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We study spinless fermions in a flux threaded AB2 chain taking into account nearest-neighbor Coulomb
interactions. The exact diagonalization of the spinless AB2 chain is presented in the limiting cases of infinite or
zero nearest-neighbor Coulomb repulsion for any filling. Without interactions, the AB2 chain has a flat band even
in the presence of magnetic flux. We show that the respective localized states can be written in the most compact
form as standing waves in one or two consecutive plaquettes. We show that this result is easily generalized to
other frustrated lattices such as the Lieb lattice. A restricted Hartree-Fock study of the V/t versus filling phase
diagram of the AB2 chain has also been carried out. The validity of the mean-field approach is discussed taking
into account the exact results in the case of infinite repulsion. The ground-state energy as a function of filling
and interaction V is determined using the mean-field approach and exactly for infinite or zero V . In the strong
coupling limit, two kinds of localized states occur: one-particle localized states due to geometry and two-particle
localized states due to interaction and geometry. These localized fermions create open-boundary regions for
itinerant carriers. At filling ρ = 2/9 and in order to avoid the existence of itinerant fermions with positive kinetic
energy, phase separation occurs between a high-density phase (ρ = 2/3) and a low-density phase (ρ = 2/9)
leading to a metal-insulator transition. The ground-state energy reflects such phase separation by becoming linear
on filling above 2/9. We argue that for filling near or larger than 2/9, the spectrum of the t-V AB2 chain can
be viewed as a mix of the spectra of Luttinger liquids (LL) with different fillings, boundary conditions, and LL
velocities.
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I. INTRODUCTION

The field of itinerant geometrically frustrated electronic
systems has attracted considerable interest in the last two
decades.1–22 A simple example of a geometrically frustrated
lattice is the AB2 chain, also designated by diamond chain
or bipartite lozenge chain.1–5 This is a quasi-one-dimensional
system consisting of an one-dimensional array of quantum
rings. Such system can be used to model ML2 (metal-ligand)
chains23 and azurite2 and can be generalized to molecular
systems displaying similar topology.24 Also, given nowadays
nanofabrication techniques, such as electron beam lithography,
a diamond chain-like system can, in principle, be built from
scratch.6 A particular feature of the band structure of these
frustrated systems is the presence of one or several flat
bands in the one-particle energy dispersion, which reflect
the existence of localized eigenstates of the geometrically
frustrated tight-binding Hamiltonian.1–15

The ground states of the Hubbard model for an AB2

geometry are well studied1–5 as well as for other frustrated
lattices such as the sawtooth chain,11 the kagome chain,11

etc. Some of these frustrated lattices fall onto the category
of the cell construction lattices proposed by Tasaki7 or
the category of line-graph lattices proposed by Mielke.8

The approach followed in some of these studies relies in the
fact that the Hubbard interaction is a positive semidefinite
operator and is limited to cases where the lowest band is a
flat band or the chemical potential is fixed at the flat-band
energy.1 The frustrated systems have usually been studied in
the absence of flux.3,4,13 In the case of AB2 Hubbard chain, the
flux dependence of the ground-state energy has been studied
but again only for chemical potential fixed at the flat-band
energy.1 Many different ground states are possible in the

AB2 Hubbard chain, leading to a great variety of properties
such as flat-band ferromagnetism or half metallic conduction,
depending on the values of filling, interaction or magnetic
field.1

The case of spinless fermions in a AB2 lattice, taking
into account nearest-neighbor Coulomb interaction, is simpler
than the Hubbard model due to the absence of spin degrees
of freedom. We will designate the respective Hamiltonian
for such system by t-V AB2 Hamiltonian. The t-V model,
in its strictly one-dimensional (1D) version, can be mapped
into the anisotropic Heisenberg model (more precisely, the
XXZ or Heisenberg-Ising model) by the Jordan-Wigner
transformation,25 whose Bethe ansatz solution has long been
known.26 For quasi-1D models such as the one discussed in
this paper, a Bethe ansatz solution is not possible. However, a
Jordan-Wigner transformation into the XXZ AB2 chain should
be possible using the extension of the Jordan-Wigner transfor-
mation to two dimensions, which has been discussed by several
authors.27–29 In the case of a square lattice, this transformation
requires the introduction of a gauge field, which in contrast
to the 1D case affects the energy spectrum.28 In particular,
the strong-coupling limit of the repulsive t-V model under
a Jordan-Wigner transformation is mapped into the strongly
anisotropic antiferromagnetic Heisenberg model. During the
last years, many studies of the antiferromagnetic Heisenberg
model in geometrically frustrated lattices have been carried
out.2,3,9,10,13,16–19,22,30 Under high magnetic fields but below the
saturation field, the ground states of these frustrated magnetic
systems consist of localized and independent magnons created
in a ferromagnetic background. As a consequence of these
localized magnons, quantized plateaus have been found in the
respective magnetization curves.19
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In this paper, the exact diagonalization of the spinless AB2

chain is presented in the limiting cases of infinite or zero
nearest-neighbor Coulomb interaction for any filling and in
the presence of magnetic flux. Without interactions, the AB2

chain has a flat band even in the presence of magnetic flux.
A simple construction of the localized states that generate the
flat bands both in the presence and absence of flux is presented
and generalized to arrays of ABn quantum rings. The flat band
generates a plateau in the ground-state energy as a function
of filling (for fillings between 1/3 and 2/3). A restricted
Hartree-Fock study of the V/t versus filling phase diagram
has been carried out. For finite V , the mean-field ground-state
energy increases in relation to the independent fermions
ground state energy, but remains negative for fillings lower
than 2/3. For filling larger than 2/3, it becomes approximately
linear reflecting the existence of nearest-neighbor occupied
sites. In the mean-field phase diagram, a uniform density phase
is found at low filling. For filling larger than 1/3, one of
the mean-field solutions for the density difference between
A sites and B and C pairs of sites disappears (due to Pauli’s
exclusion principle). The validity of the mean-field approach
is discussed taking into account the exact results in the limiting
cases.

The strong-coupling limit is particularly interesting due
to the presence of two kinds of localized states: one-particle
localized states due to geometry and two-particle localized
states due to interaction and geometry. Localized states may
lead to flat bands or mix with itinerant states, creating open-
boundary regions for itinerant carriers. The localized fermions
due to geometry that appear in the frustrated AB2 chain have a
direct correspondence with the independent localized magnons
in the near-saturation magnetically frustrated systems. Note,
however, that the equivalent to the two-particle localized
fermions in the frustrated AB2 chain has never been mentioned
in studies of the near-saturation antiferromagnetic Heisenberg
model in geometrically frustrated lattices, as far as we know.
The zero-temperature phase diagram obtained plotting the
ground-state energy as a function of filling displays an
interesting quantum critical point at filling ρ = 2/9 where
a metal-insulator transition occurs. This transition reflects
a phase separation between a high-density phase (ρ = 2/3)
and a low-density phase (ρ = 2/9) that occurs at fillings
larger than ρ = 2/9. It is worthwhile to emphasize that phase
separation is know to occur in the attractive t-V chain31,32 but
it does not occur for repulsive nearest-neighbor interactions.
In the t-V AB2 chain, we have shown that phase separation
occurs for strong repulsive nearest-neighbor interactions. The
particularity about the filling ρ = 2/9 is that the reduced
effective lattice (infinite nearest-neighbor repulsion effectively
reduces the number of available sites for fermions) becomes
half filled at ρ = 2/9. Phase separation occurs in order to avoid
the existence of itinerant fermions with positive kinetic energy.
We also discuss whether the strong-coupling t-V AB2 chain
is a Luttinger liquid. We argue that while for low filling, the
low-energy properties of t-V AB2 chain can be described by
the spinless Luttinger Hamiltonian, for filling near or larger
than 2/9, the AB2 set of eigenstates and eigenvalues becomes
a complex mix of the sets of eigenstates and eigenvalues of
LLs with different sizes, fillings, boundary conditions, and LL
velocities.

The remaining part of this paper is organized in the
following way. In Sec. II, the model is defined. In Sec. III,
the eigenstates of the AB2 tight-binding model in the presence
of magnetic flux are found and the ground-state energy as a
function of filling is determined for any flux. A generalization
of the flat-band states to ABn chains or even more complex
lattices is discussed in Sec. IV. In Sec. V, the study of
the restricted Hartree-Fock phase diagram of the AB2 chain
for V/t versus filling is presented. In Sec. VI, the strong
coupling limit of the model is addressed. The Luttinger liquid
description of the strong coupling t-V AB2 chain is also
discussed. In Sec. VII, we show that the results obtained in
the previous sections are relevant for the extended Hubbard
model in the same geometry. In Sec. VIII, we conclude.

II. THE AB2 CHAIN

In Fig. 1(a), a diamond ring is shown with a magnetic flux
φ threading each diamond plaquette and a magnetic flux φi

threading the inner ring. The inner sites in Fig. 1(a) are denoted
as C sites and the outer sites as B sites. Note that there are two
ways to close the linear AB2 chain shown in Fig. 1(b), either
by leaving the B sites or the C sites in the interior of the ring.
The two situations are physically equivalent and therefore we
will assume that we have closed our ring so as to leave the C
sites as inner sites. The system may be pictured as two rings,
an outer one and an inner one, as shown in Fig. 1(a), so that
an electron traveling through the outer ring sees an effective
flux φo while and electron traveling through the inner ring
sees a different effective flux φi . It will prove itself useful to
introduce an auxiliary flux φ′ such that

φo = φ′ + Nc

φ

2
,

(1)
φi = φ′ − Nc

φ

2
.

where Nc is the number of cells of the diamond ring.
In the case of zero φ′, both effective fluxes still remain

nonzero if φ is nonzero. In this case, the Peierls phase can be
equally distributed in each plaquette, restoring the translational
invariance in each ring as shown in Fig. 1(b). For φ = 0 or π ,
the lattice is invariant in the “flip” of one plaquette (so that B
and C sites exchange places), reflecting a local Z2 symmetry.33

Considering nearest-neighbor Coulomb interactions and
particle hoppings, the t-V Hamiltonian for an AB2 chain with
Nc unit cells (or diamonds) is

H = H0 + V
∑

j

(
nA

j + nA
j+1

)(
nB

j + nC
j

)
, (2)

where V is the value of the interaction and

H0 = −t

Nc∑
j=1

[eiφo/2Nc (A†
jBj + B

†
jAj+1)

+ e−iφi/2Nc (C†
jAj + A

†
j+1Cj )] + H.c. (3)

Here, we have chosen a gauge such that the Peierls phases are
equally distributed in the inner ring and in the outer ring.
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FIG. 1. (a) The AB2 chain consists of a one-dimensional array of
diamond rings. Under magnetic field, each diamond ring is threaded
by a magnetic flux φ and the inner star is threaded by a flux φi . This
system can be pictured as an outer ring with flux φo and an inner ring
with a flux φi . (b) The diamond chain when φ′ = 0.

III. TIGHT-BINDING LIMIT

For simplicity, we will assume a flux configuration such
that φ′ = 0 in this section. The general case is considered at
the end of this section. The tight-binding Hamiltonian for AB2

chain with Nc cells is

H = −t

Nc∑
j

A
†
j (eiφ/4Bj + e−iφ/4Cj )

+A
†
j+1(e−iφ/4Bj + eiφ/4Cj ) + H.c. (4)

Employing the transformations(
b
†
j

c
†
j

)
= 1√

2

(
e−iφ/4 eiφ/4

−ie−iφ/4 ieiφ/4

)(
B

†
j

C
†
j

)
, (5)

the system may be mapped into an Anderson-like model as
depicted in Fig. 2. Its Hamiltonian is given by

H = −t1
∑

j

b
†
jAj − t2

∑
j

b
†
jAj+1

− t3
∑

j

c
†
jAj+1 + H.c., (6)

FIG. 2. The Hamiltonian of the diamond chain threaded by an
arbitrary flux can be mapped into a noninteracting periodic Anderson-
like model with a basis of three sites per unit cell and with hopping
amplitudes controlled by magnetic flux.

where

t1 =
√

2t, t2 =
√

2 cos(φ/2)t, t3 =
√

2 sin(φ/2)t. (7)

We note that the possibility of mapping a chain Hamiltonian
into a periodic Anderson model has been already explored by
Gulácsi et al. by mapping the triangular-chain Hamiltonian
into a periodic Anderson model.34 In our case, when the flux
is either zero or π , one has localized eigenstates, which lead to
flat bands in the energy dispersion (see Fig. 4). For zero flux,
the system becomes a tight-binding ring of A and b sites with
independent c sites (see Fig. 2), having plane-wave eigenstates
in the ring and localized eigenstates at c sites, as depicted in
Fig. 3(a). On the other hand, for φ = π , the system behaves
as a set of Nc independent systems with three sites and all
the eigenstates are localized as depicted in Fig. 3(b).34 The
eigenvalues for an arbitrary value of flux are given by

εflat = 0,
(8)

ε± = ±2t
√

1 + cos(φ/2) cos(k).

In Fig. 4, the dispersion relation for several values of flux
is shown. The flat band εk = 0 is omitted since it is not
modified by the presence of flux. We introduce here the
fermionic operators f

†
k , a

†
k , and d

†
k , which create electrons in

the single-electron bands, more precisely, f †
k creates a particle

with momentum k on the top band, a
†
k on the flat band, and

d
†
k on the bottom band. The eigenstates creating operators are

FIG. 3. (Color online) Eigenstates of the tight-binding AB2 chain
for (a) φ = 0 and (b) φ = π . For zero flux, itinerant (red dashed line)
as well as localized eigenstates (blue dotted line) are present. For
φ = π , all states are localized.34
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FIG. 4. (Color online) Dispersion relation of the diamond chain
for different flux values (we have omitted the flat band εk = 0 since
it is not affected by the flux). For φ = π , all bands are flat reflecting
the local Z2 symmetry of the Hamiltonian.

given by linear combinations of the creation operators on sites
A, B, and C, and for the flat band, the expression of the creation
operator is rather simple:

a
†
k = 1√

1 + cos(φ/2) cos(k)
[cos(φ/4 − k/2)B†

k

− cos(φ/4 + k/2)C†
k]. (9)

As can be concluded from the above results, the diamond
chain presents always a flux-independent dispersionless band
and is gapless for zero flux. At finite flux, a gap opens between
the bottom and the top bands. This gap is given by �ε =
4t

√
1 − cos(φ/2), while the bandwidth of the system is W =

4t
√

1 + cos (φ/2).
In Fig. 4, it can be observed that for k = π/2, two

flux-independent eigenvalues appear. This condition is only
fulfilled if the number of unit cells is a multiple of four,
Nc = 4n with n integer. We should also note that the system
is 2π periodic on the flux when Nc is even and 4π periodic
when Nc is odd. A flux of 2π interchanges the energies of the
dispersive states with k = 0 and k = π . These two values of
momenta are allowed when Nc is even. The value k = π is
forbidden when Nc is even and the period of the system is 4π

on the flux.
The eigenvalues for an arbitrary value of flux φ′ are obtained

following similar steps and the energy-dispersion relations
become

εflat = 0,
(10)

ε± = ±2t
√

1 + cos(φ/2) cos(φ′/Nc + k).

The insertion of an extra flux φ′ in the AB2 chain only translates
the energy-dispersion relation by φ′/Nc and therefore does
nothing to the flat band. This result is expected since it is
similar to what is observed in 1D quantum rings. One can use
φ′ to control the momentum for which the top/bottom band
reach its maximum/minimum energy.

A. Density of states, filling, and ground-state energy

Let us consider the thermodynamic limit (k continuous) and
calculate the density of states (DOS) of the tight-binding AB2

chain. The DOS of the flat band is a Dirac delta function at
ε = 0. The dispersive bands are 1D bands and the combined
DOS of the two dispersive branches can be written as

D(ε)± = 1

πt
|ε′| 1√

cos2(φ/2) − (ε′2 − 1)2
, (11)

when ε belongs to the energy intervals associated with the
dispersive bands and where ε′ = ε/2t . The full DOS of the
system is, therefore, D(ε) = D±(ε) + δ(ε).

Filling is defined as the number of electrons N per site,
ρ = N/Ns = N/3Nc, where Ns is the number of sites. Due
to the symmetric nature of the energy spectrum and since each
band can accommodate one electron per unit cell, we know that
half filling occurs for EF = 0. Since the flat band contains Nc

states, then when ρ ∈ [1/3,2/3] one has EF = 0. If EF lies
on the bottom band, we have

ρ = 1

3

∫ EF

εb,min

D−(ε)dε, (12)

where εb,min = −2
√

2t cos(φ/4) is the bottom of the band and
where the factor of 1/3 is due to the fact that the integral of
the DOS over a band is one and each band contributes equally
to the DOS. Using Eq. (11), we have,

ρ = 1

6π

⎧⎨
⎩arctan

⎡
⎣ ε′

b,min√
cos2(φ/2) − ε′2

b,min

⎤
⎦

− arctan

⎡
⎣ E′

F√
cos2(φ/2) − E′2

F

⎤
⎦
⎫⎬
⎭ ,

(13)

where

ε′
b,min =

(εb,min

2t

)2
− 1,

(14)

E′
F =

(
EF

2t

)2

− 1.

If, on the other hand, EF lies on the top band, one can use the
symmetry of the density of states to write ρ = 1 − ρh, where

ρh = 1

3

∫ −EF

εb,min

D−(ε)dε, (15)

is given by Eq. (13).
Given the preceding results, we are able to calculate the

ground-state energy of the system as a function of filling. The
ground-state energy is given by

EGS =
∫ EF

Emin

D(ε)εdε, (16)

while Eqs. (13) and (14) give us the relation between the
Fermi energy and the filling. For a general value of φ, there
is no simple analytical expression and the ground-state energy
should be calculated numerically. However, when φ = π , it
is very simple to derive an exact result, given that the system
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FIG. 5. (Color online) Ground-state energy in the thermody-
namic limit as a function of filling for several values of flux. EGS

remains constant when filling the flat band, ρ ∈ [1/3,2/3], achieving
its minimum value in that interval for φ = π . For φ = π , EGS has
linear behavior in ρ since all bands are flat.

only has three energy levels, ε = 0, ± 2t , and that each level
can take Nc electrons. In this case, the ground-state energy per
unit cell while the bottom band is not fully filled is given by
EGS = −2tN/Nc = −6tρ. At ρ = 1/3, the bottom band gets
fully filled, and from ρ = 1/3 to ρ = 2/3, we are filling the
middle band whose energy is ε = 0. Therefore, EGS = −2t ,
ρ ∈ [1/3,2/3]. For ρ > 2/3, we start filling the upper band
whose energy is ε = 2t . In this situation, the ground-state
energy is given by EGS = 6t(ρ − 2/3) − 2t .

In Fig. 5, we plot the ground-state energy as a function
of filling for several values of flux. As can be seen for ρ ∈
[1/3,2/3], the ground-state energy remains constant since we
are filling the flat band εk = 0. The ground-state energy is
obviously even around εk = 0.5 due to the symmetric nature
of the dispersion relation. We also see that for ρ �∈ [1/3,2/3],
the dependence of the ground-state energy on the filling departs
from its linear behavior when φ �= π .

IV. FLAT BANDS AND LOCALIZED STATES FOR ARRAYS
OF QUANTUM RINGS

It is well known that the single-particle flat-band eigenstates
of a geometrically frustrated lattice can be written as a set
of localized eigenstates that are translated versions of the
same state |ψloc〉. This single-particle state is nonzero in a
small lattice region and it is an eigenstate of the tight-binding
Hamiltonian (a zero-energy eigenstate in the case of the
AB2 chain. This means that if we write the eigenstate as
|ψloc〉 =∑i aic

†
i |0〉, where i runs over all lattice sites such

that ai �= 0, then
∑

i triai = εar = 0, where r can be any site
in the lattice such that ar = 0, tri is the hopping constant
between sites r and i, and ε is the kinetic energy of the state.
In the particular case of AB2 chains, ε = 0 and the restrictions
on sites i and r can be lifted, i.e.,

∑
i triai = εar = 0, where

i runs over all lattice sites and r is any site of the lattice. We
propose a particular perspective (but equivalent) for the case
of any array of quantum rings similar to the AB2 chain, which
easily allows us to identify the localized states in the absence
or presence of flux. Let us also assume for now that the array
is such that the shared sites between consecutive rings are

directly opposite, and therefore the number of sites in each
ring is even.

For zero flux, φ = φo = φi = 0, all energy levels of the
tight-binding ring are doubly degenerate with exception of
the lowest and highest energy levels (k = 0 and k = π ) and the
respective eigenstates have opposite momenta, reflecting the
time-reversal symmetry of the Hamiltonian. In the particular
case of the AB2 chain, the respective ring has four sites
and there is only one degenerate level corresponding to
zero energy. Subtracting the states of opposite momenta, one
obtains a standing wave with nodes at i = 0 and i = Nr/2
(ring sites are numbered clockwise from i = 0 to i = Nr −
1). For Nr > 2n with n > 2, one has more than one flat
band. More precisely, one has Nring/2 − 1 flat bands with
energies εn = −2t cos(2πn/Nr ) with n = 1, . . . ,Nr/2 − 1.
Since these nodes coincide with the sites shared by consecutive
rings, one can say that for these standing-wave states, the ring
becomes uncoupled to the rest of the chain. Furthermore, if
Nr > 2n with n > 2, the standing waves may have more than
two nodes and more complex lattices can have such localized
states. Note however that the nodes position must be an integer.
We conclude that in order to find flat-band eigenstates of arrays
of quantum rings, one may construct standing waves such that
the nodes coincide with sites shared between different quantum
rings. For instance, for Nr = 8, a square lattice is possible as
shown in Fig. 8.

These arguments agree with the results obtained for
the AB2 chain. For φ = φo = φi = 0, one has a

†
k = [B†

k −
C

†
k]/

√
2, which can be Fourier transformed to obtain a

†
i =

[B†
i − C

†
i ]/

√
2. The single-particle state a

†
i |0〉 is a localized

eigenstate in cell i with zero energy.
Let us consider now φ = 0 but φo = −φi �= 0. Then

the tight-binding constants in one ring become tj,j+1 =
e−iφo/2Ncj t , for j = 0, . . . ,Nr/2 − 1 and tj,j+1 = eiφo/2Ncj t ,
for j = Nr/2, . . . ,Nr − 1 so that the total Peierls phase is zero,
reflecting the fact that φ = 0. A simple gauge transformation:

c
†
j → ei

φo
2Nc

j c
†
j , j = 0, . . . ,Nr

2 ,

c
†
j → ei

φo
2Nc

(Nr−j )c
†
j , j = Nr

2 + 1, . . . ,Nr − 1,

restores the translational invariance with a zero Peierls phase
and the previous construction of localized states can be
applied. Therefore, the same flat bands will be present. In
the case of the AB2 chain, the flat-band states will have the
form a

†
i |0〉 = e−i

φo
2Nc [B†

i − C
†
i ]/

√
2|0〉, but the phase term is

obviously irrelevant.
Let us address now the case of φ �= 0 but φ′ = 0 (the case

with φ′ �= 0 is obtained following the same steps after a gauge
transformation as explained for the φ = 0 case). When φ �= 0,
eigenstates of the tight-binding ring with opposite momenta k

and −k do not have the same energy (see Fig. 6) and therefore
the standing wave obtained from the subtraction of these states
is not an eigenstate of the tight-binding Hamiltonian of the ring.
One can overcome this difficulty considering two consecutive
rings and following a certain path in those rings such that the
total Peierls phase in that path is zero as shown in Fig. 7. If
one constructs standing waves for a ring of 2Nr sites with the
additional condition of extra nodes at sites Nr/2 and 2Nr −
Nr/2 (sites A and B in Fig. 7), this state can be folded (making
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FIG. 6. (Color online) Dispersion relation of a tight-binding ring
with eight sites: (a) without flux and (b) threaded by a magnetic
flux φ = π/5. For zero flux, states k and −k are doubly degenerate
(with the obvious exception of k = 0 and k = π ). When φ �= 0, the
eigenstates of the tight-binding ring with opposite momenta k and
−k do not have the same energy, reflecting the loss of time-reversal
symmetry.

site A overlap with site B) to give an eigenstate of the two
rings threaded by flux with nodes at the extremities. Note
that the larger ring has nonzero Peierls phases associated with
each hopping but the total phase is zero. So after a gauge
transformation to eliminate these phases, the states of opposite
momenta are degenerate and the standing wave is an eigenstate
of the Hamiltonian of the two rings. Again, one or more flat
bands are possible depending on the size of the quantum ring.

The gauge transformation for the larger ring will be

c
†
j → ei

φo
2Nc

j c
†
j , j = 0, . . . ,

Nr

2
,

c
†
j → ei

φo
2Nc

(Nr−j )c
†
j , j = Nr

2
+ 1, . . . ,Nr,

c
†
j → e−i

φo
2Nc

(j−Nr )c
†
j , j = Nr + 1, . . . ,Nr + Nr

2
,

c
†
j → e−i

φo
2Nc

(2Nr−j )c
†
j , j = Nr + Nr

2
+ 1, . . . ,2Nr − 1,

FIG. 7. (Color online) In the presence of flux, considering two
consecutive rings and following first the continuous path (in red) and
then the dotted path (in black), the total Peierls phase in that path
is zero (the path is clockwise for the left ring and counterclockwise
for the right ring). If one constructs standing waves for a ring of 2Nr

sites with the additional condition of extra nodes at sites A and B,
this state can be folded to give an eigenstate of the two rings threaded
by flux with nodes at the extremities and at site A.

FIG. 8. Localized states in the case of the Lieb lattice with or
without magnetic flux. The introduction of magnetic flux extends the
localized state to two plaquettes. These plaquettes are equivalent to
the quantum rings discussed in the text and the localized state is a
standing wave with nodes in the plaquettes vertices.

where the sites have been numbered clockwise in the larger
ring. In the case of the AB2 chain, after the gauge transfor-
mation, the localized state (not normalized) will be (c†1 −
c
†
3 + c

†
5 − c

†
7)|0〉, which, inverting the gauge transformation,

corresponds to the state [e−i
φo

2Nc (c†1 − c
†
3) + ei

φo
2Nc (c†5 − c

†
7)]|0〉.

This state written in terms of the operators of the AB2

chain becomes [e−i
φo

2Nc (B†
j − C

†
j+1) + ei

φo
2Nc (B†

j+1 − C
†
j )]|0〉 or

equivalently [e−i
φ

4 (B†
j − C

†
j+1) + ei

φ

4 (B†
j+1 − C

†
j )]|0〉. These

are exactly the localized eigenstates obtained by Fourier
transforming Eq. (9),

2eik/2
√

1 + cos(φ/2) cos(k)a†
k

= [eiφ/4 + e−i(φ/4−k)]B†
k − [ei(φ/4+k) + e−iφ/4]C†

k . (17)

Note that these localized states may overlap in real space, that
is, they constitute a basis of the subspace of localized states
but not an orthogonal basis. Such impossibility of constructing
orthogonalized Wannier states for certain lattices with flat
bands under a uniform magnetic field has been mentioned
before.35

As an example of application of the previous arguments,
we show in Fig. 8 the localized states for the Lieb lattice.
It is known that this lattice displays a flat band for zero and
finite magnetic flux. Aoki et al. have found the respective
localized state for zero flux as well as by inspection, a localized
“elongated-ring state” for finite flux.35 The zero-flux localized
state agrees with the one shown in Fig. 8, but our localized state
for finite flux shown in Fig. 8 is considerably more compact
than the “elongated-ring state” of Ref. 35. We expect that the
previous arguments can be applied to other lattices, which fall
onto the Lieb lattice category, that is, bipartite lattices with
different numbers nA and nB of A and B sublattice sites in a
unit cell.36 Another example of simple application is the Bc

class superhoneycomb lattice.35 Again our argument justifies
the fact that the flat band in this system remains flat for finite
magnetic field.

V. MEAN-FIELD RESULTS FOR GENERAL V

In this section, we present a mean-field study of the t-V
AB2 chain taking into account nearest-neighbor Coulomb
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interaction. The results obtained must be interpreted with
caution, having in mind the known drawbacks of this approach.
One of these drawbacks is the fact that this approach neglects
thermal fluctuations, which as stated by the Mermin-Wagner
theorem prevent long-range order at finite temperature. In
this section, only the zero-temperature case is addressed,
so one avoids this problem. Even at zero temperature, the
mean-field approach overestimates the existence of an ordered
phase, since quantum fluctuations oppose the emergence of an
ordered phase, and these quantum fluctuations are particularly
strong in quasi-1D systems. Note however that the ground
state of quasi-1D systems may in fact be ordered despite these
quantum fluctuations.

When considering nearest-neighbor Coulomb interactions,
we will be interested on the density of particles at A, B, and C
sites. We assume the particle density on site X to be the average
number of particles per number of unit cell, ρX = NX/Nc. We
also assume that the particle density at B and C sites is the
same. Let ρ denote the total particle density,

ρ = ρA + 2ρB

3
, (18)

where ρA and ρB are the particle densities at A and B sites
respectively. We then have

0 �

⎧⎪⎨
⎪⎩

ρ

ρA

ρB

⎫⎪⎬
⎪⎭ � 1. (19)

In this situation, the interaction part of the mean-field Hamil-
tonian can be written as

Hint = 2V
∑

j

[
2ρBnA

j + ρAnB
j + ρAnC

j

]− 4NcρAρB. (20)

While there is no simple expression for the mean-field
dispersion relation for general φ, a simple expression exists
for zero flux,

εflat = 2VρA,
(21)

ε± = V (ρA + 2ρB) ±
√

8t2 cos2(k/2) + �2
V ,

where �V = V (ρA − 2ρB). Again, a flat band is present, but
its energy level depends on the density at sites A.

We define the order parameter as the excess of density at
the A sites,

�ρ = ρA − 2ρB

ρA + 2ρB

. (22)

Due to the equivalence of the B and C sites, we regard
our system as being a dimerized system consisting of two
alternating types of sites: A sites and BC pseudosites. Note
however that this picture is to be interpreted with caution
since BC pseudosites are not real sites and can accommodate
twice as many electrons as A sites. One must note that in a
general situation, we have �ρ ∈ [−1,1]. Since 0 < ρA, ρB <

1, then for ρ > 1/3, �ρ is limited to the interval [−1,�ρmax],
where �ρmax lies in ]−1,0[ and whose value decreases with
increasing ρ. For the same reason, for ρ > 2/3, �ρ is limited
to ]−1,−1/3], and not only the upper limit of �ρ decreases
with increasing ρ, but also the lower limit of �ρ increases with

FIG. 9. (Color online) V/t versus filling mean-field phase
diagram for the spinless diamond chain considering nearest-neighbor
Coulomb interactions and Nc = 128. For ρ < 1/3, we can have a
uniform density phase (�ρ = 0) or a phase with excess of density at
A or BC pseudosites (�ρ > 0 or �ρ < 0, respectively). For ρ > 1/3,
Pauli’s exclusion principle breaks the symmetry between A and BC
pseudosites. A uniform density phase is not possible anymore and
the density of particles can no longer be situated only at A sites. It
can however, for ρ < 2/3, be situated only at BC pseudosites. For
ρ > 1/3, due to Pauli’s exclusion principle, the density of particles
is required to be spread among A and BC sites and for ρ = 1 the
order parameter is �ρ = −1/3, which implies a uniform density of
particles between the real A, B, and C sites.

increasing ρ. For ρ = 1, we have �ρ = −1/3, corresponding
to an equal density of particles on every site (the only possible
state when the system is completely filled).

The phase diagram of the system is depicted in Fig. 9. A
uniform density phase can exist only for a filling ρ < 1/3. For
ρ < 1/3, starting in the uniform density phase, by increasing
the interaction we are able to localize an excess of electron
density at A sites or at BC pseudosites, both situations being
symmetric. By further increasing the interaction we are able
to localize all the fermions at A sites or at BC pseudosites
where both situations remain symmetric. As a consequence,
the order parameter �ρ can be double valued for these values
of filling. In the region 1/3 < ρ < 2/3, one no longer can
localize the full electron density at A sites, while one can at
BC sites and therefore although the Hamiltonian treats A and
BC pseudosites equally, Pauli’s exclusion breaks the symmetry
between A and BC pseudosites, lowering the symmetry of the
system. Consequently, for ρ > 1/3, the order parameter can
no longer be double valued. In the region ρ > 2/3, again due
to Pauli’s exclusion principle, one is not able to fully localize
the density of electrons even at BC pseudosites and only one
phase remains.

In Fig. 10, the order parameter as a function of filling is
shown for V/t = 0.5, 3, and 20 and Nc = 200. The changes
of slope of the order parameter indicate the phase transitions.
The absence of a positive solution of �ρ for ρ > 1/3 reflects
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FIG. 10. (Color online) Order parameter as a function of filling
for V/t = 0.5, 3, and 20 and Nc = 200. The changes of slope of the
order parameter indicate the phase transitions. Note that the absence
of a positive solution of �ρ for ρ > 1/3 reflects the fact that the
A and BC pseudosites may be occupied by one and two fermions,
respectively. As a consequence, for ρ < 1/3, the order parameter can
be double valued since we are able to localize all fermions at A sites
(�ρ > 0) or at BC pseudosites (�ρ < 0). Since for ρ > 1/3, we can
no longer localize all fermions at A sites, the order parameter can no
longer be positive.

the fact that the A and BC pseudosites may be occupied by
one and two fermions, respectively.

In Fig. 11, we show the groundstate energy per site as a
function of ρ for V/t = 0, 1, 3, and 20 and Nc = 200, obtained
in the mean-field approach. For finite V , no flat region appears
and the minimum energy is shifted to lower filling. Recalling
Eq. (21), one concludes that a constant term 3Vρ2 is added to
the noninteracting ground-state energy when �ρ = 0, which
shifts the minimum energy to lower ρ when V is small (�ρ = 0
for low ρ). The ground-state energy remains negative for ρ <

2/3. For ρ > 2/3 and large V , the groundstate energy is almost
linear in the filling with a large slope since nearest-neighbor
pairs are being created.

0.2 0.4 0.6 0.8 1.0

0.5

0.0

0.5

1.0

ρ

E
G

S
t

V t 20

V t 3

V t 1

V t 0

FIG. 11. (Color online) Ground-state energy per site as a function
of ρ for V/t = 0, 1, 3, and 20 and Nc = 200, obtained in the mean-
field approach. For finite V , no flat region appears and the minimum
energy is shifted to lower filling. The ground-state energy remains
negative for ρ < 2/3. For ρ > 2/3, the ground-state energy is almost
linear in the filling with a large slope since nearest-neighbor pairs are
being created.

VI. THE AB2 CHAIN IN THE STRONG-COUPLING
LIMIT V → ∞

Making t/V a small parameter, one drives the t-V AB2

model into the so-called strong-coupling limit. There are two
equivalent ways to reach this limit, either increasing V or re-
ducing t . If t = 0, the fermions are localized and all states with
the same number of pairs of nearest-neighbor occupied sites,∑

i(n
A
j + nA

j+1)(nB
j + nC

j ), are degenerate. This degeneracy is
much lower compared with the ground-state degeneracy of
the U/t → ∞ Hubbard AB2 model. This degeneracy is lifted
if t/V is finite and up to first order in t the eigenvalues are
obtained by diagonalizing the Hamiltonian within each of the
degenerate subspaces. The Hamiltonian within each subspace
is obtained using the Gutzwiller projection operators Pl , which
project onto the subspace with l pairs of nearest-neighbor
occupied sites. The set of eigenstates and eigenvalues of l = 0
subspace of this model can be determined, as we will show
below, relying, at least for some of the eigenstates, on the
knowledge of the solution of the t-V chain.37

In order to simplify the comparison between the t-V and
the AB2 chains, we number the sites in a different way: using
odd numbers for A sites and even numbers for B and C sites.

Let us also define the operator nh
i = (1 − c

†
i ci), where c

can be an operator A, B, or C. In the strong-coupling limit
V/t 	 1, we obtain for the ground-state subspace (l = 0) the
projected Hamiltonian with φ = 0 (but φi = φo �= 0):

P0HP0 = − t
∑
j odd

eiφo/2Nc

⎡
⎣∏

i ε Pj

nh
i × A

†
j (Bj+1 + Cj+1)

+
∏

i ε Pj+1

nh
i × (B†

j+1 + C
†
j+1)Aj+2

⎤
⎦+ H.c.,

where Pj is the set of sites nearest-neighbors of the pair of
sites j and j + 1 (excluding these sites) and the product of
hole occupation numbers reflects the condition that a nearest-
neighbor pair of occupied sites is not created when a particle
hops.

Again, we emphasize that states belonging to subspaces
with l �= 0 pairs of nearest-neighbor occupied sites will be
discarded since their energy is of the order of V .

Let us consider two consecutive sites and therefore nearest
neighbors of each other. Considering the subspace with l = 0,
there are three possible configurations for this pair of sites,
which we will call links and they are (h p); (p h); (h h), where
p stands for an occupied site and h for an empty one. The total
number of these links in the AB2 chain is given by

Nhp + Nph + Nhh = 4Nc (23)

and Nhp = Nph. Note that unlike the case of the t-V chain,
the number of links Nhp and Nhh in the strong-coupling AB2

chain is not a conserved quantity.

A. Basis

Let us consider a unit cell of the AB2 chain (which has three
sites, A, B, and C). The set of states for this cell correspond
to five possible configurations in what concerns the particles
distribution : (i) zero particles with all sites being unoccupied
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+
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(a)

(b)
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FIG. 12. (a) Two-particle localized state and one-particle
(b) itinerant, and (c) localized state involving B and C sites. The
filled and empty circles indicate occupied and unoccupied sites,
respectively. Gray circles indicate bonding (+) and antibonding (−)
occupations. The particles in (a) are localized due to the interaction
(V/t = ∞) and in (c) due to geometric frustration. In (b), the particle
is free to hop to the neighboring A sites.

and (ii) one particle, which may be at site A, B, or C. The states
with just one particle either at site B or site C can be combined
to give a bonding and an antibonding state [see Fig. 12(b) and
12(c)]. The antibonding state is a localized state as discussed in
previous sections. The bonding state is an itinerant state; (iii)
two particles, which must be at sites B and C in order to avoid a
nearest-neighbor occupied pair of sites [see Fig. 12(a)]. These
particles are also localized particles because if they hopped, a
state with a nearest-neighbor occupied pair of sites would be
created.

Let us consider now the case of N particles in a AB2 chain
with Nc unit cells. Let us define the operators B

†
+,i = (B†

i +
C

†
i )/

√
2 and B

†
−,i = (B†

i − C
†
i )/

√
2. Note that the product of

these two operators creates two particles, one at site Bi and
the other at site Ci as expected. Using this new basis, the
Hamiltonian can be rewritten in a simpler form:

P0HP0 = −
√

2t

Nc∑
j=1

eiφo/2Nc

⎛
⎝∏

i ε Pj

nh
i × A

†
jB+,j+1

+
∏

i ε Pj+1

nh
i × B

†
+,j+1Aj+2

⎞
⎠+ H.c. (24)

One could be tempted to say that the localized states play
no role in this simplified Hamiltonian since only the B

†
+,j

operator appears, but that would be incorrect. A basis for the
ground-state subspace (l = 0) can be constructed from states
of the form:

|	〉 =
NBC∏
i=1

B†
αi

C†
αi

NB−∏
j=1

B
†
−,βj

NB+∏
n=1

B
†
+,γn

NA∏
m=1

A†
μm

|0〉, (25)

where the sets {α}, {β}, {γ }, {μ}, {α ± 1}, {β ± 1}, {γ ± 1},
and {μ ± 1} have no common elements in order to satisfy the
l = 0 condition and NBC , NB− , NB+ , and NA are respectively
the number of localized pairs of fermions at sites B and C of
antibonding localized fermions, of itinerant bonding fermions,

+ -

+

(a)

(b)

(c)

FIG. 13. (a) State with localized as well as itinerant particles.
(b) Open boundary region where the itinerant fermions in the state
given in (a) may move. Note that the open-boundary regions terminate
always at B and C sites. (c) Corresponding state of the linear lattice.

and of itinerant fermions at A sites, so that 2NBC + NB− +
NB+ + NA = N . Due to the projection condition, the localized
fermions created by the B

†
−,j and B

†
+,jB

†
−,j operators act

creating open boundaries for the hoppings of fermions. The
Hamiltonian mixes states with different configuration for the
A

†
j and B

†
+,j products but the part relative to the localized

fermions remains always the same. In Fig. 13, we illustrate
this.

The diagonalization of the Hamiltonian given by Eq. (24)
is achieved by first distributing the localized fermions (if
any) and then solving the remaining problem for the itinerant
fermions, which move in regions confined by the localized
particles, leading to a factorized form of the eigenstates,
|itinerant fermions〉 ⊗ |localized fermions〉. The eigenvectors
and eigenvalues of the 1D t-V model for twisted boundary
conditions as well as open-boundary conditions can be
obtained by use of the Bethe ansatz, but an equivalent but
simpler algebraic solution is known in the strong-coupling
limit. In the following, we shortly review the main results of
the algebraic solution.

B. Itinerant states

Let us consider first the case when no particle is localized. In
this case, the model becomes equivalent to the t-V chain apart
from a renormalization of the hopping constant (t → √

2t).
The solution of the t-V chain relies on recognizing that the
condition l = 0 leads to a conservation of the number of links
Nhp and Nhh so that the tight-binding term only exchanges
the position of these links.37 Interpreting the (hp) links as
noninteracting particles hopping in a chain where the empty
sites are the (hh) links, the solution is attained. Since the total
number of (hh) and (hp) links is L̃ = L − N , the effective
chain is reduced in relation to the real t-V chain. Note that L

is the number of sites in Fig. 13(c) after the mapping to a 1D
chain. The fact that the tight-binding particles occupy two sites
of the real t-V chain leads to a twisted boundary condition that
is dependent on the momenta of the tight-binding particles and
the eigenvalues are given by37

E({k̃},P ) = −2
√

2t

N∑
i=1

cos

(
k̃i − P

L̃
− φ

L

)
(26)
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with k̃ = ñ2π/L̃, P = n2π/L, ñ = 0, . . . ,L̃ − 1, and n =
0, . . . ,L − 1. The set of pseudomomenta {k̃} and P must
satisfy the following condition:

P
L

L̃
=

N∑
i=1

k̃ (mod 2π ). (27)

The mapping of this solution of the t-V chain (with even
number of sites) into the AB2 chain without localized particles
is direct, with odd sites corresponding to A sites and even sites
to sites B and C (which will be unoccupied or in a bonding
configuration).

C. Localized states

Let us consider now a state where localized particles are
present. Then one has one or more open-boundary regions that
terminate always in B and C sites as shown in Fig. 13, i.e., the
number of sites is odd (the Bi and Ci sites count as one site).
The solution for the itinerant particles in one open-boundary
region is rather simple.38 Again, a mapping to a system of free
fermions in a reduced linear lattice is possible in a similar way,
thinking of (hp) links hopping in a background of (hh) links,
but it is simpler to state as in Refs. 38 and 39 that the positions
ĩ of particles in the reduced chain are given by the relation
ĩ = i − Ni , where i is the position of the particle in the t-V
1D lattice and Ni is the total number of particles between the
initial site and site i. The number of sites of the reduced chain
is L̃ = L − N + 1. The energy contribution of these itinerant
fermions is Ea = −2

√
2t
∑Na

i=1 cos(ki) with k = πn/(Nred +
1) and n = 1,2, . . . ,Nred. Note that in the same state, and
according to the distribution of the localized fermions, several
confined regions may be present.

D. Ground state

The contribution of localized fermions to the energy of
a given state is zero, but that does not necessarily imply
that the ground state will always correspond to the minimum
number of localized fermions. As an example, let us consider
ρ = 1/3. An eigenstate for this filling is

∏2Nc−1
modd A

†
m|0〉. The

respective energy is zero since this state corresponds to having
the itinerant fermion band completely filled, so that the positive
kinetic energies balance the negative kinetic energies. In this
case, it is possible to construct lower energy eigenstates with
localized fermion pairs (created by the operator B

†
i C

†
i ), which

allow room for the itinerant fermions to move and therefore
lower the total kinetic energy.

This competition between itinerant and localized states
will in fact start to occur at lower filling, ρ = 2/9, since
at this filling, the reduced chain is half filled and therefore
positive-kinetic-energy states will start to be filled when adding
additional itinerant particles. In order to lower the energy, one
wants to keep the number of itinerant fermions just below
half filling and to have the maximum possible length for the
reduced lattices where the itinerant particles move. Noting
that a localized pair forbids the presence of particles in the
two neighboring A sites, one concludes in order to maximize
the number of sites available for the itinerant fermions, these
localized pairs should gather in a single cluster.

The ground-state energy is obtained from Eq. (26) for
fillings less than 2/9. If N is odd, all single-particle states with
pseudomomentum k̃ between ±2π/L̃(N − 1)/2 are occupied
and

∑
k̃ = 0. Therefore,

Eodd
GS = −2

√
2t

sin
(

πN
2Nc−N

)
sin
(

π
2Nc−N

) cos

(
φ

2Nc

)
. (28)

If N is even, all states with k̃ between −2π/L̃(N − 2)/2
and 2π/L̃N/2 or between −2π/L̃N/2 and 2π/L̃(N − 2)/2
are occupied and

∑
k̃ = ±π/L̃N/L. So,

Eeven
GS = −2

√
2t

sin
(

πN
2Nc−N

)
sin
(

π
2Nc−N

) cos

(
π − φ

2Nc

)
. (29)

In the thermodynamic limit, the difference in the last two
expressions becomes irrelevant and one can write

Eitin
GS

Nc

= −2
√

2t

π
(2 − 3ρ) sin

(
πρ

2
3 − ρ

)
. (30)

For filling larger than 2/9, it is energetically favorable
to have localized pairs of fermions in consecutive unit cells
so that only one region exists for itinerant fermions with
2Nc − 2NBC − 1 sites and the respective reduced lattice will
have L̃ = 2Nc − N sites. The number of itinerant fermions
is Nitin = N − 2NBC . The number of BC localized pairs is
such that the band for the itinerant fermions in the respective
reduced lattice is as near as possible to half filling, so that
NBC = Int(3N/4 − Nc/2) + 1 or NBC = Int(3N/4 − Nc/2).
In the thermodynamic limit, one can write Nitin = Nc − N/2
and one has a closely packed localized cluster with length
equal to NBC/2 = 3N/8 − Nc/4.

The ground-state energy in this case is

Eloc
GS = −2

√
2t cos

[
π

2

Nitin + 1

2Nc − N + 1

] sin
[

π
2

Nitin
2Nc−N+1

]
sin
[

π
2

1
2Nc−N+1

] ,
(31)

which for a large AB2 chain simplifies to

Eloc
GS

Nc

= −2
√

2t

π
(2 − 3ρ), (32)

where ρ = N/3Nc. Since this ground state is localized, no
magnetic-flux dependence is present. Note that for N =
2Nc − 1 the reduced lattice has only one site and the only
possible energy is zero. Also for N = 2Nc, one has a Wigner-
crystal-like state with NBC = Nc and zero energy. Also for
N = 2Nc − 2, the reduced lattice has two sites and the number
of itinerant fermions is zero or two, therefore, the only possible
energy is zero.

The density in the compact cluster of BC localized pairs
present in the ground state for ρ � 2/9 has density equal
to 2/3, while the region available for the movement of
the itinerant fermions has constant density Nitin/( 9

2Nitin − 1),
which for large Nitin is approximately constant and equal to
2/9. So as one increases the filling in the AB2 chain, one
is reducing the length of a phase with lower density and
increasing the size of the higher density phase.

Phase separation has been observed in other 1D and
two-dimensional (2D) Hamiltonians.40,41 In the 1D t-J model,
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phase separation occurs for J/t = 2.5−3.5 with the system
divided into an electron-rich region and a hole-rich region.41

An open-boundary Heisenberg model rules the dynamic of
spin degrees of freedom of the electron-rich phase. Particularly
relevant to our study of the AB2 chain is the phase separation of
the anisotropic Heisenberg model or XXZ model, which can be
mapped onto the 1D t-V model. In this case, phase separation
corresponds to the appearance of the ferromagnetic phase in
the XXZ model.31 The anisotropy constant of the XXZ model,
� = J‖/J⊥ under the Jordan-Wigner transformation becomes
� = −V/2|t | and for both models the phase separation occurs
for � � 1,31,32 that is, phase separation occurs for attractive
nearest-neighbor interaction (ferromagnetic interaction). In
the t-V AB2 chain, we have shown that phase separation occurs
for strong repulsive interaction. Note that a spinless fermion
in the t-V model corresponds to an up spin in XXZ model
while a hole corresponds to a down spin; therefore, the lower
and higher density phases of the AB2 chain correspond to
different magnetization regions of the antiferromagnetic XXZ
AB2 model.

E. Luttinger liquid description

One of the most interesting points concerning the t-V AB2

chain is the following: is the t-V AB2 chain a Luttinger
liquid? That is, can the low-energy excitations of this model
be described as bosonic charge-density fluctuations governed
by the harmonic Hamiltonian31,41

HLL = vS

∑
q

|q|b†qbq + π

2L
[vN (N − No)2 + vJ J 2]? (33)

In the LL Hamiltonian, N , J , L, vS , vN , and vJ are,
respectively, the particle number, current number, system
length, particle velocity, current velocity, and sound-wave
velocity. One is easily tempted to calculate these Luttinger
liquid parameters from the previous strong-coupling results,
obtaining for large L and for ρ < 2/9,

vN = 1

π

∂2(ET /L)

∂(N/L)2
= 36

√
2t

(2 − 3ρ)3
sin

(
3πρ

2 − 3ρ

)
, (34)

vJ = π
∂2(ET /L)

∂(φ/L)2
= 9(2 − 3ρ)t

2
√

2
sin

(
3πρ

2 − 3ρ

)
, (35)

vS = √
vNvJ = 9

√
2t

2 − 3ρ
sin

(
3πρ

2 − 3ρ

)
, (36)

where ρ = N
L

and vN , vJ , and vS are, respectively, the particle,
current, and sound velocities. Note that N/L = 3ρ/2 since
L = 2Nc. These are results similar to those obtained for
the strong-coupling t-V ring38,39 in the thermodynamic limit.
The Luttinger liquid parameter

1

Kρ

= e−2ψ = vN/vS = 4

(2 − 3ρ)2
(37)

determines the anomalous correlation exponents and is filling
dependent, reflecting the reduction of the effective size of the
chain with filling.

For filling larger than 2/9, the ground state has the localized
pairs of fermions in a compact cluster so that only one region

exists for itinerant fermions, with 2Nc − 2NBC − 1 sites and
the respective reduced lattice will have L̃ = 2Nc − N sites.
One again is tempted to describe the low-energy behavior
of this system of itinerant fermions in this open boundary
lattice using as above an LL description. With open boundaries,
one loses the translation invariance but it has been shown by
several authors that an open boundary bosonization can still
be carried out.42–46 Many of these studies of LLs with open
boundaries were motivated by the fact that the introduction
of a single local impurity in a Luttinger liquid breaks the
1D system in two parts, at least in what concerns the low-
energy properties of the system.47,48 There is a clear analogy
between the role of these local impurities and the localized
fermions in the AB2 chain. For very large L, one expects
the solution of the system to become less dependent on the
boundary conditions and therefore the LL velocities are the
same as those of an equivalent system with periodic boundary
conditions at the same filling and with the same lattice size
(since the LL exponents are dependent on filling). But we have
seen that the filling in this open boundary region is constant
and equal to 2/9, and since the LL velocities depend only on
filling, one obtains

vN = 243t

8
√

2
, vJ = 3

√
2t, vS = 27t

2
√

2
, e−2ψ = 9

4
.

(38)

Note that this ground state is Nc degenerate due to the
translation invariance of the phase separation boundaries.

The missing point in the previous analysis is that the LL
Hamiltonian does not describe the excitations of ground state
that involve the creation of an additional localized antibonding
fermion or an additional localized BC pair of fermions.
However, this is only important if these excitations are low-
energy states. In a qualitative picture, the strong-coupling AB2

chain can be described as if there were a flat band at zero energy
with Nc two-level sites. This is similar to the noninteracting
case, but now the number of localized fermions in such flat
band is twice as many. For ρ 
 2/9, the creation of a localized
antibonding fermion or a localized BC pair of fermions implies
an excitation energy of the order of t and for energies and
temperatures much less than this value, the LL description is
valid. As the filling approaches 2/9, these excitations become
low lying (since the Fermi level goes to zero) and must clearly
be taken into account in the low-temperature description of
the system. In this situation, even at very low temperature,
the low-energy AB2 set of eigenvalues becomes a complex
mix of the sets of eigenvalues of LLs with different sizes,
fillings, boundary conditions, and LL velocities. Despite these
remarks, one should note that the strong-coupling LL velocities
do indeed characterize the correlations that do not involve the
creation of additional antibonding states or additional localized
BC pairs of fermions. For example, a two-point ground-state
correlation involving only A sites such as the Green’s function
restricted to A sites.

For ρ > 2/9, the compressibility

1

κ
= 1

L

∂2E0(ρ)

∂ρ2
(39)
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is infinite due to the linear behavior of the ground-state energy.
This is the expected behavior of a phase-separated ground state
and is known to occur also in the t-J model as well as in the
XXZ model.32 In these models, the compressibility diverges
as (�c − �)−1 as one approaches the phase-separation critical
value (which is �c = 1 in the case of the attractive t-V chain)
by increasing the interaction constant.32 The compressibility
can also be calculated from the LL relation

κ = 2Kρ

πvs

. (40)

In the XXZ model (or in the equivalent attractive t-V model),
the compressibility diverges since the sound velocity vanishes
and the Luttinger parameter Kρ diverges as � → �c. From
the last two relations, one easily concludes that as the filling in
the AB2 approaches 2/9, the compressibility does not diverge
since the curvature of the plot of E(ρ) in Fig. 14(b) does not
vanish just below ρ = 2/9 or equivalently, neither the sound
velocity vanishes nor the Luttinger parameter Kρ diverges as
ρ → 2/9.

For ρ < 2/9, the current velocity gives the charge stiffness
at zero temperature49,50

Dc = 1

2

∂2(ET /L)

∂(φ/L)2

∣∣∣∣
φc=0

. (41)

For ρ � 2/9, the charge stiffness is zero reflecting the open
boundaries condition for the itinerant fermions and consequent
zero dependence of the energy levels on magnetic flux. This
discontinuity of the Drude weight at the phase boundary is
known to occur in other 1D models with phase separation.32 In
this case, the current velocity should correspond to a very small
frequency peak in the optical conductivity since it is known
that the open-boundary condition shifts the spectral weight
associated to the Drude peak to a finite frequency peak.51

VII. IMPLICATIONS FOR THE EXTENDED
HUBBARD AB2 MODEL

In this section, we discuss the relevance of the results
obtained in this paper for the t-V AB2 model for the spinful
extended Hubbard model in the AB2 geometry and in the
strong-coupling limit U 	 t and U 	 V .

First, let us recall the known facts about the strong-coupling
Hubbard model in a ring52–56 and in a 1D chain with open-
boundary conditions.57 The extended Hubbard Hamiltonian
for a ring with L sites is given by

H = −t
∑

i

(c†iσ ci+1σ + c
†
i+1σ ciσ )

+U
∑

i

ni↑ni↓ + V
∑

i

nini+1, (42)

where the creation (annihilation) of an electron at site i with
spin σ is denoted by c

†
iσ (ciσ ) with niσ being the number

operator niσ = c
†
iσ ciσ and ni = ni↑ + ni↓. When t = 0, all

states with the same number Nd of doubly occupied sites
and the same number

∑
σσ ′ Nσσ ′ of nearest-neighbor occupied

sites are degenerate, where Nσσ ′ is the total number of nearest-
neighbor pairs with spin configuration σσ ′. The eigenvalues
of the extended Hubbard model in the atomic limit are given
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FIG. 14. (Color online) (a) Ground-state energy as a function of
filling of the AB2 chain in the strong-coupling limit V = ∞ and with
Nc = 6. The curves are the analytical results given by Eqs. (28), (29),
and (31) and the dots are the energy levels obtained by numerical
diagonalization of the V = ∞ AB2 chain. (b) Ground-state energy in
the thermodynamic limit as a function of filling in the strong-coupling
limit V = ∞. The transition between a metallic and an insulating
ground state occurs exactly at ρ = 2/9 and the minimum energy is
obtained when ρ ≈ 0.2.

by E(Nd,{Nσσ ′ }) = NdU +∑σσ ′ Nσσ ′V . Here, we will only
address the low-energy subspace of the strong coupling limit
where Nd = 0 to make this discussion simpler.

If we consider the Hubbard ring with t 
 U , but V = 0,
one has the so-called Harris-Lange model58 and the model
eigenfunctions can be written as a tensorial product of
the eigenfunctions of a tight-binding model of independent
spinless fermions in the ring (where the spinless fermions
are the electrons deprived of spin) and the eigenfunctions
of an Heisenberg model (with exchange constant J = t2/U )
for the spins of the electrons in a reduced chain.52–56 The
spinless fermions ring is threaded by a fictitious magnetic flux
φ = qs generated by the spin configurations in the reduced
Heisenberg chain (where qs is the total spin momentum) and
the eigenvalues to order t are given by

E
(
k1, . . . ,kNh+Nd

) = 2t

Nh∑
i=1

cos
(
ki − qs

L

)
, (43)
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where ki = (2π/L)ni , ni = 0, . . . ,L − 1 are the momenta of
the holes in the spinless ring.

The nearest-neighbor interaction is obviously independent
of spin of the electrons that occupy nearest-neighbor sites
and it is easily introduced in the previous picture so that for
U 	 t and U 	 V , the Nd = 0 spectrum of the Hubbard
model to the order of t is that of interacting spinless fermions
in a ring threaded by a fictitious magnetic flux φ = qs (since
the nearest-neighbor repulsion between electrons leads to an
nearest-neighbor repulsion between spinless fermions), that is,
the extended Hubbard model in a ring in the limit U → ∞ has
the energy dispersion of the spinless t-V chain. The only effect
of spin in this limit is the generation of a fictitious flux and the
increase of degeneracy.

If now we consider the strong-coupling Hubbard chain with
open-boundary conditions, the solution is even simpler. As
stated in Ref. 57, for ρ < 1, the physics of the model is the
same as that of a spinless tight-binding model. In fact, the
electrons hop along the chain but the spin configuration of
the electrons remains always the same and becomes irrelevant
for the determination of the eigenvalues of the model. The
different spin configurations only contribute to the degeneracy
of the energy levels. The same reasoning as above can be
followed and one concludes that the extended Hubbard chain
with open-boundary conditions and in the limit U 	 t and
U 	 V has the same energy spectrum as the t-V chain with
open-boundary conditions.

Let us now consider the extended Hubbard model in the
AB2 geometry,

H = H0 + V
∑

j

(
nA

j + nA
j+1

) (
nB

j + nC
j

)

+U
∑

i

(
nA

i↑nA
i↓ + nB

i↑nB
i↓ + nC

i↑nC
i↓
)
, (44)

where

H0 = −t
∑

σ

Nc∑
j=1

[eiφo/2Nc (A†
jσBjσ + B

†
jσAj+1σ )

+ e−iφi/2Nc (C†
jσAjσ + A

†
j+1σ Cjσ )] + H.c. (45)

We consider the limit U → ∞ where no doubly occupied sites
are possible.

In the AB2 geometry, we can not state as we did for the
Hubbard chain that for V = 0 the model can be mapped
onto a system of spinless fermions in a tight-binding AB2

chain threaded by fictitious magnetic flux generated by the
spin-configuration momentum. The reason is that in the case of
the Hubbard chain, only hoppings at the boundaries generate a
different spin configuration and all the different configurations
generated can be obtained from one of them applying a circular
permutation operator.52–56 However, in the AB2 geometry,
besides the circular permutation of the spin configuration due
the hoppings at the boundaries, additional spin mixing can also
be generated by electrons hopping along one plaquette (which
circularly permute a subset of two or three spins). However,
this additional exchange process requires the existence of an
occupied nearest-neighbor pair of sites in that plaquette as an
intermediate step. Therefore, as V is increased, this exchange
process is inhibited.

Let us, therefore, address the extended Hubbard AB2 model
in the limit t 
 V 
 U . In this case, the additional plaquette
exchange does not occur. We show below that the low-
energy spectrum of this model, that is, the set of eigenvalues
corresponding to eigenstates with no doubly occupied sites
and no occupied nearest-neighbor pair of sites, will be the
same as that of the t-V AB2 model in the limit t 
 V , but with
enlarged degeneracy just like for the extended Hubbard ring in
the strong-coupling limit. The picture behind this result will
be a mix of the pictures presented for the Hubbard ring and for
the Hubbard chain with open-boundary conditions.

First, we show that the itinerant and localized states of the
extended Hubbard AB2 model remain the same as those of the
strong coupling t-V AB2 model in what concerns the charge
distribution, but now one has a considerable larger set of states
due the spin degrees of freedom. We adopt the same basis as
that of the previous section, but now spin must be considered,
that is, the bonding and antibonding states have a spin degree of
freedom. In the previous section, we have shown that two type
of localized fermions could occur: (i) one-particle localized
states corresponding to a single particle in one plaquette in
a standing-wave state, which obviously remains localized
if the particle has spin, and (ii) two-particle BC localized
states induced by the large nearest-neighbor repulsion. The
spinless localized pair maps onto four localized BC pairs with
different spin configurations, which again remain localized
due to the large nearest-neighbor repulsion. Concerning the
itinerant particles, the Hamiltonian does not alter the spin of
the bonding states as the particles hop along the AB2 chain.

Therefore, we can construct the eigenstates of the extended
Hubbard AB2 model in the limit case t 
 V 
 U in an
equivalent way to that followed in the previous section. If
no localized particles are present, the extended Hubbard AB2

model in the limit case t 
 V 
 U can be mapped onto the
extended Hubbard ring in the same limit and the energy levels
are given by

E({k̃},P ) = −2
√

2t

N∑
i=1

cos

(
k̃i − P

L̃
− qs + φ

L

)
, (46)

where k̃i and L̃ have the same definition as for the t-V ring in
the strong-coupling limit, qs has the same definition as for the
Hubbard chain, and φ is a external magnetic flux (but keeping
a zero flux in each plaquette). In the thermodynamic limit, the
effect of the fictitious and external fluxes becomes irrelevant.

If localized particles are present, they create open-boundary
regions where itinerant electrons (in bonding states when at
sites B and C) will move according to the extended Hubbard
AB2 model in the strong-coupling limit. Each of these open-
boundary systems has a fixed number of particles and can
be mapped as above onto the extended Hubbard chain in the
same limit, but now with open-boundary conditions. In this
case, as stated before, the spin configuration is irrelevant and
contributes only to the degeneracy of the energy levels, which
are exactly those described in the previous section for the
spinless t-V AB2 model with open-boundary conditions. Since
the energy levels in the thermodynamic limit are the same as
those of the t-V AB2 model in the strong coupling limit, phase
separation will also occur in the extended Hubbard AB2 ring
and precisely at the same filling. This exact correspondence
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required the strong-coupling limit and was obtained only for
the low-energy subspace. Higher energy subspaces involve
the presence of occupied nearest-neighbor pairs of sites or of
double occupancies, but a similar approach can in principle be
followed again with a mapping to higher energy subspaces of
the extended Hubbard chain.

For intermediate values of the nearest-neighbor interaction
V , the mapping is no longer exact, but qualitatively the features
described for the t-V AB2 chain should be expected in the
extended Hubbard AB2 chain (with U 	 t and U 	 V ). For
example, we expect a similar evolution for the ground-state
energy with decreasing V but with different evolution of filling.
Note that the ground-state energy for noninteracting electrons
(with spin) as function of filling has the same form of Fig. 5, but
the spin degeneracy of the single-particle eigenvalues implies
that the filling values as well as the ground-state energy must
be multiplied by two. This is equivalent to distributing spinless
particles among two independent AB2 chains.

VIII. CONCLUSION

As mentioned in the introduction, the 1D anisotropic
Heisenberg model (the XXZ model) can be mapped using
the Jordan-Wigner transformation onto the 1D spinless t-V
model (with an additional “chemical-potential” term, which
can also be interpreted as an on-site energy). The ground-
state filling of the t-V model is related to the ground-state
magnetization of the XXZ model, which can be controlled
by the application of an external magnetic field to the XXZ
model. This external field does not change the eigenstates of
the XXZ model, but creates an additional chemical-potential
term in the t-V model, which allows to control the filling
of the ground state. A ferromagnetic Heisenberg interaction
means that the spinless fermions attract each other while
an antiferromagnetic exchange implies a repulsive interaction
between nearest-neighbor spinless fermions. A Jordan-Wigner
transformation is also possible in quasi-1D or 2D lattices
(see Ref. 59 for a review), and in particular, the XXZ AB2

model in the strongly anisotropic limit can be mapped onto the
strong-coupling t-V AB2 model with additional phase factors
that are nonlocal (and therefore usually treated in a mean-field
approach).59 In this paper, we have not gone into the details
of the transformation of the XXZ AB2 model into the t-V
AB2 model (which would require the determination of the
phase factors and the introduction of the on-site energy terms),
but some conclusions can be drawn on general arguments.
First, one-magnon localized states in the strongly anisotropic
XXZ ABn model corresponding to standing waves in a t-V
ABn array will exist since no additional phase factors appear
when only one spinless fermion is present (only one spin flip).
Also, states with several spin flips corresponding to localized
magnons in different plaquettes are also eigenstates since
the XX term of the XXZ model gives zero contribution in
the regions between the localized magnons (since all spins
are aligned). So the one-particle localized states in the t-V
AB2 model correspond to localized and independent magnons
created in a ferromagnetic background, which have been
observed in frustrated magnetic systems under high magnetic
fields but below the saturation field.19 Second, independently
of the phase factors, the two-particle localized BC particles

will remain the same because the nearest-neighbor interaction
obtained in the Jordan-Wigner transformation retains the
same form as in the 1D case, and since these two particles
are completely localized, the phase factors are irrelevant.
Furthermore, these localized particles create open-boundary
regions for the itinerant fermions independently of the phase
factors. So, we expect a similar behavior of the XXZ AB2

model in the strongly anisotropic limit to the one described
in this paper for the strong coupling t-V AB2 model. Such
two-particle localized states in the strong coupling t-V AB2

model correspond to localized pairs of magnons in the the
XXZ AB2 model in the strongly anisotropic limit.

The results presented in Sec. IV for single-particle states
in ABn lattices may also be relevant to Josephson-junction
arrays (with the same geometry) both in the quantum limit
and in the high capacitance (classical) limit. It is known that
a Josephson junction AB2 chain with half-a-flux quantum
per plaquette exhibits a highly degenerate classical ground
state reflecting the completely flat-energy bands of the AB2

tight-binding model for this value of flux.60 The tunneling
of Cooper pairs between the different superconducting is-
lands in an AB2 geometry can also be described using a
bosonic tight-binding AB2 model. Furthermore, in the high-
capacitance limit, the charging energy due to the electrostatic
interaction within each (large) superconducting island can
be neglected and the Hamiltonian becomes a classical XY
model, H = −J

∑
〈ij〉 cos(φi − φj − Aij ) , where φi is the

superconducting phase of the island i, J is the Josephson
coupling, and Aij is the phase shift due to the presence of
an external magnetic field obtained from the integral of the
vector potential along the path from i to j . This Hamiltonian
can be mapped onto a one-particle tight-binding model with
the same geometry and under the same magnetic flux.61 In
most geometries, the minimum energy-phase configuration of
the Josephson-junction array will be obtained from the state
of minimum energy of the tight-binding model (if this state
is homogeneous). In the most general case, the Hamiltonian
can be interpreted as the mean energy of a phase vector
and the stable phase configuration of the Josephson-junction
array is obtained by minimizing this energy, and this mini-
mization may imply mixing tight-binding states of different
bands.

Let us now compare the exact results of the strong-
coupling AB2 chain with the mean-field results. Comparing
Figs. 11 and 14(b), one concludes that the mean-field results
overestimate the interaction energy contribution for ρ < 2/3.
Basically, within the mean-field approach the low-energy
band increases its energy with increasing V , missing the fact
that itinerant states are possible, which avoid the positive
energy contribution of the nearest-neighbor interaction as
found in the strong-coupling limit. The mean-field results are
qualitatively correct in what concerns the energy interval for
the ground-state energy for ρ < 2/3. In Fig. 11, one can see
that the ground-state energy remains negative even for large
V in the density range 0 < ρ < 2/3. The minimum of the
ground-state energy as a function of filling shifts continuously
to lower filling in contrast with the V = ∞ result where such
minimum occurs at ρ ≈ 0.2. Also the large slope for ρ > 2/3
agrees with the fact that for such fillings nearest-neighbor pairs
are present, and such states have infinite energy when V = ∞.
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To conclude, in this paper, the spinless AB2 chain with
nearest-neighbor Coulomb interactions has been studied for
any filling and taking into account magnetic flux. In the case of
independent fermions, a simple construction of the localized
states that generate the flat bands both in the presence and
absence of flux has been found and generalized for 1D or
2D arrays of quantum rings. The V/t versus filling phase
diagram of the AB2 chain was obtained using a mean-field
approach. The dependence on filling of the mean-field ground-
state energy agrees qualitatively with the exact ground-state
energy for infinite V . The ground-state energy for infinite
nearest-neighbor repulsion has a quantum critical point at
filling 2/9 where a metal-insulator transition occurs. This
transition reflects the phase separation between a high-density
phase (ρ = 2/3) and a low-density phase (ρ = 2/9) that
occurs at fillings larger than 2/9. Such phase separation
occurs because the infinite nearest-neighbor repulsion leads

to the appearance of two-particle localized states (besides the
one-particle localized states due to the topology of the AB2

chain). These localized states create open-boundary regions
for itinerant carriers, and in order for these itinerant fermions
to have only negative kinetic energy, phase separation becomes
favorable. At low filling, the low-energy properties of t-V AB2

chain can be described by the spinless Luttinger Hamiltonian,
but for filling near or larger than 2/9, the AB2 set of eigenvalues
becomes a complex mix of the sets of eigenvalues of LLs with
different fillings, boundary conditions, and LL velocities. If
the itinerant fermions have spin, but a very strong on-site
repulsion is present (that is, in the case of the extended
Hubbard model in the strong-coupling limit U 	 V 	 t), the
energy-dispersion relation to the order of the hopping integral
remains the same as that of the spinless AB2 model in the
presence of a flux and phase separation occurs at the same
filling.
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3A. M. S. Macêdo, M. C. dos Santos, M. D. Coutinho-Filho, and
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