Hn(q1) does
not factor out as a sum of exponentials, the sum over k1 does
not have the form of a convolution or a sum of convolutions
and has to be done in the form of Eq. (C58) for each different
frequency iqn.

Now, some work remains to be done before one can do the
FT over 1̄ in Eq. (C58). First, G(1)

n (r,τ ) is explicitly given by

G(1)
n (r,τ ) = 1

N

∑
k

eik·r T
∑
m

e−ikmτ 1

ikm + iqn − ε̃k
, (C59)

so that by changing the summation variable above or using
Eq. (C23), we obtain

G(1)
n (r,τ ) = eiqnτG(1)(r,τ ) . (C60)

Equation (C58) thus becomes

χ
v2
jxjx

(iqn)= 1

iqn

U

2

T

N

∑
k,ikm

∂εk

∂kx

(k)G(2)(k,ikm)G(2)(k,ikm+iqn)

×
∑

r

∫
dτ eik·re−i(km+qn)τG(1)(r,−τ )Hn(r,τ ) .

(C61)

There is, however, a problem if we directly use Hn(r,τ ) in
Eq. (C61). From definition (C57), we notice that Hn(q,iqm) is
peaked at the frequency qm = −qn because of the factor

1

1 − Usp

2 χ0(q,iqm + iqn)
(C62)

in the spin part. Therefore, Hn(r,τ ) has oscillations in τ at the
frequency qn, and it is necessary to refine the grid in τ when
qn increases. Hn(q,iqm) is also peaked at qm = 0 because of
the factor

1

1 − Usp

2 χ0(q,iqm)
. (C63)

It is therefore not sufficient to express Hn(r,τ ) using a function
shifted in frequency multiplied by an oscillating function. By
doing that we would reduce at most the oscillation frequency
by half. Instead, we express Hn(r,τ ) as a sum of two functions,
one peaked at qm = 0 and the other at qm = −qn. Then we

will be able to apply a translation in frequency to the latter and
factor out the oscillating part. First, we write

1

1 − Usp

2 χ0(q,iqm + iqn)

1

1 − Usp

2 χ0(q,iqm)

= 1

χ0(q,iqm) − χ0(q,iqm + iqn)

χ0(q,iqm)

1 − Usp

2 χ0(q,iqm)

+ 1

χ0(q,iqm + iqn) − χ0(q,iqm)

χ0(q,iqm + iqn)

1 − Usp

2 χ0(q,iqm + iqn)
.

(C64)

If we define

D(q,iqm) =
∫

dτ (eiqmτ + e−iqmτ )

×
∑

j

e−iq·rj h(rj ,τ )G(1)(rj , − τ ) , (C65)

the spin part of Hn(q,iqm) reads

− D(q,iqm) − D(q,iqm + iqn)

χ0(q,iqm) − χ0(q,iqm + iqn)
χsp(q,iqm)

+ D(q,iqm + iqn) − D(q,iqm)

χ0(q,iqm + iqn) − χ0(q,iqm)
χsp(q,iqm + iqn) .

(C66)

Note that, since D(q,iqm) and χ0(q,iqm) are even functions,
the function

D(q,iqm) − D(q,iqm + iqn)

χ0(q,iqm) − χ0(q,iqm + iqn)
(C67)

is undetermined when qm = −qn/2, which happens when n

is even. However, we know that Hn(q, − iqn

2 ) vanishes so that
one can assume an arbitrary value for Eq. (C67) at that point.
Numerically, it is better for that factor to be smooth. This is
achieved by using a simple interpolation to fix that value.

Now, if we define the function

In(q,iqm) (C68)

= 3Usp

D(q,iqm) − D(q,iqm + iqn)

χ0(q,iqm) − χ0(q,iqm + iqn)

χ0(q,iqm)

1 − Usp

2 χ0(q,iqm)

+Uch

D(q,iqm) − D(q,iqm + iqn)

χ0(q,iqm) − χ0(q,iqm + iqn)

χ0(q,iqm)

1 + Uch

2 χ0(q,iqm)
,
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which is peaked at qm = 0, we make explicit that Hn(q,iqm)
is peaked at two values of frequency

Hn(q,iqm) = −In(q,iqm) + In(q, − iqm − iqn) . (C69)

Using the bosonic Matsubara frequency representation for
In(q,τ ) we obtain

Hn(q,τ ) = T
∑
iqm

e−iqmτHn(q,iqm)

= −In(q,τ ) + eiqnτ In(q, − τ ) . (C70)

To compute In(q,τ ) from In(q,iqm) we use the same
procedure as for the previous FTs over Matsubara frequencies.
Using

Dinf (q,iqm) = d(q)

(iqm)2
,

χ0,inf (q,iqm) = c(q)

(iqm)2
, (C71)

the asymptotic form for In(q,iqm) is

I inf
n (q,iqm) = 3Usp

d(q)

(iqm)2 − Usp

2 c(q)

+Uch

d(q)

(iqm)2 + Uch

2 c(q)
. (C72)

Using a complex plane integration and the residue theorem,
we get

I inf
n (q,τ ) = 3Usp

d(q)

2zsp(q)

(
nB(−zsp(q))e−zsp(q)τ

− nB (zsp(q))ezsp(q)τ
)

+Uch

d(q)

2izch(q)

(
nB(−izch(q))e−izch(q)τ

− nB (izch(q))eizch(q)τ
)

, (C73)

where nB(z) is the Bose–Einstein distribution and

zsp(q) =
√

Usp

2
c(q) ,

zch(q) =
√

Uch

2
c(q) , (C74)

or, using nB(−z) = −eβznB(z),

I inf
n (q,τ )

− 3Usp

d(q)

zsp(q)
nB(zsp(q))e

β

2 zsp(q) cosh

[(
β

2
− τ

)
zsp(q)

]

−Uch

d(q)

izch(q)
nB(izch(q))ei

β

2 zch(q) cos

[(
β

2
− τ

)
zch(q)

]
.

(C75)

Using that result we write, as before, the transform in such a
way that it converges quickly:

In(q,τ ) = T
∑′

iqm

e−iqmτ
[
In(q,iqm) − I inf

n (q,iqm)
]

+ I inf
n (q,τ ) . (C76)

There is, however, one last difficulty. The asymptotic form,
Eq. (C72), approaches Eq. (C68) only when both qm and qm +
qn are large with respect to the bandwidth. Thus, the frequency
range of the finite sum in Eq. (C76) has to be chosen such that
this condition is satisfied. If qn is positive, the range of negative
qm must therefore be extended to make sure that, at the cutoff,
qm + qn is large.

Coming back to expression (C58), using results (C60) and
(C70), the sum over 1̄ becomes∑

1̄

eik1·1̄G(1)
n (−1̄)Hn(1̄)

=
∑

r

∫
dτ eik·re−i(km+qn)τG(1)(r, − τ )

× [−In(r,τ ) + eiqnτ In(r, − τ )]

=
∑

r

∫
dτ eik·re−ikmτ [−e−iqnτG(1)(r, − τ )In(r,τ )

+G(1)(r, − τ )In(r, − τ )]. (C77)

For qn = 0, expression (C52) vanishes, as explained at the
end of Appendix B.

To reach reasonably low temperatures without seeing any
finite size effect, we use a system of 512 × 512 sites and
8192 frequencies. If we were using a brute force approach to
compute Eq. (C52) we would have to sum [(8192(5122))3 =
9.9 × 1027] terms. Assuming we could sum 109 terms per
second, it would take about 300 billion years to calculate
χ

v2
jxjx

(iqn) for one value of qn and thus about 30 000 billion
years for a hundred values of qn. Using the approach described
above, this calculation is done in less than 2 days.

APPENDIX D: CHOICE OF MATSUBARA FREQUENCIES

While all external frequencies are obtained at the same
time from the last FFT for the bubble and MT-like term in
χjxjx

(iqn), this is not the case for the AL-like term, Eq. (C52),
even in the form of Eq. (C58) that makes maximal use of FFTs.
Hence, this term cannot be calculated for thousands of values
of qn or for the same number as that used in internal Matsubara
frequency sums. Therefore we have to compute Eq. (C58) for a
reasonable number of carefully chosen frequencies. Assuming
that most of the information is in the low frequencies and that as
their magnitude increases it becomes less important to include
all the high frequencies, we use the following nonuniform
Matsubara frequency index grid. That grid consists of subin-
tervals within which the Matsubara frequencies are equally
spaced, with larger space in between Matsubara frequencies at
large frequency. The spacing between frequencies in different
subintervals increases by powers of 2.

First we define
N0 = 2r : the last frequency index (cutoff), taken as a power

of 2 (r integer);
m: integer that determines how dense the grid is. A large m

gives a low density. 0 � m < r;
N1 = N0

2m : N1 + 1 is the number of adjacent frequencies
close to n = 0;

N2 = N1
2 : number of frequencies in each subinterval with

a fixed spacing between Matsubara frequencies;
N = N1 + mN2 + 1 : total number of frequencies.

085128-29



BERGERON, HANKEVYCH, KYUNG, AND TREMBLAY PHYSICAL REVIEW B 84, 085128 (2011)

Then the indices of Matsubara frequencies on the grid are
given by the following algorithm

n(j ) =

⎧⎪⎨
⎪⎩

j , j = 0, . . . ,N1 − 1,

N1 + 2lj +1mod(j − N1,N2) + N1(2lj − 1) ,

lj = floor
(

j−N1

N2

)
, j = N1, . . . ,N − 1 .

(D1)

For example, taking N0 = 256, m = 5, so that N1 = 8,
N2 = 4 and a total number of frequencies N = 29, we obtain
the following indices: n = 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14,
16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192,
224, 256.

With this kind of grid we greatly reduce the number of
frequencies for which we have to calculate χ

v2
jxjx

with Eq. (C58)
while retaining the essential information. Note that this also
speeds up the analytical continuation with our maximum
entropy method described in Appendix F.

APPENDIX E: FOURIER TRANSFORM OF A CUBIC
SPLINE

Assume we have the following integral to do,

f (k) =
∫ xN

x0

dx g(x)e−ikx, (E1)

but that we know only N + 1 discrete values of g(xi). Let
us approximate g(x) in the interval using a cubic spline S(x)
defined as

S(x) =

⎧⎪⎪⎨
⎪⎪⎩

S1(x) x0 < x < x1

S2(x) x1 < x < x2
...

SN (x) xN−1 < x < xN

, (E2)

where the Sn(x) are cubic polynomials, with the conditions

Sn(xn−1) = g(xn−1), Sn(xn) = g(xn),

S ′
n(xn−1) = S ′

n−1(xn−1), n > 1,

S ′′
n (xn−1) = S ′′

n−1(xn−1), n > 1, (E3)

S ′
1(x0) = g′(x0), S ′

N (xN ) = g′(xN ),

defining the 4N equations necessary to determine the 4N

coefficients of the spline. The integral of Eq. (E1) becomes

f (k) ≈
N∑

n=1

∫ xn

xn−1

dx Sn(x)e−ikx . (E4)

Integrating by parts we obtain

f (k) = − 1

ik

N∑
n=1

(
e−ikxSn(x)

∣∣∣xn

xn−1

)

+ 1

ik

N∑
n=1

∫ xn

xn−1

dx S ′
n(x)e−ikx

= e−ikx0S1(x0) − e−ikxN SN (xN )

ik

+ 1

ik

N∑
n=1

∫ xn

xn−1

dx S ′
n(x)e−ikx, (E5)

where we have used the continuity of the spline at the points xn

to eliminate all the intermediate terms in the first sum. Now, if
we integrate by parts in the second term and use the continuity
of the derivatives S ′

n(x) at the points x = xn, we obtain

f (k) = e−ikx0S1(x0) − e−ikxN SN (xN )

ik

+ e−ikx0S ′
1(x0) − e−ikxN S ′

N (xN )

(ik)2

+ 1

(ik)2

N∑
n=1

∫ xn

xn−1

dx S ′′
n (x)e−ikx . (E6)

Doing it one last time, using the fact that we also have the
continuity of the second derivatives S ′′

n (x) at xn, we finally
obtain

f (k) = e−ikx0S1(x0) − e−ikxN SN (xN )

ik

+ e−ikx0S ′
1(x0) − e−ikxN S ′

N (xN )

(ik)2

+ e−ikx0S ′′
1 (x0) − e−ikxN S ′′

N (xN )

(ik)3

+ 1 − e−ik�x

(ik)4

N−1∑
n=0

S
(3)
n+1e

−ikxn , (E7)

where �x = xn+1 − xn. The remaining discrete transform can
be done using an FFT. The result of this transform will be
periodic since it is discrete, but because of the factor 1/(ik)4

in front, it will have a relevant contribution only for small k.
This periodicity in the sum therefore produces only a very
small noise at high k, the remaining discretization noise, that
decreases with increasing k. Note that expression (E7) is valid
only for k �= 0. For k = 0, the result is simply the sum, over
all subintervals, of integrals of cubic polynomials with their
respective coefficients.

Finally, note that we have chosen to fix the value of
the derivatives at the boundaries to complete the system
of equations (E3) defining the spline. But other interesting
choices are also possible. For example, if we know the
coefficients of the terms in 1/(k2) and 1/(k3), i.e., the
numerator in the second and third terms of Eq. (E7), fixing
those coefficients is a good alternative. In the case where k is
a frequency, this choice is convenient because we often know
the high-frequency expansion from sum rules.

APPENDIX F: ANALYTICAL CONTINUATION FOR
THE CONDUCTIVITY

Let us start by rewriting the spectral representation for the
Matsubara current-current correlation function χjxjx

(iqn),

χjxjx
(iqn) =

∫
dω

π

χ ′′
jxjx

(ω)

ω − iqn

= iqn

∫
dω

π

χ ′′
jxjx

(ω)

ω2 + q2
n

+
∫

dω

π

ω χ ′′
jxjx

(ω)

ω2 + q2
n

. (F1)
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Since χ ′′
jxjx

(ω) is odd,

χjxjx
(iqn) =

∫
dω

π

ω χ ′′
jxjx

(ω)

ω2 + q2
n

. (F2)

The real part of the optical conductivity is

σ r (ω) = χ ′′
jxjx

(ω)

ω
, (F3)

so that we obtain

χjxjx
(iqn) = 2

∫ ∞

0

dω

π

ω2

ω2 + q2
n

σ r (ω), (F4)

using the fact that the integrand is even. This is our starting
point. The objective is to obtain the real part of the conductivity,
on the right-hand side, from the Matsubara expression for
the susceptibility on the left-hand side. Most analytical
continuation is done for imaginary-time data, but not in our
case.75

Suppose we could be satisfied with σ r (ω) on a discrete set
of points ωj . We can use a numerical integration method to
approximate the integral of Eq. (F4), which would then have
the form

χjxjx
(iqn) ≈

∑
j

Knjσ
r
j , (F5)

where σ r
j = σ r (ωj ) and Knj is a Nqn

× Nω matrix, Nqn
being

the size of the vector χjxjx
(iqn) and Nω the size of the vector

σ r
j . Now, σ r

j is the quantity we want to determine. If Nqn
= Nω

then σ r
j is completely determined by the linear system (F5).

However, the matrix Knj is ill-conditioned so that a small noise
in χjxjx

(iqn) would result in a very noisy solution σ r
j . Also, Nqn

is generally smaller than Nω, the number of real frequencies
for which we want to determine σ r (ω). We therefore need to
include more information in the problem to find a unique σ r

j .
The way to do this is to use a maximum entropy approach. In
this approach, we minimize the function

χ2 − αS, (F6)

where

χ2 =
∑
{iqn}

(
χjxjx

(iqn) −∑j Knjσ
r
j

εn

)2

=
∑
{iqn}

(
χjxjx

(iqn) − χ̄jxjx
(iqn)

εn

)2

(F7)

measures the deviation of χ̄jxjx
(iqn) =∑j Knjσ

r
j with respect

to χjxjx
(iqn), εn being an estimate of the error of χjxjx

(iqn) with
respect to the “exact” function. S is the differential entropy
defined as

S = −
∫ ∞

0
dω σ r (ω) ln

σ r (ω)

m(ω)
, (F8)

where m(ω) is called the default model. The value of α can
be chosen according to different criteria. As is often done, we
choose it such that χ2 ≈ Nqn

, so that |χjxjx
(iqn) − χ̄jxjx

(iqn)|
is equal to εn on average.

Errors in the numerical evaluation of the integral of (F4),
i.e., in the definition of Knj in Eq. (F5), are equivalent to
having larger errors in the data χjxjx

(iqn). Therefore, when

Eq. (F6) is minimized to find a solution σ r
j , this could lead to

large errors in σ r
j with respect to the optimal solution because

the inversion of expression (F4) is an ill-conditioned problem.
It is thus clear that the error we make by replacing Eq. (F4)
by Eq. (F5) must be smaller than the estimated error εn on
the original data χjxjx

(iqn). That is why we need a very ac-
curate numerical integration technique to define Knj . Because
we use the spectral representation in Matsubara frequencies,
the weight function ω2/(ω2 + q2

n) in the integrand of Eq. (F4)
is simple and can be integrated analytically. Hence, if we use,
for example, a polynomial approximation for σ r (ω) in a given
interval [ωj−1,ωj ], the integral can also be done analytically
in the interval. If we use a good piecewise polynomial
approximation for σ r (ω), then we can evaluate the integral
of Eq. (F4) precisely.

Maybe the most efficient approach to integrate Eq. (F4)
in one dimension is Gaussian quadratures. However, in the
latter, both the weights and the grid points depend on the
weight function, which in our case depends on qn. We would
therefore need a different grid in ω for each frequency iqn.
This is not possible because we can search for only a unique
vector σ r

j defined on a unique grid ωj . Another very efficient
way of doing the integrals of Eq. (F4) is to model σ r (ω) using
a cubic spline. This approach allows us to use a fixed grid
and is very precise because cubic splines are very good to
approximate smooth functions, which is the case of σ r (ω). It
seems therefore the best approach for our problem. However,
to be able to perform the integral of Eq. (F4) over the whole
frequency range [0,∞], and at the same time reduce the
number of frequencies in the grid, which helps speed up the
minimization of Eq. (F6), the spline we use is divided into
two parts, a low-frequency part that is a cubic spline in ω and
a high-frequency part cubic in u = 1/ω. Then, to make the
spline linear system well conditioned, we use a grid that is
uniform in ω in the low-frequency part and uniform in u in
the high-frequency part. Finally, integrating analytically in a
piecewise manner, keeping the weight function ω2/(ω2 + q2

n)
intact in the integrand is a great advantage as the temperature
decreases since this function then becomes sharper and sharper
and is thus increasingly difficult to integrate numerically. Of
course the conductivity σ r (ω) itself becomes also sharper as T

decreases and we have to adjust the grid to resolve its structure.
But the numerical integration is still much easier and precise
with this approach. We describe below how the Knj is defined
and also our choice of grid in ω.

We start with the following representation for σ r (ω),

σ r (ω) =
{

sj (ω) , ωj−1 � ω � ωj , 1 � j � N

sj ( 1
ω

), ωj−1 �ω�ωj , N <j �N+M
, (F9)

where sj (x) = ajx
3 + bjx

2 + cjx + dj , with the conditions

sj (ωj−1) = σ r
j−1 ,

sj (ωj ) = σ r
j ,

s ′
j (ωj−1) = s ′

j−1(ωj−1) , (F10)

s ′′
j (ωj−1) = s ′′

j−1(ωj−1),

s ′
1(0) = 0,
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for j � N , while

sN+1

(
1

ωN

)
= σ r

N,

sN+1

(
1

ωN+1

)
= σ r

N+1,

(F11)

s ′
N+1

(
1

ωN

)
= s ′

N (ωN ) ,

s ′′
N+1

(
1

ωN

)
= s ′′

N (ωN ) ,

and

sj

(
1

ωj−1

)
= σ r

j−1,

sj

(
1

ωj

)
= σ r

j ,

s ′
j

(
1

ωj−1

)
= s ′

j−1

(
1

ωj−1

)
, (F12)

s ′′
j

(
1

ωj−1

)
= s ′′

j−1

(
1

ωj−1

)
,

∂sN+M

(
1
ω

)
∂ 1

ω

∣∣∣
ω=∞

= 0,

for N + 1 < j � N + M . All the derivatives noted with ′ and ′′
are taken with respect to ω. The second condition for j =
N + M and the last condition in Eq. (F12) make sure that
there is no constant and no 1/ω terms in sN+M (1/ω) so that
the integral of the spline converges. Note that this spline is not
physically correct for ω → ∞ since the moments of σ r (ω) are
not defined. But this does not have any significant importance
in the numerical solution if ωN+M−1 is chosen large enough.
The advantage of this spline is that it is very easy to implement.

Let us now define the kernel Knj in Eq. (F5). For the low-
frequency part of Eq. (F4) we have

χ
lf

jxjx
(iqn) = 2

∫ ωN

0

dω

π

ω2

ω2 + q2
n

σ r (ω)

= 2

π

N∑
j=1

∫ ωj

ωj −1
dω

ω2

ω2 + q2
n

sj (ω)

= 2

π

N∑
j=1

∫ ωj

ωj −1
dω

ajω
5 + bjω

4 + cjω
3 + djω

2

ω2 + q2
n

,

(F13)

where ω0 = 0. For qn �= 0, we obtain

χ
lf

jxjx
(iqn)= 2

π

N∑
j=1

([
q4

n

2
ln
(
q2

n +ω2
)− q2

n

2
ω2+ ω4

4

]ωj

ωj −1

aj

+
[
q3

n arctan

(
ω

qn

)
− q2

nω + ω3

3

]ωj

ωj −1

bj

+
[
ω2

2
− q2

n

2
ln
(
q2

n + ω2
)]ωj

ωj −1

cj

+
[
ω − qn arctan

(
ω

qn

)]ωj

ωj −1

dj

)
, (F14)

and, for qn = 0,

χ
lf

jxjx
(0) = 2

π

N∑
j=1

∫ ωj

ωj −1
dω (ajω

3 + bjω
2 + cjω + dj )

= 2

π

N∑
j=1

(
ω4

j − ω4
j−1

4
aj + ω3

j − ω3
j−1

3
bj

+ ω2
j − ω2

j−1

2
cj + (ωj − ωj−1) dj

)
(F15)

The high-frequency part of Eq. (F4) is

χ
hf

jxjx
(iqn) = 2

∫ ∞

ωN

dω

π

ω2

ω2 + q2
n

σ r (ω). (F16)

Using

ω = 1

u
, ⇒ dω = − 1

u2
du, (F17)

it becomes

χ
hf

jxjx
(iqn) = 2

π

∫ uM

0
du

1

u2 + u4q2
n

σ r

(
1

u

)
, (F18)

where uM = 1/ωN . Now, with Eq. (F9), we have

χ
hf

jxjx
(iqn) = 2

π

M∑
j=1

∫ uj

uj −1
du

1

u2 + u4q2
n

sj (u)

= 2

π

M∑
j=1

∫ uj

uj−1

du
αju

3 + βju
2 + γju + δj

u2 + u4q2
n

, (F19)

where 1 � j � M , u0 = 0, and we have used a different
notation for the coefficients to match their indices with those
of grid points in u, which are indexed in order of decreasing
ω. For qn �= 0, we obtain

χ
hf

jxjx
(iqn) = 2

π

M∑
j=1

([
1

2q2
n

ln
(
1 + q2

nu
2
)]uj

uj −1

αj

+
[

1

qn

arctan(qnu)

]uj

uj −1

βj

+
[

ln(u) − 1

2
ln
(
1 + q2

nu
2
)]uj

uj −1

γj

+
[
− 1

u
− qn arctan(qnu)

]uj

uj −1

δj

)
, (F20)

and, for qn = 0,

χ
hf

jxjx
(0) = 2

π

M∑
j=1

∫ uj

uj −1
du

(
αju + βj + γj

u
+ δj

u2

)

= 2

π

M∑
j=1

[
u2

j − u2
j−1

2
αj + (uj − uj−1)βj

+
(

ln
uj

uj−1

)
γj +

(
1

uj−1
− 1

uj

)
δj

]
. (F21)
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Note that γ1 = 0 and δ1 = 0, so that this expression has no
problem with u = 0.

The spline coefficients for the complete spline are obtained
at the same time for both the low-frequency and high-
frequency parts using conditions (F10), (F11), and (F12).
Because the spline has two parts made of polynomials in
ω and u = 1/ω, one must define the spline linear system
for that particular case, but this is a rather straightforward
task. Note that, for the high-frequency part, the condition of
continuity of the first derivatives with respect to u or ω are
the same, but that is not true for the continuity of the second
derivatives. However, we do not observe any loss of accuracy
if the continuity of the second derivatives with respect to u

instead of ω is used.
Conditions (F10), (F11), and (F12), put in matrix form,

are written as Av = σ̄ , where v is a vector containing the
spline coefficients and σ̄ is a vector containing the values σ r

j

(that are repeated) and zeros otherwise. We want to obtain
the coefficients as linear forms of the vector σ r . For that we
have to invert the matrix A and first obtain a linear form for
v. The first two lines of condition (F10) tell us that σ̄ contains
the elements σ r

j repeated twice each, except for σ r
0 , and the

other elements of σ̄ are zeros. So if we define the matrix PAσ

that sums up the pairs of columns in A−1 corresponding to the
same σ r

j and remove all columns that correspond to zeros in σ̄

we get

v = A−1PAσσ r

= Tvσσ r . (F22)

Then the vectors formed with the coefficients are given by
expressions like

a = Pav , b = Pbv, . . . , (F23)

where Pa extracts a column formed of all the coefficients of
the cubic terms, Pb are the coefficients of the quadratic terms,
etc. Now, expressions (F14) and (F15) have the matrix form

χ
lf

jxjx
(iqn) = 2

π

(
K̄a

na + K̄b
nb + K̄c

nc + K̄d
n d
)
, (F24)

which becomes, using Eqs. (F23) and (F22),

χ
lf

jxjx
(iqn) = 2

π

(
K̄a

nPa + K̄b
nPb + K̄c

nPc + K̄d
n Pd

)
Tvσσ r .

(F25)

Similarly, if we define the projectors for the vectors α, β,
γ , and δ, then Eqs. (F20) and (F21) take the form

χ
hf

jxjx
(iqn) = 2

π

(
K̄α

n Pα + K̄β
n Pβ + K̄γ

n Pγ + K̄δ
nPδ

)
Tvσσ r .

(F26)

Summing Eqs. (F25) and (F26) we obtain

χjxjx
(iqn) = Knσ

r, (F27)

with

Kn = 2

π

(
K̄a

nPa + K̄b
nPb + K̄c

nPc + K̄d
n Pd

+ K̄α
n Pα + K̄β

n Pβ + K̄γ
n Pγ + K̄δ

nPδ

)
Tvσ . (F28)

To conclude this section, a few other points must be
addressed. First, the form of expression (F14) becomes

numerically unstable when qn/ω are large. For example, the

first two terms in the high qn/ω expansion of q4
n

2 ln(q2
n + ω2) in

K̄a
n cancel out the terms − q2

n

2 ω2 and ω4

4 . When qn/ω increases,
the magnitude of those terms becomes much larger than K̄a

n

itself so that if one computes numerically the three terms of
K̄a

n separately and then adds them, the finite precision error
becomes larger than the true result. To overcome this problem
one simply has to use the large qn/ω expansion of K̄a

n starting
at a certain cutoff, instead of directly the form appearing in
Eq. (F14). The same kind of cancellation appears in the other
terms of Eq. (F14) so that the large qn/ω expansions must be
used for those terms as well. In the case of Eq. (F20) it is when
qnu is small that some simplifications occur when replacing
the expressions by their expansions, which will also improve
the accuracy of the numerical result.

Second, since we invert the spline matrix A to define Tvσ in
Eq. (F22), it is preferable that this matrix be well conditioned.
For that purpose we define our grid to be uniform in ω for
the low-frequency part of the spline and uniform in u for the
high-frequency part. The grid in u is

u = 0,
1

ωN+M−1
,

1

ωN+M−2
, . . . ,

1

ωN

. (F29)

If uj − uj−1 is constant we have

ωN+M−2 = ωN+M−1

2
,

ωN+M−3 = ωN+M−1

3
, . . . , ωN = ωN+M−1

M
(F30)

or

ωN+1 = MωN

M − 1
,

ωN+2 = MωN

M − 2
, . . . , ωN+M−1 = MωN . (F31)

Also, to have a density of points ωj that varies contin-
uously when we change from high to low frequency, we
assume that ωN+1 − ωN = ωN − ωN−1. Defining �ωlf =
ωN − ωN−1, we have

MωN

M − 1
− ωN = �ωlf , (F32)

so that

M = ωN

�ωlf

+ 1, (F33)

and, if ωj − ωj−1 is constant for j � N ,

�ωlf = ωN

N
, (F34)

so that M = N + 1. Note that when choosing ωN and N , we
have to check that the last frequency ωN+M−1 = (N + 1)ωN

is large enough while not so large that it would uselessly make
the calculation heavy. To further improve the conditioning of
the matrix A, we use normalized frequencies ω′

j = ωj/ωN so
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that ω′
N = 1 and u′

M = 1. In the jth interval, if a′
j , b′

j , c′
j , and

d ′
j are the coefficients in the normalized grid, we have

σ r (ωj ) = ajω
3
j + bjω

2
j + cjωj + dj ,

= a′
j

ω3
j

ω3
N

+ b′
j

ω2
j

ω2
N

+ c′
j

ωj

ωN

+ d ′
j , (F35)

and therefore,

aj = a′
j

ω3
N

, bj = b′
j

ω2
N

, cj = c′
j

ωN

, dj = d ′
j . (F36)

Finally, for the high-frequency part of the spline, we have

αj = ω3
Nα′

j , βj = ω2
Nβ ′

j , γj = ωNγ ′
j , δj = δ′

j . (F37)

To end this section, we comment on the differential entropy
and the minimization procedure. For the differential entropy
of Eq. (F8), we use a default model that is almost flat in the
region where σ r (ω) is expected to have its main structure, and
that decreases gradually to very small values for frequencies
much larger than the bandwidth. This ensures that the solution
that we find is as unbiased as possible. The minimization of
Eq. (F6) is performed using a Matlab routine called fmincon,
which uses a trust-region-reflective algorithm that has been
proven quite efficient with not as much tendency to get
trapped into local minima as other optimization routines. Our
procedure is to start with a very large value of α such that

the minimization process gives a solution very close to the
default model m(ω) [the minimization of Eq. (F8) alone has in
fact a solution proportional to m(ω)]. Then, α is decreased
and a new optimal solution is found, using the previous
solution as a starting point in the optimization routine. This
step is then repeated until χ2 ≈ Nqn

or χ2 does not decrease
anymore when α is reduced. Using an augmented lagrangian
method, we also include inequality constraints to restrict the
roughness of the solution σ r (ωj ). This roughness appears
at some point in the procedure when we try to make Knσ

r

closer to χjxjx
(iqn). It is related to oscillations present in

Knj as a function of the frequency index j for a given n.
Those oscillations are in fact the price to pay to work with an
accurate numerical integration method since they are present in
all approximations more sophisticated than a piecewise linear
function for σ r (ω) in the numerical integration (think about the
unequal weights in a Simpson 1/3 or in Gaussian quadratures).
In fact, the oscillations in our Knj have an extremely small
relative amplitude, but they appear greatly amplified in the
solution σ r (ωj ) when the relative distance |χjxjx

(iqn) − Knσ
r |

becomes very small. The link between oscillations in σ r (ωj )
and oscillations in Knj for n fixed is clear because they are
correlated in the two functions. So they are not related to noise
in the data χjxjx

(iqn). However, those inequality constraints are
not absolutely necessary to obtain good, quantitative results
with our approach. They just ensure that σ r (ωj ) is a smooth
function.
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