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Charge-Kondo effect in mesoscopic superconductors coupled to normal metals
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We develop a theoretical proposal for the charge-Kondo effect in mesoscopic normal-superconductor-normal
heterostructures, where the superconducting gap exceeds the electrostatic charging energy. Charge-Kondo
correlations in these devices alter the conventional temperature dependence of Andreev reflection and electron
cotunneling. We predict typical Kondo temperatures of �10 mK, and suggest experimental architectures that
combine superconducting charge qubits with semiconducting nanowires at cryogenic temperatures.
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I. INTRODUCTION

Five decades after its discovery, the Kondo effect is regarded
as an archetype many-body phenomenon that interconnects
strongly correlated systems such as atomic nuclei, heavy-
fermion compounds, superconducting cuprates, and quantum-
dot devices.1 The Kondo effect emerges from the interaction of
localized, degenerate states with itinerant degrees of freedom.
It is characterized by a low-temperature infrared divergence
in perturbative calculations of physical observables such as
resistivity and magnetic susceptibility. Often the localized
degrees of freedom originate from electronic spins and their
degeneracy is tied to spin degeneracy. The ensuing spin-Kondo
effect (SKE) is realized when dilute magnetic impurities
are embedded in a nonmagnetic host, or when conducting
electrodes are coupled to quantum dots.2

Aside from spin, any degenerate two-level system that
is coupled to a fermionic bath is a potential host for the
Kondo effect. In particular, the charge counterpart of SKE,
known as charge-Kondo effect (CKE), arises when a Fermi sea
hybridizes with dilute impurities containing two degenerate
charge states. This variant has received sustained theoretical
attention for the last two decades, being investigated in
nonsuperconducting single-electron devices3–9 as well as in
valence-skipping elements with attractive onsite interactions
(“negative-U molecules”).10–15 In the former case, the electro-
static energy can be engineered by gate electrodes to be the
same for two states that differ by one electron, whereas in
the latter case, chemistry dictates that the charging energy
be degenerate between states that differ by two electrons.
Incidentally, CKE in single-electron devices constitutes a
paradigm of the two-channel Kondo effect, where the channels
originate from spin.

As opposed to SKE, which has been thoroughly observed
both in its single-channel and two-channel versions,16 the
experimental detection of CKE remains at a primitive stage.
Experimental challenges abound for the implementation of
CKE in nonsuperconducting devices. On one hand, CKE is
sensitive to and washed out by background charge noise,
much like SKE is sensitive to and washed out by magnetic
fields. On the other hand, both the charge-Kondo temperature
and the charging energy of the system are required to be
large compared to the single-particle energy-level spacing
in the grain, which is difficult to achieve in semiconduc-
tors. Prospects may be better for metallic systems wherein

single-particle energy levels form a near continuum. Yet,
metallic devices often involve junctions with multiple chan-
nels, and unfortunately, the charge-Kondo temperature in non-
superconducting systems scales exponentially unfavourably
with the number of channels.6 Some of these problems might
be circumvented by using atomic point contacts6 or else by re-
sorting to resonant tunneling devices.17,18 Altogether, attempts
to measure fingerprints of the CKE in non-superconducting
systems have thus far met with suggestive yet inconclusive
outcomes.19,20

Recent experimental efforts21 concerning negative-U
molecules appear to have met with more success: charge-
Kondo temperatures of ∼5 K have been reported in PbTe doped
with valence-skipping Tl. Unfortunately, real materials with
valence-skipping compounds are relatively rare, more compli-
cated, and less tunable than artificial single-electron devices.

In this work, we theoretically demonstrate that CKE can
also occur in artificially fabricated mesoscopic superconduct-
ing islands that are connected to nonsuperconducting leads
(NSN devices). We concentrate on superconducting grains
whose many-particle energy gap (�) exceeds the electrostatic
charging energy (Ec). These grains behave somewhat like
giant negative-U molecules, and they are to valence-skipping
elements what quantum dots are to local magnetic moments;
more easily manufacturable and more readily controllable
systems, albeit at the price of a parametrically lower Kondo
temperature.

Our proposal is a natural and perhaps obvious extension of
Refs. 3, 4, and 13, as it combines attractive (phonon mediated)
and repulsive (electrostatic) Coulomb interactions with a
dense single-particle energy spectrum. Surprisingly, there have
been no thorough studies of CKE in superconductors with
� > Ec. The relevant literature is limited to some peripheral
statements22,23 along with a tacit assumption that CKE in
superconducting dots is conceptually similar to CKE in
nonsuperconducting single-electron devices (NNN devices).
Contrary to this view, our results aim to draw the attention
of theorists and experimentalists alike toward the study and
search of charge-Kondo correlations in NSN systems.

The rest of this paper is organized as follows. In Sec. II,
we introduce the basic microscopic model for an NSN
heterostructure. The island is assumed to be chaotic and
smaller than the superconducting coherence length, thereby
allowing for coherence between electrons tunneling through

085121-11098-0121/2011/84(8)/085121(15) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.085121


ION GARATE PHYSICAL REVIEW B 84, 085121 (2011)

different junctions. In Sec. III, we map the superconducting
island onto an artificial spin 1/2 describing two charge states.
This mapping is well known and has already been exploited
in existing Cooper-pair boxes. In Sec. IV, we attach normal
metallic leads to the superconducting island and find that at
low enough energies and near the charge degeneracy point,
this system is described by an anisotropic Kondo model. The
degree of anisotropy and the magnitude of the Kondo couplings
can be changed by tuning the ratio �/Ec. In Sec. V, we provide
quantitative estimates for the charge-Kondo temperature in
experimentally realizable NSN devices. In addition, we discuss
how our proposal for CKE fares in comparison with previous
proposals concerning negative-U molecules and nonsupercon-
ducting devices. In Sec. VI, we calculate the fingerprints
of CKE in physical observables of NSN systems, focusing
on the temperature-dependence of the zero-bias conductance
at low temperatures. In Sec. VII, we determine the fate of
CKE when the normal-superconducting junctions are highly
transparent; the outcome depends on the strength of electron-
electron interactions in the normal metallic leads. Section VIII
contains a short summary and conclusions, and the Appendix
is devoted to technical calculations that rigorously justify the
considerations of Sec. IV.

II. MICROSCOPIC MODEL

Let us suppose we have a mesoscopic superconducting
grain that is weakly coupled to normal metallic leads. Its
Hamiltonian can be expressed as

H = Hl + Hd + HT ;

Hl =
∑
αkσ

ξkc
†
αkσ cαkσ ,

(1)
Hd =

∑
nσ

εnd
†
nσ dnσ + Ec(N̂ − Ng)2 + ηT̂ †T̂ ,

HT =
∑
αkσn

tαknc
†
αkσ dnσ + H.c.

Hl is the Hamiltonian of the leads. c
†
αkσ creates an electron

with momentum k and spin σ in a lead labeled by α [α =
L(eft),R(ight)]. ξk is the energy dispersion of the itinerant
fermions measured from the Fermi energy. For now, we assume
that there is only one conduction channel on each lead; as such,
k is the momentum perpendicular to the interface between
the normal metal and the superconductor (NS interface).
Generalizations to multichannel leads, which are necessary
when the linear dimensions of the NS interface exceed the
Fermi wavelength of the leads, will be discussed in Sec. V.
Likewise, we neglect electron-electron interactions in the
leads, although this assumption will be relaxed in Sec. VII.

Hd is the Hamiltonian of the superconducting quantum dot.
d
†
nσ creates an electron in the nth single-particle level of the

island. The corresponding energy (measured with respect to the
Fermi energy) can be written as εn = nδ, where δ is the average
single-particle level spacing in the dot. Hence, in this model
every energy-level is nondegenerate, save for the twofold
spin degeneracy. N̂ = ∑

nσ d
†
nσ dnσ and T̂ = ∑

n dn↓dn↑ are
the number and pairing operators in the island, respectively. η

is the effective (phonon-mediated) coupling between electrons
in the island. Hereafter we adopt the BCS approximation24 by
introducing an s-wave superconducting gap � ≡ η〈T̂ 〉. The
BCS approximation is accurate25 provided that � > δ, which
constitutes the regime of interest in this paper. For reasons
exposed below, we take � > Ec, where Ec = e2/2C	 is the
charging energy of the island. C	 = CL + CR + Cg is the
total capacitance of the device, CL(R) is the capacitance of
the left (right) NS junction, and Cg is the gate capacitance. In
mesoscopic NSN heterostructures, most of the capacitance
emanates from the junctions and scales roughly as C	 ∼
εA/d, where ε is the dielectric constant of a thin insulating
layer that separates the normal metal from the superconductor,
A is the surface area of each NS junction, and d � 1 nm is the
thickness of the insulating layer. Ng is the charge induced in
the island by the gate electrode. We neglect intradot exchange
interactions, which is adequate given the spin-singlet order
parameter of the superconductor.

HT models the single-particle tunneling between the island
and the leads, tαkn being the tunneling amplitude. Throughout
this paper (with the exception of Sec. VII) we treat the
tunneling term as a weak perturbation. Hence, we require that
δ 	 
, where 
 is the broadening of the single-particle energy
levels of the island due to tunneling between the island and the
leads.

Our model relies on precepts from random matrix theory
(RMT) and is valid only for dots without spatial symme-
tries and for states in the vicinity of the Fermi energy.2,26

According to RMT, single-particle states with |εn| � ET are
nondegenerate except for their spin degeneracy, where ET is
the Thouless energy. ET = h̄D/L2 for a dirty sample (where
D is the diffusion constant and L is the linear dimension
of the superconductor) and ET = h̄vF /L for a clean sample
(where vF is the Fermi velocity). Anticipating the fact that
charge-Kondo correlations originate mainly from states with
|εn| � �, we request ET � � so that Eq. (1) can capture CKE
quantitatively. This condition is tantamount to L � ζ , where ζ

is the superconducting coherence length. In sum, the hierarchy
of relevant energy scales reads

ET � � > Ec > δ > 
. (2)

L � ζ implies electron coherence between the two junctions,
which in turn gives rise to elastic electron cotunneling and
crossed Andreev reflection (see Sec. VI). Unmentioned as it
is in Eq. (2), we note that the Debye frequency ωD (such
that � 
= 0 if |εn| � ωD) is much larger than ET for all cases
discussed in this paper.

III. ISOLATED SUPERCONDUCTING ISLAND:
A PSEUDOSPIN 1/2 QUANTUM IMPURITY

In this section, we ignore the leads and simply consider an
electrostatically gated superconducting island that contains a
definite number of particles N because [N̂2,N̂ ] = [T̂ †T̂ ,N̂ ] =
0. Its ground state depends on N as27

E0(N ) = Ec(N − N0 − Ng)2 + �

2
[1 − (−1)N ], (3)

where N0 is the number of electrons in the island when the
gate voltage is zero. We assume without loss of generality
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that N0 is even so that N − N0 and N have the same parity;
herein we absorb N0 in the definition of N . The last term of
Eq. (3) imposes an additional energy cost whenever N is odd
because of a single unpaired quasiparticle that must reside
outside the superconducting condensate. The lowest energy
this quasiparticle can have equals �. If � > Ec and if the
gate voltage is tuned to Ng = 2M + 1 (for any integer M), the
lowest energy eigenvalues are (ordered from lower to higher
energy)

E(2M) = E(2M + 2) = Ec,

E(2M + 1) = �,

E(2M − 1) = E(2M + 3) = 4Ec + �,

E(2M + 4) = E(2M − 2) = 9Ec,

. . . , (4)

where the ordering of the states changes if Ec < �/5.
The fact that E(2M + 1) < [E(2M − 1),E(2M + 3)] will be
important for establishing CKE in Sec. IV.

Since the ground state of the island is doubly degenerate,
it behaves as a spin-1/2 system at low enough temperatures
(T < T ∗). For later purposes, we introduce a pseudospin label:

|2M〉 ≡ |⇓0〉 ; |2M + 2〉 ≡ |⇑0〉, (5)

where the subscript 0 simply labels the location of the island.
From now on, pseudospin and real-spin degrees of freedom
will be denoted by double and single arrows, respectively. This
qubit is well separated from a dense forest of many-body states,
which have excitation energies greater than � − Ec. Due to
entropic issues24 that arise from having a nearly-degenerate
set of excited states,

T ∗ � � − Ec

ln
(

�−Ec

δ

) (6)

is smaller than the excitation energy gap � − Ec.
The mapping to a two-level system holds even when M

is macroscopically large, and has been amply corroborated
by experiments.28–31 The degeneracy between |2M〉 and
|2M + 2〉 may be lifted by tuning the gate voltage away
from the degeneracy point, which is akin to applying a
pseudospin magnetic field along ẑ, or by coupling the island to
a superconducting reservoir, which acts as a pseudomagnetic
field in the xy plane. The charge-Kondo effect discussed below
emerges when these pseudospin magnetic fields are very weak.

For completeness, we note that there is a twofold charge-
degeneracy point even when � < Ec. In this case, the degen-
eracy occurs between states that differ by a single electron,32

and therefore this problem is adiabatically connected to that
of Ref. 3.

IV. COUPLING TO THE LEADS: KONDO MODEL

In this section, we consider the influence of conducting
leads on the superconducting island with charge degeneracy at
temperature T < T ∗. We assume all nonthermal perturbations
to be small compared to � − Ec. Then the NSN heterostruc-
ture behaves as a localized pseudospin 1/2 interacting with

a bath of itinerant fermions, and Eq. (1) can be truncated on
symmetry grounds into an effective Hamiltonian:

Heff = Hl +
∑
αα′

λαα′
0 S0s̃0

αα′

+
∑
αα′

[
λαα′

|| Szs̃z
αα′ + λαα′

⊥ (S+s̃−
αα′ + H.c.)

]
, (7)

where 2S0 = |⇑0〉〈⇑0 | + |⇓0〉〈⇓0 |, 2Sz = |⇑0〉〈⇑0 | − |⇓0〉
〈⇓0 |, and S+ = |⇑0〉〈⇓0 | are the pseudospin operators char-
acterizing the state of the superconducting island, and

s̃i
αα′ =

∑
kk′σσ ′

c̃
†
αkσ τ i

σσ ′ c̃α′k′σ ′ (8)

denotes the pseudospin density in the leads (i ∈ {0,x,y,z}).
In addition, τ is a vector of Pauli matrices (τ 0 is the identity
matrix) and c̃αkσ is a pseudospin operator defined as

c̃αk↑ = cαk↑, c̃αk↓ = c
†
α,−k↓. (9)

Physically, s̃0 is the spin density along ẑ, s̃z is the charge
density, and s̃± = (s̃x ± is̃y)/2 is the pairing operator. In
Eq. (7), the term involving S0 (Sz) describes normal spin-
dependent (spin-independent) scattering and the term ∝ S±
describes Andreev processes whereby the number of Cooper
pairs in the island changes by one; the xy symmetry is
simply a reflection of gauge invariance. Ignoring real-spin flips
(which are unimportant at low energies), Eq. (7) is the most
general form of exchange interaction between the localized
and itinerant pseudospins. We have omitted perturbations that
break charge degeneracy; these can be easily incorporated in
Eq. (7) as pseudospin Zeeman fields.

λαα′
||,⊥ are the Kondo couplings. Their microscopic expres-

sions can be extracted perturbatively from Eq. (1) via33

〈f |Heff|i〉 �
∑

n

〈f |HT |n〉〈n|HT |i〉
Ei − En

, (10)

where |i〉 (|f 〉) is the initial (final) state with energy Ei (Ef )
and |n〉 is an intermediate state with energy En (see Table I).
It follows that

λαα′
0 =

∑
n

〈⇑αk; ⇑0 |HT |n〉〈n|HT |⇑α′k′ ; ⇑0〉
E⇑αk ;⇑0 − En

+
∑

n

〈⇑αk; ⇓0 |HT |n〉〈n|HT |⇑α′k′ ; ⇓0〉
E⇑αk ;⇓0 − En

,

λαα′
|| =

∑
n

〈⇑αk; ⇑0 |HT |n〉〈n|HT |⇑α′k′ ; ⇑0〉
E⇑αk ;⇑0 − En

(11)

−
∑

n

〈⇑αk; ⇓0 |HT |n〉〈n|HT |⇑α′k′ ; ⇓0〉
E⇑αk ;⇓0 − En

,

λαα′
⊥ =

∑
n

〈⇑αk; ⇓0 |HT |n〉〈n|HT |⇓α′k′ ; ⇑0〉
E⇑αk ;⇓0 − En

,

where |⇑αk〉 ≡ c
†
αk↑|ø〉 and |⇓αk〉 ≡ cαk↓|ø〉 represent spin-up

electrons and spin-down holes (respectively) at the Fermi sur-
face (|ø〉 stands for the filled Fermi sea in the leads). Table I col-
lects all the intermediate states |n〉 along with their energies En.

We proceed with the evaluation of the tunneling matrix
elements using the BCS formalism. For instance, the matrix
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TABLE I. Virtual elastic processes to second order in single-particle tunneling (the extension to fourth-order processes is deferred to
the Appendix). The initial and final states are in the truncated, low-energy Hilbert space, whereas the intermediate states trespass into the
high-energy sector. We ignore inelastic processes because they are suppressed at T � T ∗. At the charge degeneracy point Ei � Ef � Ec (we
set ξk � ξk′ � 0 because the most important tunneling events involve electrons/holes at the Fermi surface).

Initial State (|i〉) Intermediate States (|n〉) Final State (|f 〉) Ei − En 〈f |HT |n〉〈n|HT |i〉
c
†
αk↑|ø〉|2M + 2〉 |ø〉γ †

n↑|2M + 2〉 c
†
α′k′↑|ø〉|2M + 2〉 Ec − (4Ec + √

ε2
n + �2) t∗

αkntα′k′nu
2
n

c
†
α′k′↑c

†
αk↑|ø〉γ †

n↓|2M + 2〉 Ec − √
ε2
n + �2 −t∗

αkntα′k′nv
2
n

c
†
αk↑|ø〉|2M〉 |ø〉γ †

n↑|2M〉 c
†
α′k′↑|ø〉|2M〉 Ec − √

ε2
n + �2 t∗

αkntα′k′nu
2
n

c
†
α′k′↑c

†
αk↑|ø〉γ †

n↓|2M〉 Ec − (4Ec + √
ε2
n + �2) −t∗

αkntα′k′nv
2
n

c
†
αk↑|ø〉|2M〉 |ø〉γ †

n↑|2M〉 cα′k′↓|ø〉|2M + 2〉 Ec − √
ε2
n + �2 −t∗

αknt
∗
α′k′nunvn

c
†
αk↑cα′k′↓|ø〉γ †

n↓|2M + 2〉 Ec − √
ε2
n + �2 −t∗

αknt
∗
α′k′nunvn

elements for an electron or a hole tunneling from lead α to the
nth level in the island are

〈⇑αk; ⇑0 |HT γ
†
n↑|⇑0〉 � 〈⇑αk; ⇓0 |HT γ

†
n↑|⇓0〉 � tαknun,

〈⇓αk; ⇑0 |HT γ
†
n↑|⇑0〉 � 〈⇓αk; ⇓0 |HT γ

†
n↑|⇓0〉 � −t∗αknvn,

where γ
†
nσ = und

†
nσ + σvndn,−σ is the BCS quasiparticle cre-

ation operator, u2
n = (1 + εn/

√
ε2
n + �2)/2, and v2

n = 1 − u2
n

are the usual BCS coherence factors (we assume un and vn

to be real without loss of generality because we consider only
one superconductor). Other matrix elements may be computed
similarly. Even though intermediate states like γ

†
nσ |2M + 2〉 do

not have a well-defined number of particles, they are excellent
approximations to the true eigenstates of the superconducting
island when � 	 δ.

The explicit expressions for the couplings can now be read
out from Table I:

λαα′
|| =

∑
n

(
t∗αnktα′k′n

−3Ec − √
ε2
n + �2

− t∗αnktα′k′n

Ec − √
ε2
n + �2

)
,

(12)
λαα′

⊥ = −2
∑

n

t∗αnkt
∗
α′k′n

unvn

Ec − √
ε2
n + �2

.

It is easy to verify that λ0 = 0 by invoking particle-hole
symmetry for the energy spectrum of the superconducting
island. Since λ|| is associated with normal scattering, it
involves virtual transitions that do not flip pseudospins. The
sign of λ|| will be important in the considerations below. λ⊥
is associated to Andreev scattering, hence, it involves virtual
transitions that flip the pseudospins of both the island and the
leads. The sign of λ⊥ is unimportant as it may be reversed by
a gauge transformation.

In principle, evaluating the sums in Eq. (12) requires a
detailed knowledge of the tunneling amplitudes tαnk , which
in turn depend on details of the wave functions at the
NS interfaces. In practice, simplifying assumptions may
suffice. For instance, tαnk � tαn is a good approximation for
NS junctions that are atomically thin (recall that k is the
momentum perpendicular to the NS interface). This renders
λαα′

||,⊥ independent of k and k′. Similarly, we conceive t∗αntα′n �
t∗α tα′an and t∗αnt

∗
α′n � t∗α t∗α′bn with the understanding that the

n dependence can be factorized for states contained within a
very narrow strip around the Fermi energy. This approximation
is motivated by the fact that the main contributions to λ|| and

λ⊥ in Eq. (12) originate from states with |εn| � Ec < ET and
|εn| � � < ET , respectively.

Under the above assumptions, the tunneling amplitudes
may be taken to be real and the Kondo couplings read

λαα′
||,⊥ = λLL

||,⊥

(
1 tR/tL

tR/tL (tR/tL)2

)
. (13)

Equation (13) may be diagonalized with a unitary
transformation34 that converts Eq. (7) into a single-channel
Kondo model:

HSCK = Hl + [
λ||Szs̃z

1 + λ⊥(S+s̃−
1 + H.c.)

]
, (14)

where s̃i
1 = ∑

k,k′ c̃
†
1kσ τ i

σσ ′ c̃1k′σ ′ and

c̃1kσ = (tLc̃Lkσ + tRc̃Rkσ )/
√

t2
L + t2

R,
(15)

λ||,⊥ = λLL
||,⊥ + λRR

||,⊥.

Thus only one out of the two conduction channels is coupled
to the superconductor. Should t∗αntα′n � t∗α tα′an and t∗αnt

∗
α′n �

t∗α t∗α′bn be bad approximations, we would be left with two
nonzero Kondo couplings (a two-channel Kondo model).

Starting from Eq. (12), assuming (for simplicity) an � 1 �
bn, and using εn = nδ, we derive explicit expressions for the
Kondo couplings at second order in tunneling amplitude:

νλ⊥ = 


δ
f⊥(x) ; νλ|| = 


δ
f||(x), (16)

where x ≡ Ec/�,

f⊥(x) � 1

π

4√
1 − x2

tan−1

√
1 + x

1 − x
,

(17)

f||(x) � xf⊥ + 1

π

12x√
1 − 9x2

tan−1

√
1 − 3x

1 + 3x
,

ν is the density of states of the leads at the Fermi energy and

 = πν(t2

L + t2
R) denotes the broadening of the energy levels

in the dot due to its coupling to the leads. 
 is related to a
dimensionless parameter representing the transparency of the
tunnel junctions:

gT = gL + gR = (
t2
L + t2

R

)
ν/δ = 
/(πδ) � 1, (18)

where gL and gR are the conductances of the left and right
tunnel junctions in units of 2πe2/h̄, respectively. In the
derivation of Eq. (17), we approximated

∑
n by

∫ ∞
−∞ dn;
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FIG. 1. (Color online) Parameters f⊥, f||, and g⊥ as a function of
Ec/�. These parameters [defined in Eqs. (17) and (A3)] determine
the values of the Kondo couplings at an energy scale T ∗ [see Eqs. (6)
and (20)]. When Ec is sufficiently close to � (precisely how close
is contingent on the value of 
/δ), the bare couplings become large,
which invalidates the perturbative renormalization-group approach
employed in this work. For typical mesoscopic superconducting
islands, Ec/� � O(1) and therefore λ||(T ∗)/λ⊥(T ∗) � O(1).

this is justified in mesoscopic superconducting islands where
δ � 10−3�. In Fig. 1, we plot f⊥ and f||. An essentially
identical expression for λ⊥ was found by Hekking et al.
in Ref. 35; however, these authors did not contemplate the
possibility of a Kondo effect and did not evaluate λ||, whose
positive sign can be important in order to produce CKE.

As demonstrated in the Appendix, Kondo correlations
become apparent only when we carry out perturbation theory to
fourth order in tunneling. Indeed, at fourth order, both coupling
constants λ⊥ and λ|| develop infrared singularities in a manner
that is consistent with the renormalization-group equations of
the anisotropic Kondo model36,37:

dλ||
dl

= 2νλ2
⊥ − 2ν2λ||λ2

⊥,

(19)
dλ⊥
dl

= 2νλ⊥λ|| − ν2λ⊥
(
λ2

|| + λ2
⊥
)
,

where l ≡ ln(T ∗/T ) and by definition λ||,⊥(l = 0) ≡ λ||,⊥(T ∗)
are the Kondo couplings at an energy scale T ∗ below which
the Kondo model becomes applicable. The present analysis is
quantitatively reliable provided that λ||,⊥(T ∗) � 1. We show
in the Appendix that

νλ⊥(T ∗) � 


δ
f⊥

(
1 + 


δ

g⊥
f⊥

)
+ 2


2

δ2
f||f⊥ ln

�

T ∗ ,

(20)

νλ||(T ∗) � 


δ
f||

(
1 + 


δ

g||
f||

)
+ 2


2

δ2
f 2

⊥ ln
�

T ∗ ,

where g⊥ and g|| are dimensionless functions of �/Ec [the
former is plotted in Fig. 1]. Equation (20) is valid provided that
the O(
2) terms are smaller than the O(
) terms; for 
/δ → 0,
Eq. (20) reduces to Eq. (16). The logarithmic terms in Eq. (20)
suggest that the Kondo couplings begin to renormalize from
energy scales of order �. λ||(T ∗) > 0 ensures that both λ|| and

λ⊥ will flow to strong coupling through Eq. (19) [if λ||(T ∗) < 0
and |λ||(T ∗)| > |λ⊥(T ∗)|, there would be no CKE]. The energy
scale at which max{νλ⊥(lc),νλ||(lc)} � 1 defines the Kondo
temperature

TK = T ∗ exp(−lc), (21)

where T ∗ should be replaced by 8Ec when Ec < T ∗/8 [recall
Eq. (4)].

V. DISCUSSION

In this section, we derive quantitative estimates for the
charge-Kondo temperature in NSN heterostructures, examine
the influence of multichannel junctions, propose various
experimental NSN platforms wherein CKE might be observed,
and compare our proposal of CKE in NSN heterostructures
with previous proposals of CKE in other systems.

A. Estimates for the charge-Kondo temperature

The Kondo temperature of our system can be quantified
combining Eqs. (16), (17), and (19)–(21). For pedagogical
purposes, we begin by discussing a few particular cases that
can be solved analytically.

The first special case corresponds to Ec � 0.5�, for which
λ⊥(T ∗) � λ||(T ∗) and

TK (� → 2Ec) � T ∗ exp(−1/2νλ⊥)

� � exp(g⊥) exp

(
−δ/


2f⊥

)
, (22)

where, for simplicity, we have neglected third-order terms in
the RG equations. In the second line of Eq. (22), we made a
Taylor expansion under the assumption that (
/δ)g⊥/f⊥ � 1
and 2νλ⊥ ln(�/T ∗) � 1. For mesoscopic superconductors,
ln(�/T ∗) � 2 and hence the latter condition requires that

/δ < 0.1. A typical Kondo temperature in this case (using
f⊥ � 1.4) reads TK ∼ 10−3� ∼ 1–10 mK for conventional
superconductors. It is interesting that even though the Kondo
Hamiltonian is valid at energy scales below T ∗, the prefactor
of the Kondo temperature in Eq. (22) is effectively shifted
from T ∗ to �. An analog situation occurs between Ec and δ in
SKE.38

Another simple limit is that of Ec � �, in which case
λ||(T ∗) � λ⊥(T ∗) and accordingly39

TK (� 	 Ec) � T ∗ exp(−π/4νλ⊥), (23)

where once again we have neglected third-order terms in
Eq. (19). The exponent of Eq. (23) is a factor π/2 more
negative than the exponent of Eq. (22), and f⊥(Ec � �) �
1 < f⊥(Ec � 0.5�). Consequently, for a given value of 
/δ,
TK (� 	 Ec) � TK (� � 2Ec).

A third special case consists of λ||(T ∗) 	 λ⊥(T ∗). How-
ever, in our model this regime does not arise for any value of
Ec/� and thus we disregard it.

We now solve more general cases numerically. Figure 2
displays the charge-Kondo temperature for a generic range of
parameters. For fixed 
/δ, TK increases rapidly with Ec/�

(at least up until Ec/� � 0.6). Our findings establish TK �
10 mK for superconducting Al or Ta, and TK � 20 mK for Nb
and Pb.
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FIG. 2. Kondo temperature [Eq. (21)] (in units of �) as a function
of Ec/�, for 
/δ � 0.08. We choose �/δ � 1000, although the
results are only weakly sensitive to �/δ. For this set of parameters,
the Kondo temperature can reach ∼10 mK by selecting Ec/�

in the appropriate range. The decrease in T ∗ as Ec/� increases
is overcompensated by the gain in the bare Kondo coupling. In
our estimates, we have ignored both g⊥ and g||. The perturbative
analysis breaks down when νλ||,⊥(T ∗) ∼ O(1). For 
/δ � 0.08, this
breakdown is apparent at Ec/� � 0.5. Inset: Kondo temperature (in
units of �) as a function of 
/δ for Ec = 0.5�.

As Ec/� � 0.6, higher order tunneling processes (encoded
in g||,⊥) become important, νλ⊥,||(T ∗) is no longer small and,
correspondingly, our perturbative calculation of TK becomes
unreliable. The divergence of g⊥ toward negative values (see
Fig. 1) casts doubt on whether the Kondo temperature will
continue to increase as Ec/� → 1.

In the inset of Fig. 2, we illustrate the dependence of TK on

/δ. For a given value of Ec/�, TK increases exponentially
with 
/δ. Only small values of 
/δ are allowed in our
calculation, which treats tunneling as a weak perturbation.
In the strong tunneling regime (
 	 δ), the charge of the
superconducting island fluctuates strongly and it is a priori
unclear what the fate of CKE will be. This issue will be
addressed in Sec. VII.

B. Influence of multichannel leads

Thus far we have been considering only one conduction
channel per lead. This is appropriate for atomic point contacts
wherein itinerant electrons are fully characterized by their
momentum in the direction perpendicular to the NS interface.
Nonetheless, due to the small Fermi wavelength of metals,
most NS contacts contain multiple channels that describe,
e.g., transverse momenta of electrons in the lead. Multichannel
leads can be readily incorporated into Eq. (1) by rewriting the
tunneling Hamiltonian and the Hamiltonian for the leads:

Hl =
∑
kσ i

ξkc
†
kσ ickσ i,

(24)
HT =

∑
kσni

tknic
†
kσ idnσ + H.c.,

where i = 1, . . . ,2N is a channel index that includes the
which-lead label. In wide junctions, the tunneling amplitude
depends on the channel index i. In contrast, we have taken the
kinetic energy of the itinerant fermions to be independent of i;
this can always be ensured by proper rescaling of the itinerant
fermion operators. In addition, we have assumed that each
energy level in the superconducting dot remains only twofold
degenerate due to the chaotic motion of electrons in the dot.

In principle, it is possible that only one linear combination
of the channels couple to the superconductor. This is the case
when any one of the following assumptions (from more to
less stringent) is satisfied at energies |εn| � �: (i) tkni � tki

(energy-independent magnitude and sign of the tunneling
amplitude), (ii) tkni � anbki (separable tunneling amplitude),
and (iii) tkni tk′nj � anbkick′j (interjunction coherence due to
L < ζ and separable n dependence). With this proviso one can
always make a unitary transformation in the spirit of Eq. (15)
and recover an effective one-channel Kondo model.

When the assumptions (i)–(iii) above fail, a multichannel
Kondo effect invariably follows. In NNN devices, TK drops
exponentially6 when the number of channels in the normal
leads and in the normal metallic grain is large. This argument
does not apply to NSN devices insofar as the superconducting
island is describable by random matrix theory and L � ζ .
However, even in our case, TK is generically lower for
the multichannel than for the single-channel Kondo model.
Say, suppose there are N 	 1 separate Kondo couplings of
similar magnitude. In order to maintain the Coulomb blockade,
each bare Kondo coupling must be very small (1/N � 1).
Equation (19) then dictates that the Kondo temperature will be
very low. This state of affair changes if a unitary transformation
can map multichannel leads onto an effective single-channel
lead, because then the only nonzero Kondo coupling in the
transformed basis scales as the sum of all the original couplings
[see Eq. (15) for a N = 2 example of this].

In order to arrive at a single-channel Kondo problem in the
presence of wide NS junctions, it is helpful that the Kondo
couplings will be of second order in the tunneling amplitude,
because condition (iii) above is more realistic than either
(i) or (ii). In NNN systems,6 the bare Kondo coupling is ∼ O(t)
and, consequently, a multichannel Kondo model ensues (with
exceedingly low TK ) whenever (i) is not fulfilled. This is a
potentially important difference between CKE in NSN and
NNN heterostructures.

C. Possible experimental setups

Can the charge-Kondo effect proposed in this paper be
measured in experimentally realizable NSN devices? In a
preceding section we have estimated TK � 10–20 mK for the
single-channel Kondo model and reasonable values of �, 
/δ,
and Ec. This temperature is close to the lowest temperatures
achieved in current dilution fridge refrigerators (�20 mK).
Moreover, TK may, in principle, be made higher by designing
more transparent junctions, tuning �/Ec closer to one or
choosing materials with larger values of �. Thus, while it will
be difficult to experimentally access the unitary regime T �
TK , measurements conducted in the weak-coupling regime
T � TK may be within reach.
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Yet, in spite of the extensive experimental work on
mesoscopic NSN systems, there is no report of any CKE. Some
trivial reasons for this include (i) the effective temperature
of the device being too high, (ii) the gate voltage not being
tuned with sufficient precision to the charge degeneracy
point, and (iii) purposely breaking the charge degeneracy by
coupling the island to a superconducting reservoir. A more
fundamental reason might be that the NS junctions fabricated
in typical experiments lead to multichannel Kondo problems
with concomitantly lower TK .

Next we discuss the experimental platform and require-
ments to observe CKE in NSN heterostructures. First and
foremost, we need � > Ec, which precludes ultrasmall super-
conducting islands due to their dominant charging energy.25

Second, the superconducting island must be placed in the
vicinity of a gate electrode. In order to measure CKE,
the resolution of the gate voltage must be such that Ng −
N (0)

g = Cg(Vg − V (0)
g )/e � TK/Ec, where N (0)

g = 2M + 1 is
the charge degeneracy point (for any integer M) and V (0)

g =
eN (0)

g /Cg is the corresponding gate voltage. For typical
values of the gate capacitances (Cg � 10 aF) and the Kondo
temperature (TK/Ec � 10−3), it follows that the gate-voltage
resolution needs to be better than 10 μV. This is achievable
in current experimental devices. If Ng − N (0)

g � TK/Ec, the
Kondo RG equations [see Eq. (19)] are a cutoff at the energy
scales ∼ Ec(Ng − N (0)

g ) � TK and the charge Kondo effect
will not be fully developed. However, even in this case
there should be observable fingerprints of Kondo correlations
(cf. Sec. VI).

Another desirable trait of the superconducting island is that
it has no spatial symmetries and that its linear dimensions
L be smaller than the superconducting coherence length ζ .
This facilitates coherent tunneling between different junctions
and ensures having only one conduction channel in the dot at
any given energy, thus increasing the likelihood of producing
a single-channel Kondo model at low energies. Moreover,
smaller island sizes mean a smaller ratio �/δ and thus a
larger value of T ∗, which enhances the ultraviolet energy
cutoff for the Kondo problem. In principle, having a small-
sized superconductor might conflict with the requirement that
� > Ec. In practice, there appears to be enough room in
parameter space to ensure that � > Ec and L < ζ are satisfied
simultaneously. For instance, the best-developed material is
aluminum, whose BCS coherence length in the ballistic limit is
ζ0 = h̄vF /(π�) � 1.5 μm. For a mean free path of l � 15 nm,
the actual coherence length is ζ = (h̄D/�)1/2 � (ζ0l)1/2 �
150 nm. Hence, an Al island of L � 80 nm connected to a
normal metal with junction area A � (80 nm)2 and ε � 12
(dielectric constant of AlOx) yields Ec � 0.12 meV < � �
0.2 meV. Niobium is another attractive material due to its
higher critical temperature. Although its small BCS coher-
ence length (ζ0 � 40 nm) requires relatively small and clean
grains, the large dielectric constant of NbOx (ε � 40) could
produce sufficiently small charging energies even for L �
25 nm and A � (25 nm)2 (Ec � 0.4 meV < � � 1.4 meV).
Tantalum and lead can also be interesting candidates, as
they have BCS gaps that are larger than that of Al and
coherence lengths that are longer than that of Nb. In Pb,
ζ0 � 90 nm and ζ � 35 nm for l � 15 nm. With L � 30 nm,

N

point contact

SG

(a) (b)

S

G

NWNW

FIG. 3. (Color online) Two arrangements for the experimental
observation of charge-Kondo effect in the electrical transport of NSN
systems. S = superconducting island, G = gate, N = normal metal,
and NW = semiconducting nanowire. (a) Metallic-semiconducting
hybrid setup (top view). The width of the semiconducting nanowires
is comparable to their Fermi wavelength, which guarantees the
emergence of either a single-channel or two-channel Kondo model at
low energies [cf. statement below Eq. (15)]. Local gates placed at the
nanowire-superconductor contacts can tune the channel transparency.
The nanowires are long enough so that their energy-level spacing is
negligible. (b) All metallic setup (side view). The atomic point contact
fits a single conduction channel, whereas the wider NS junction may
contain multiple channels. When L 	 ζ , TK may be maximized by
increasing the tunneling amplitude at the atomic point contact relative
to that at the wide junction.

A � (30 nm)2 and ε � 25 (dielectric constant of PbOx), we
get Ec � 0.4 meV < � � 1 meV. Note that these figures are
merely representative.

Last but not least, it is important that the NS interfaces
have a small number of effective conduction channels. We
have previously commented on how a single-channel Kondo
model may be plausible even in wide metallic junctions with
A 	 λ2

F , where λF is the Fermi wavelength of the metal.
In Fig. 3(a), we sketch an alternative setup that combines a
superconducting grain with semiconducting nanowires. This
setup is inspired by the recent success in manufacturing
semiconducting-superconducting nanocontacts.40,41 The large
Fermi wavelength in semiconductors facilitates single-channel
NS contacts without making the charging energy of the island
larger than the superconducting gap. In addition, the possibility
of tuning Schottky barriers in semiconductor-metal interfaces
by local gates creates prospects for measurable charge-Kondo
temperatures.

Figure 3(b) constitutes yet another all metallic experimental
setup, which allows to reach sizable TK in NSN devices with
L 	 ζ (where electrons cannot coherently propagate from
one junction to another). One of the junctions is made from an
atomic point contact, while the other junction is wide enough
to ensure that the charging energy of the device remains less
than the superconducting gap. If the single channel at the point
contact is much more strongly coupled to the superconductor
than each of the multiple channels at the wide junction, then
TK is close to that of a single-channel Kondo model. A theo-
retically straightforward way to achieve atomic point contacts
is to use scanning tunneling microscopes (STM). STM tips
operated in the point-contact mode can42 capture Andreev
tunneling (which is altered by charge-Kondo correlations),
and recent STM experiments43 have succeeded measuring the
density of states of ultrathin superconducting Pb grains. An
added challenge here is that the STM would have to operate
at millikelvin temperatures. Alongside millikelvin STMs, me-
chanically controllable single-channel quantum point contacts
are being developed in superconducting systems.44
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TABLE II. Comparison between different charge-Kondo effects (CKE) and the spin-Kondo effect (SKE). QD stands for semiconducting
quantum dots. ω is the largest of a variety of extrinsic energy scales such as temperature, bias voltage, pseudomagnetic fields and the frequency
of an external perturbation.

CKE in NSN CKE in NU CKE in NNN SKE in QD

Two-level system N or N + 1 Cooper pairs N or N + 2 electrons N or N + 1 electrons ↑ or ↓ electron
Ultraviolet cutoff (�) T ∗(δ � T ∗ < Ec) |U | Ec (	δ) δ(�Ec)
Infrared cutoff ω ω max{ω,δ} ω

νλ⊥(�) ∼(
/δ)f⊥ ∼
/|U | ∼(
/δ)1/2 ∼
/Ec

νλ||(�) ∼(
/δ)f|| =νλ⊥(�) 0 = νλ⊥(�)
TK/δ unrestricted �0 needs to be large needs to be small
Number of channels �1 1 �2 �1

D. Comparison to other charge-Kondo effects

Part of our motivation for exploring NSN systems is
to establish a “quantum-dot counterpart” for the charge-
Kondo effect that is believed to arise in compounds doped
with negative-U centers (“NU” systems). In this section, we
discuss similarities and differences, as well as advantages and
disadvantages of CKE in NU, NNN, and NSN settings. Some
of the highlights are summarized in Table II.

The ultraviolet (UV) cutoff � is the energy scale below
which the Kondo model applies. It is lowest in NSN systems,
where T ∗ � � due to entropic arguments. This is partly
why materials doped with negative-U centers reportedly show
TK � 10 K, while we find TK ∼ 10 mK in mesoscopic NSN
heterostructures. Note that CKE in NNN systems does not
suffer from entropic issues because the ground and the lowest
excited states are both surrounded by similarly dense sets of
single-particle states.

The infrared (IR) cutoff ω is the energy scale at which
the renormalization of the Kondo couplings stops. In NSN
and NU systems, ω is the largest amongst the temperature T ,
bias voltage V , and pseudomagnetic fields hz and hx . The full
Kondo effect is observable only if TK > ω. In NNN systems,
Kondo-like IR divergences originate from sums involving
single-particle states in the dot. Consequently, δ too plays the
role of an IR cutoff and the Kondo effect in NNN systems
is observable only if TK > max{δ,ω}. TK > δ is difficult to
satisfy in semiconducting dots.

Concerning the Kondo couplings, in NU systems they are
isotropic in pseudospin space and originate from a single
energy level. In NSN and NNN systems, the Kondo couplings
are anisotropic and sensitive to the multilevel energy spectrum
of the dot. While the anisotropy becomes gradually less
pronounced at lower energies, it still plays an essential role
in the quantification of TK . Moreover, multilevel effects can
become interesting on their own (see Appendix). A unique
feature of NSN systems is that the bare Kondo couplings are
strongly dependent on �/Ec, which can be tuned by magnetic
fields. In SKE systems, the bare Kondo coupling is typically
smaller than in NSN systems because it contains a product of
two small parameters: 
/δ and δ/Ec.

NNN systems can never have less than two Kondo channels
due to real-spin degrees of freedom that are decoupled from the
charge pseudospin. In contrast, in NSN devices, spin degrees of
freedom are interwoven with the charge pseudospin (because
the order parameter couples spin-up electrons with spin-down

holes) and therefore the one-channel Kondo effect is in
principle possible. Unlike NU and SKE systems, most NNN
and NSN systems carry wide junctions with multichannel
leads. However, multiple channels of an NSN system can be
effectively mapped onto a one-channel Kondo model, e.g.,
when the tunneling matrix amplitude is independent of energy.
Reaching a two-channel Kondo model in NNN systems with
wide junctions is much less likely.

In sum, CKE in NSN systems ought to be experimentally
measurable much like ordinary SKE is observable in semicon-
ducting quantum dots, provided that single-channel Kondo
models can be engineered.

VI. ZERO-BIAS CONDUCTANCE

Having described the charge-Kondo model that arises in
mesoscopic NSN heterostructures at sufficiently low energies,
we now investigate its fingerprints in the low-temperature
electrical transport. We focus on the elastic contribution to the
zero-bias conductance, which is dominant at T < T ∗ because
the superconducting gap freezes out inelastic quasiparticle
excitations. Fingerprints of CKE should also get manifested
in the low-temperature capacitance of superconducting islands
coupled to a single normal metallic lead22,32 as well as in their
thermoelectric properties.15

The electrical conductance of mesoscopic NSN heterostruc-
tures has been widely discussed in the literature;22,30,35,45–49

nonetheless, there appears to be no report on many-body
anomalies in the low-temperature elastic conductance. When
bias voltages are weak, the current-voltage characteristics is
encoded in

Iα =
∑
α′

gαα′V α′
(α ∈ {L,R}), (25)

where V α and Iα = 〈Î α〉 = ie sgn(α)〈[Heff,N̂
α]〉 are the volt-

age drop and the current across the αth junction, respectively.
N̂α denotes the electron number operator in the αth lead and
Heff is given by Eq. (7). Also, sgn(α) ≡ 1(−1) for α = L(R).

The zero-bias conductance matrix in Eq. (25) can be
expressed in terms of the Kubo formula:

gαα′ = lim
ω→0

1

iω

∫ β

0
dτeiωτ 〈Tτ Î

α(τ )Î α′
(0)〉, (26)
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where β = 1/(kBT ) and Tτ is the time-ordering operator. It is
straightforward to obtain Î α = Î α

single + Î α
pair, where

Î α
single = −ie sgn(α)

∑
α′ 
=α

λαα′
||

∑
k,k′,σ

Szc
†
αkσ cα′k′σ + H.c.,

(27)
Î α

pair = ie sgn(α)
∑
α′

λαα′
⊥

∑
k,k′,σ

S+σcαkσ cα′k′−σ + H.c.

〈Îsingle〉 and 〈Îpair〉 are the single-particle and Cooper-pair
tunneling contributions to the current, respectively. α 
= α′ in
the expression for Îsingle simply recognizes the fact that local
(α = α′) single-particle processes are normal reflections that
do not contribute to the current. We treat the leads as nonsuper-
conducting (〈cαk↑cαk′↓〉 = 0), nonmagnetic (〈c†αk↑cαk′↓〉 = 0),

and infinitely long (〈c†αkσ cαk′σ 〉 ∝ δk,k′) conductors. With this
in mind, the combination of Eqs. (26) and (27) yields

gαα′ =
(

GL
A + GEC + GCA GEC − GCA

GEC − GCA GR
A + GEC + GCA

)
, (28)

where

G
L(R)
A = 2G0

∫
dE(−∂Ef )2[νλ

LL(RR)
⊥ (E)]2,

GCA = G0

∫
dE(−∂Ef )2[νλLR

⊥ (E)]2, (29)

GEC = G0

∫
dE(−∂Ef )[νλLR

|| (E)]2.

G0 = πe2/h̄ and f (E) = [exp(βE) + 1]−1. GL(R)
A is the local

Andreev conductance across the left (right) junction, GCA is
the nonlocal or crossed Andreev conductance, and GEC is
the elastic, single-particle cotunneling conductance.46,48 The
probability for an Andreev reflection process is proportional
to (λαα′

x )2 + (λαα′
y )2 = 2(λαα′

⊥ )2, whereas the probability for a
cotunneling event is ∝ (λLR

|| )2. The derivation of Eq. (28) is
standard50 except for the following two details. First, λ||,⊥(E)
is energy-dependent via the Kondo RG flow of Eq. (19),
and diverges as E → 0. Second, the current operator in
Eq. (27) contains Sz and S±; we used 〈Tτ S

z(τ )Sz(0)〉 = 1/4
and 〈Tτ S

+(τ )S−(0)〉 = 1/2 for τ > 0.
The matrix structure of gαα′ in Eq. (28) is simple to interpret.

Regarding diagonal matrix elements, each local Andreev
reflection contributes twice as much as each cotunneling or
crossed Andreev reflection event because the former involves
two electrons crossing the same junction while in the latter
processes, the two electrons cross different junctions. This
fact is reflected by the extra factor of two in the first line of
Eq. (29). Concerning the off-diagonal matrix elements, elec-
tron cotunneling, and crossed Andreev reflection contribute
with opposite signs because in the later case it is a hole (rather
than a electron) that tunnels out of the superconducting island.

Even though Eq. (28) formally agrees with expressions
derived in previous studies of NSN heterostructures,46–48

there are conceptual novelties when the superconducting
island behaves as a pseudospin-1/2 quantum impurity.
For instance, GEC/GCA → 1/2 as the temperature is de-
creased, irrespective of the strength of electron-electron
interactions in the superconducting island. Therefore, crossed
Andreev reflection and electron cotunneling do not cancel each

other in the off-diagonal matrix elements of Eq. (28). Other
differences will become clear below.

In steady state, IR = IL ≡ I and the electrical response to
the total voltage drop VR + VL = V across the device can be
evaluated by inverting Eq. (28):

G ≡ dI

dV
= GEC +

(
GL

A + GR
A

)
GCA + GL

AGR
A

GL
A + GR

A + 4GCA

. (30)

Kondo correlations become apparent when we evaluate
Eq. (30) for T < T ∗. Let us suppose that the two NS
junctions can be mapped onto a single-channel Kondo model.
Combining Eqs. (13), (15), and (30), it follows that

G = G0t
2
Lt2

R(
t2
L + t2

R

)2

∫
dE(−∂Ef )[(νλ||)2 + 2(νλ⊥)2], (31)

where λ||,⊥(E) obeys Eq. (19).
When λ⊥(T ∗) = λ||(T ∗) (i.e., Ec � 0.5�) and T ∗ 	 T 	

TK , the integral in Eq. (31) yields

G = G0
3t2

Lt2
R

4
(
t2
L + t2

R

)2

1

ln2(T/TK )
. (32)

For T < TK , the Kubo formula expression breaks down and
the conductance converges to2 G = 2(e2/h)4t2

Lt2
R/(t2

L + t2
R)2.

The same results arise also in negative-U molecules with
charge degeneracy,13 in normal-metallic quantum dots with
charge degeneracy4 and even in semiconducting quantum dots
with spin degeneracy.2

The conductance for λ⊥(T ∗) 
= λ||(T ∗) at T ∗ 	 T 	 TK

is displayed in Fig. 4. G(T ) increases with Ec/�, as expected
from Fig. 1. Since the anisotropy of the bare Kondo couplings
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K
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2

FIG. 4. (Color online) Low-temperature (elastic) zero-bias con-
ductance [see Eq. (31)] across the NSN heterostructure in the
single-channel Kondo model. The conductance is normalized to
its value at T = T ∗. Curves with red squares, black circles, and
blue triangles have TK = 0.004T ∗, TK � 0.01T ∗, and TK = 0.05T ∗,
respectively. For simplicity, we ignored g⊥,|| in Eq. (20) and evaluated
TK analytically neglecting third-order terms in Eq. (19). We chose
� = 1000δ. Inset: the solid line represents G(T )/G(T ∗) for Ec =
0.5�, as calculated from Eq. (31). Because Ec = 0.5� yields the
isotropic Kondo model [λ⊥(T ∗) = λ||(T ∗)], the solid line matches
well with Eq. (32) (dashed line).
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disappears at sufficiently low temperatures, G(T � TK ) is the
same irrespective of λ⊥(T ∗)/λ||(T ∗).

The conductance curves of Fig. 4 have been neither
predicted nor measured in previous studies of NSN systems.
For instance, Ref. 35 neglected the interjunction electron
coherence [i.e., GCA = GEC = 0 in Eq. (30)] and concluded
that the zero-bias conductance through the superconducting
grain will be independent of temperature as long as T � T ∗
and the gate voltage is tuned to the charge degeneracy point.
Contemporary experiments29,30 appeared to agree with this
theoretical prediction, although the temperature dependence
of the zero-bias peak was not analyzed in detail. Yet according
to our theory, the zero-bias conductance could display traces of
a two-channel Kondo effect in islands with L 	 ζ . This is the
case in the experimental setup of Fig. 3(b), which should host
a low-temperature enhancement of the Andreev reflection at
the point contact, accompanied by a reduction of the Andreev
reflection in the wide junction.

VII. CHARGE-KONDO EFFECT IN THE STRONG
TUNNELING REGIME

Thus far all our calculations have concentrated on the weak
tunneling regime, where 
 � δ. In this section, we turn to
highly transparent NS junctions (
 � δ) and determine the
fate of CKE when the charge in the superconducting island
is strongly fluctuating. On one hand, in the weak tunneling
regime the charge-Kondo temperature is enhanced by more
transparent normal superconducting junctions (see Sec. V). On
the other hand, when charge in the dot fluctuates strongly, it is
no longer appropriate to regard the superconductor as a two-
level system. Which of these two conflicting trends prevails? It
turns out that the answer to this question depends on electron-
electron interactions in the lead, which we have ignored up
until now. Strong tunneling and electron-electron interactions
render bosonization as the most convenient method to employ
in this section. In particular, we combine and suitably modify
the approaches from Refs. 51 and 52.

We consider a one-dimensional normal metallic wire
connected to a superconductor (which need not be one-
dimensional). The lead occupies the negative half axis (x < 0),
the NS interface is at x = 0, and the superconductor is located
at x > 0. The low-energy/long-wavelength Hamiltonian of this
system reads

H = Hlead + HC + HB, (33)

where

Hlead = ivF

∑
σ

∫ 0

−∞
dx(�†

Lσ ∂x�Lσ − �
†
Rσ ∂x�Rσ ) (34)

is the Hamiltonian corresponding to the lead,

HC = Ec

[∫ 0

−∞
dx

∑
σ

(�†
Lσ�Lσ + �

†
Rσ�Rσ ) + Ng

]2

(35)

is the charging energy, and

HB =aVB

∑
σ

�†
σ (0)�σ (0) + a�B[�↑(0)�↓(0)+ H.c.] (36)

is a boundary interaction (a is the lattice spacing). In Eqs. (34)–
(36), we have expanded the original fermion operators as
�σ (x) � e−ikF x�Lσ (x) + eikF x�Rσ (x), where kF is the Fermi
wave vector and �Lσ (�Rσ ) describes left-moving (right-
moving) fermions. In Eq. (35), we have exploited total charge
conservation in the dot-plus-lead system26 so as to rewrite the
charging energy in terms of the charge density in the lead
(instead of in the dot). Equation (36) follows from integrating
out the superconductor at energy scales that are lower than the
BCS gap �. This integration results in a boundary term,52

which encodes normal scattering (∝ VB � �) as well as
Andreev scattering (∝ �B). Both VB and �B (which can be
taken to be purely real in our case) depend on microscopic
details of the superconductor such as its Fermi velocity,
� and δ. Also note that quasiparticle transmission into the
superconductor is forbidden at energies below the gap.

We bosonize Eq. (33) in the standard manner53:

�rσ (x) = ησ√
2πa

e
− i√

2
[r�c(x)−�c(x)+rσ�s (x)−σ�s (x)]

, (37)

where ησ is a Klein factor (η↑η↓ = −η↓η↑, ησησ = 1), r = +
(−) for right- (left-) moving fermions, and σ = +(−) for spin
up ( down) fermions. �c (�s) and �c (�s) are the usual charge
(spin ) bosons.

It follows that

Hlead = vF

2π

∑
α∈{c,s}

∫ 0

−∞
dx

[
Kα(∂x�α)2 + 1

Kα

(∂x�α)2

]
,

(38)

where Kc (Ks) is the Luttinger parameter in the charge (spin)
sector (Ks = 1 due to spin rotational symmetry). Similarly,

HC = Ec[
√

2�c(0)/π + Ng]2, (39)

where
√

2�c(0)/π equals to the number of electrons contained
in x ∈ [−∞,0] up to a constant [we take �c(−∞) = 0].

In order to bosonize HB , we use boundary conditions
that are associated with perfect Andreev reflection at the
NS interface52: �R↑(0) = −i�

†
L↓(0) and �R↓(0) = i�

†
L↑(0).

These boundary conditions provide a reasonable approxima-
tion for highly transparent NS interfaces with small Fermi
surface mismatches. Furthermore, perfect Andreev reflection
constitutes a renormalization group fixed point52 when Ec =
VB = 0. In bosonic language, the Andreev boundary condi-
tions can be translated as

√
2�c(0) = π/2 and

√
2�s(0) = π .

Consequently, the boundary interaction at the Andreev fixed
point reads

HB = −(2/π )VB cos[
√

2�c(0)], (40)

which describes single-particle backscattering (normal reflec-
tion) at the interface. Terms proportional to �B do not appear
in Eq. (40), which is consistent with the fact that boundary
Andreev reflection is never a relevant perturbation at the
Andreev fixed point.52

Next, we determine how Ec and VB evolve as the temper-
ature is lowered. Assuming that their bare values are small
compared to �, the leading order RG flow equations read

dEc

dl
= Ec ,

dVB

dl
= (1 − Kc)VB, (41)
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where l = ln(�/T ). Thus Ec is a relevant perturbation and
VB is relevant, marginal, or irrelevant depending on whether
electron-electron interactions in the lead are repulsive (Kc <

1), noninteracting (Kc = 1), or attractive (Kc > 1), respec-
tively. This is markedly different from the nonsuperconducting
system analyzed in Ref. 51, where dVB/dl = (1 − Kc/2)VB

and backscattering is a relevant perturbation for noninteracting
electrons. The underlying reason for this qualitative difference
is that a perfectly transmitted channel at an NN interface has a
conductance of 2e2/h, whereas a perfectly transmitted channel
at a NS interface has a conductance of 4e2/h (due to perfect
Andreev reflection).

Since Ec (and possibly VB) is certain to grow under RG, the
Andreev fixed point is unstable. The nature of the new fixed
point depends crucially on whether Ec or VB reaches strong
coupling first. If Ec wins, the charge boson at the boundary gets
pinned to a value dictated by the gate voltage,

√
2�c(0)/π →

−Ng , and the ground state is nondegenerate. Since the gate
charge Ng is a continuous variable, the discreteness of charge is
unimportant in this case and the system is nowhere equivalent
to a two-level system.

If VB prevails instead, then the charge boson at the interface
becomes pinned through

√
2�c(0)/π → 2n, for any integer

n. The discreteness of charge becomes important through the
discreteness of n, although there are an infinite number of
degenerate ground states. This energy degeneracy between
different values of n is lifted byHC [see Eq. (39)]. Choosing Ng

appropriately (e.g., Ng = 1) the lowest energy state becomes
two-fold degenerate (n = 0 and n = −1), where the two states
differ from one another by two electrons. The remaining
minima of the cosine potential are at energies �Ec higher,
where Ec is the renormalized charging energy. Therefore in
the strong-coupling limit of VB , the ground state of Eq. (33)
behaves as a two-level quantum system. Rare tunneling events
between the n = 0 and n = −1 charge states [induced by
the kinetic energy terms in Eq. (38)] are tantamount to the
rare spin-flip events of a magnetic impurity that is weakly
coupled to a bath of itinerant fermions. Those tunneling events
become prominent as energy is lowered further, and ultimately
culminate in the charge-Kondo effect.

In sum, for CKE to emerge in the strong tunneling
regime, it is necessary that VB dominates over Ec under
the renormalization group. In terms of the parameters of the
original Hamiltonian, this amounts to

�

Ec(0)
	

[
�

VB(0)

] 1
1−Kc

, Kc < 1, (42)

where VB(0) and Ec(0) are the values of the backscattering
potential and the charging energy at energy scales of order
�, respectively. In mesoscopic NSN devices, Eq. (42) is
difficult to satisfy unless electron-electron interactions in the
lead are strongly repulsive and/or the bare charging energy
is very small. The temperature at which VB reaches the
strong-coupling regime is T0 ≡ �e−lc , where lc is defined
through VB(lc) � �. Thus

T0 � �[VB(0)/�]
1

1−Kc � �. (43)

If T0 	 Ec(lc) = Ec(0)elc , inelastic charge excitations (i.e.,
transitions to n 
= 0, − 1) are present at temperatures

T0 > T > Ec(lc). In this case, by analogy with Ref. 51, the
dimensionless Kondo coupling is νλ ∼ Ec(lc)/T0 and the
Kondo temperature scales like TK ∼ Ec(lc) exp(−1/νλ) �
Ec(lc) � T0. If T0 < Ec(lc), inelastic excitations are forbidden
as soon as T < T0 and TK could be a sizable fraction of T0.
Yet, because T0 is typically very small in weakly interacting
leads (Kc � 1), TK is unlikely to be detectable. Prospects
might be better in leads made from carbon nanotubes where54

Kc � 0.2 � 1.
In Sec. V, we learned that the charge-Kondo temperature is

unobservably low when 
/δ → 0, though it increases rapidly
as 
/δ grows. In this section, we have seen that TK is very
small when 
/δ � 1 as well, at least for Fermi liquid leads.
Therefore intermediate tunneling strengths are most suitable
for the observability of CKE in NSN devices.

VIII. SUMMARY AND CONCLUSIONS

Partly motivated by the recent experimental search for
charge-Kondo correlations in Tl-doped PbTe, we have de-
veloped a theory for the charge-Kondo effect in artificially
fabricated, chaotic superconducting islands that are weakly
connected to nonsuperconducting leads. We have focused on
tunable superconducting charge qubits where the energy gap in
the excitation spectrum is larger than the electrostatic charging
energy. The low-energy transport and thermodynamic prop-
erties of these systems showcase Kondo-like behavior when
the electrostatic energies of two charge states differing by a
Cooper pair become degenerate. A single-channel anisotropic
Kondo model is found to describe superconducting grains
of size smaller than the superconducting coherence length,
which are coupled to normal conductors either through
atomic point contacts or semiconducting nanowires. The same
model could also apply for wider metal-superconducting
contacts as long as the tunneling amplitude is independent
of energy in a narrow strip around the Fermi energy. For
this model the Kondo temperature can reach �10 mK with
aluminum grains and �20 mK with niobium grains, which is
comparable to the temperature of the cryostat in current NSN
devices. Higher Kondo temperatures might be accessible by
engineering normal-superconductor contacts of intermediate
transparency. Our proposal for the charge-Kondo effect differs
qualitatively from previous proposals in nonsuperconducting
single-electron devices and in valence-skipping compounds,
and may be easier to observe.

Avenues for further theoretical research in NSN devices
include understanding the transition from single-channel to
multichannel Kondo models, examining the crossover from
weak to strong dot-lead tunneling, characterizing the charge-
Kondo effect when the normal-superconductor junctions are
disordered, and searching for a low-temperature many-body
enhancement of the tunneling magnetoresistance when the
leads are magnetized.
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APPENDIX: “FIRST-PRINCIPLES” DERIVATION OF CKE
IN NSN DEVICES

In Sec. IV, we introduced a low-energy effective Kondo
model, Eq. (7), from which we inferred the Kondo effect by
simply invoking standard renormalization group equations.
While we provided physical arguments to justify the emer-
gence of such a model at temperatures lower than T ∗, we did
not present a rigorous derivation. The main objective of this
appendix is to validate Eq. (7) by deriving hallmark Kondo-like
divergences from the full microscopic (or “first-principles”)
Hamiltonian, Eq. (1).

The procedure we follow has been introduced elsewhere.38

The task undertaken here consists of evaluating the amplitude
for Andreev reflection to fourth order in tunneling. Andreev
reflection transforms an itinerant electron into an itinerant hole
while adding a Cooper pair to the superconducting island. This
can be interpreted as a process that flips the pseudospins of the
superconducting island as well as of the incident fermion. The
initial and final states for this process are

|i〉 = c
†
k↑|ø〉|2M〉, |f 〉 = ck↓|ø〉|2M + 2〉. (A1)

We assume that the gate voltage is tuned to the charge
degeneracy point (Ng = 2M + 1), so that |i〉 and |f 〉 are
degenerate eigenstates of Eq. (1) in absence of tunneling.
Tunneling induces |i〉 → |f 〉 transitions, and the transition
amplitude Ai→f may be computed from certain matrix
elements of an effective Hamiltonian derived perturbatively
from Eq. (1).38 One arrives at Ai→f = A

(2)
i→f + A

(4)
i→f + . . .,

where

A
(2)
i→f =

∑
n

〈f |HT |n〉〈n|HT |i〉
Ei − En

,

A
(4)
i→f =

∑
n1,n2,n3

〈f |HT |n1〉〈n1|HT |n2〉〈n2|HT |n3〉〈n3|HT |i〉(
Ei − En1

)(
Ei − En2

)(
Ei − En3

)
− ε2

∑
n

〈f |HT |n〉〈n|HT |i〉
(Ei − En)2

−A
(2)
i→f

∑
n

|〈f |HT |n〉|2
(Ei − En)2

,

and |n〉,|n1〉, . . . denote intermediate states of energies En,
En1 , . . . in the absence of tunneling. In addition,

ε2 =
∑

n

|〈i|HT |n〉|2
En − Ei

= t2
∑

n

∑
q

�(ξq)

(
1

Ec − ξq − √
ε2
n + �2

− 1

3Ec + ξq + √
ε2
n + �2

)
, (A2)

where in the second equality we have assumed particle-hole
symmetry and energy-independent tunneling amplitudes. �(x)
is the step function.

νA
(2)
i→f is identical to (
/δ)f⊥ of Sec. IV and was first

computed in Ref. 35. It is finite and nonsingular for Ec < �.
Yet A

(4)
i→f , which has not been previously computed, hosts

infrared (IR) logarithmic divergences for any Ec/�. These IR
divergences signal the onset of Kondo correlations.

Evaluating A
(4)
i→f is straightforward in principle but cum-

bersome in practice. For convenience, we attach Tables III and
IV, which collect all possible intermediate state configurations
for the first term in the expression of A

(4)
i→f . Many of the

individual amplitudes entering Tables III and IV are ultraviolet
(UV) divergent in the infinite-bandwidth limit (i.e., when the
leads and the dot have an infinite number of energy levels).
Remarkably, all UV divergences in A

(4)
i→f end up are canceling

one another after summing over all the amplitudes. This
indicates that details of the energy spectrum at high energies
are not important for the Kondo effect and endows universality
to results derived in this paper. In fact, the bulk contribution to
Ai→f originates from states with |εn| � �.

Following a numerical sum of all the amplitudes, we arrive
at

νAi→f = 


δ
f⊥ + 2


2

δ2
f⊥f|| ln

�

ω
+ 
2

δ2
g⊥, (A3)

where ω is the IR energy cutoff (note logarithmic divergence)
and g⊥ is a dimensionless function of Ec/�. To the present
order of approximation, Eq. (A3) can be recasted as

νAi→f � νλ⊥ + 2(νλ⊥)(νλ||) ln
T ∗

ω
, (A4)

where

νλ⊥ = 


δ
f⊥

(
1 + 


δ

g⊥
f⊥

+ 2



δ
f|| ln

�

T ∗

)
and

νλ|| = 


δ
f||

(
1 + 


δ

g||
f||

+ 2



δ

f 2
⊥

f||
ln

�

T ∗

)
(A5)

are the values of the Kondo couplings at the energy scale T ∗
[see Eq. (20)] and we have neglected O(
3) terms. Equation
(A4) provides a first-principles proof for the second line of
Eq. (19) and establishes the anisotropic Kondo model as
an appropriate low-energy theory for Eq. (1). Admittedly,
the energy scale T ∗ does not appear naturally in our zero-
temperature calculation. Rather we introduce it in hindsight
(i.e., with the knowledge that only at energies below T ∗ can
the superconducting island behave as a two-level system) and
arrange the rest of the terms accordingly. The logarithmic
terms in Eq. (A5) indicate that the Kondo couplings begin to
renormalize starting at energy scales of order �. g⊥ is plotted
in Fig. (1), where it is shown that fourth-order tunneling events
can either enhance (if g⊥ > 0) or deplete (if g⊥ < 0) the
Andreev reflection amplitude depending on Ec/�. We have
not evaluated g||, which would require additional tables of
intermediate state configurations. We expect g|| � g⊥ for Ec �
0.5�. Our perturbative analysis becomes insufficient when
(
/δ)|g⊥| ∼ 1, which occurs at Ec � 0.8� for 
/δ � 0.1. Of
course, the breakdown of the perturbative regime does not
preclude a Kondo effect; it just means that we cannot compute
the Kondo temperature reliably using the weak-tunneling
approach.
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TABLE III. Virtual elastic processes to fourth order in single-particle tunneling. n, m, and q are dummy variables to be summed over. The
amplitudes labeled with a number are either UV and/or IR divergent. The amplitudes labeled with a letter are nondivergent. The amplitudes
grouped with the same number or letter are identical to one another in presence of particle-hole symmetry. For each of these groups, half of
the configurations involve electrons (c†q ) and half involve holes (cq ). For simplicity, we have assumed the tunneling amplitude to be simply a
constant; however, our results can be readily generalized to include more complicated situations. In the derivation of Fig. 1, we use

∑
q → ν

∫
dξ

and
∑

n → (1/δ)
∫

dn. In Tables III and IV (and in these Tables only), En stands for
√

ε2
n + �2.

Label |n1〉 |n2〉 |n3〉 Contribution to A
(4)
i→f (in units of t4)

1 |ø〉γ †
n↑|2M + 2〉 c†qσ |ø〉γ †

n↑γ
†
m,−σ |2M + 2〉 |ø〉γ †

n↑|2M + 2〉 2 unvnv2
m�(ξq )

(Ec−En)2(ξq+En+Em)

1 |ø〉γ †
n↑|2M + 2〉 cqσ |ø〉γ †

n↑γ
†
mσ |2M + 2〉 |ø〉γ †

n↑|2M + 2〉 2 unvnu2
m�(−ξq )

(Ec−En)2(−ξq+En+Em)

8 |ø〉γ †
n↑|2M + 2〉 c

†
k↑|ø〉γ †

n↑γ
†
m↓|2M + 2〉 c

†
k↑cq↑|ø〉γ †

n↑|2M + 2〉 unvnv2
m�(−ξq )

(Ec−En)(En+Em)(Ec+ξq−En)

7 |ø〉γ †
n↑|2M + 2〉 c

†
k↑|ø〉γ †

n↑γ
†
m↓|2M + 2〉 c

†
k↑cq↓|ø〉γ †

m↓|2M + 2〉 umvmv2
n�(−ξq )

(Ec−En)(En+Em)(Ec+ξq−Em)

2 |ø〉γ †
n↑|2M + 2〉 c

†
q↓|ø〉γ †

n↑γ
†
m↑|2M + 2〉 |ø〉γ †

m↑|2M + 2〉 − umvmv2
n�(ξq )

(Ec−En)(ξq+En+Em)(Ec−Em)

4 |ø〉γ †
n↑|2M + 2〉 cq↓|ø〉|2M + 2〉 |ø〉γ †

m↑|2M + 2〉 − umvmv2
n�(−ξq )

(Ec−En)ξq (Ec−Em)

11 |ø〉γ †
n↑|2M + 2〉 cq↓|ø〉|2M + 2〉 c

†
k↑cq↓|ø〉γ †

m↓|2M + 2〉 − umvmv2
n�(−ξq )

(Ec−En)ξq (Ec+ξq−Em)

3 |ø〉γ †
n↑|2M + 2〉 c

†
q↑|ø〉|2M〉 c

†
q↑c

†
k↑|ø〉γ †

m↓|2M〉 unvnv2
m�(ξq )

(Ec−En)ξq (ξq+3Ec+Em)

4 |ø〉γ †
n↑|2M + 2〉 c

†
q↑|ø〉|2M〉 |ø〉γ †

m↑|2M〉 unvnu2
m�(ξq )

(Ec−En)ξq (Ec−Em)

A |ø〉γ †
n↑|2M + 2〉 c†qσ |ø〉γ †

n↑γ
†
m,−σ |2M + 2〉 c†qσ c

†
k↑|ø〉γ †

m,−σ |2M〉 −2 unvnv2
m�(ξq )

(Ec−En)(ξq+En+Em)(ξq+3Ec+Em)

B |ø〉γ †
n↑|2M + 2〉 cqσ |ø〉γ †

n↑γ
†
mσ |2M + 2〉 c

†
k↑cqσ |ø〉γ †

mσ |2M〉 −2 unvnu2
m�(−ξq )

(Ec−En)(ξq−En−Em)(ξq+Ec−Em)

5 |ø〉γ †
n↑|2M + 2〉 c

†
k↑|ø〉γ †

n↑γ
†
m↓|2M + 2〉 c

†
k↑c

†
q↓|ø〉γ †

n↑|2M〉 umvmv2
n�(ξq )

(Ec−En)(En+Em)(ξq+3Ec+En)

6 |ø〉γ †
n↑|2M + 2〉 c

†
k↑|ø〉γ †

n↑γ
†
m↓|2M + 2〉 c

†
k↑c

†
q↑|ø〉γ †

m↓|2M〉 unvnv2
m�(ξq )

(Ec−En)(En+Em)(ξq+3Ec+Em)

22 |ø〉γ †
n↑|2M + 2〉 c

†
q↓|ø〉γ †

n↑γ
†
m↑|2M + 2〉 c

†
q↓c

†
k↑|ø〉γ †

n↑|2M〉 umvmv2
n�(ξq )

(Ec−En)(ξq+En+Em)(ξq+3Ec+En)

10 |ø〉γ †
n↑|2M + 2〉 cq↑|ø〉γ †

n↑γ
†
m↑|2M + 2〉 cq↑c

†
k↑|ø〉γ †

n↑|2M + 2〉 unvnu2
m�(−ξq )

(Ec−En)(ξq−En−Em)(Ec+ξq−En)

2 |ø〉γ †
n↑|2M + 2〉 cq↑|ø〉γ †

n↑γ
†
m↑|2M + 2〉 |ø〉γ †

m↑|2M〉 unvnu2
m�(−ξq )

(Ec−En)(ξq−En−Em)(Ec−Em)

E ck′↓c†qσ |ø〉γ †
n,−σ |2M + 2〉 c†qσ |ø〉γ †

m↑γ
†
n,−σ |2M + 2〉 |ø〉γ †

m↑|2M + 2〉 −2 umvmv2
n�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(Ec−Em)

8 ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 ck′↓|ø〉γ †
m↓γ

†
n↑|2M + 2〉 |ø〉γ †

n↑|2M + 2〉 − unvnu2
m�(ξq )

(Ec−ξq−En)(−Em−En)(Ec−En)

B ck′↓c†qσ |ø〉γ †
n,−σ |2M + 2〉 c

†
k↑ck′↓c†qσ |ø〉γ †

n,−σ γ
†
m↓|2M + 2〉 c

†
k↑ck′↓|ø〉γ †

m↓|2M + 2〉 −2 umvmv2
n�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(Ec−Em)

9 ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 ck′↓|ø〉γ †
m↑γ

†
n↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

n↓|2M + 2〉 − unvnu2
m�(ξq )

(Ec−ξq−En)(−En−Em)(Ec−En)

10 ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 c
†
q↓|ø〉γ †

m↑γ
†
n↑|2M + 2〉 |ø〉γ †

n↑|2M + 2〉 unvnv2
m�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(Ec−En)

11 ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 c
†
q↑|ø〉|2M〉 |ø〉γ †

m↑|2M + 2〉 − unvnu2
m�(ξq )

(Ec−ξq−En)(−ξq )(Ec−Em)

11 ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 c
†
k↑ck′↓c

†
q↓|ø〉|2M〉 c

†
k↑ck′↓|ø〉γ †

m↓|2M + 2〉 − unvnu2
m�(ξq )

(Ec−ξq−En)(−ξq )(Ec−Em)

12 ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 c
†
q↑|ø〉|2M〉 c

†
q↑c

†
k↑|ø〉γ †

m↓|2M〉 unvnv2
m�(ξq )

(Ec−ξq−En)(−ξq )(−ξq−3Ec−Em)

13 ck′↓c†qσ |ø〉γ †
n,−σ |2M + 2〉 c†qσ |ø〉γ †

m↑γ
†
n,−σ |2M + 2〉 c†qσ c

†
k↑|ø〉γ †

n,−σ |2M〉 −2 umvmv2
n�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(−ξq−3Ec−En)

C ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 c
†
q↓|ø〉γ †

m↑γ
†
n↑|2M + 2〉 c

†
q↓c

†
k↑|ø〉γ †

m↑|2M〉 unvnv2
m�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(−ξq−3Ec−Em)

14 ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 c
†
k↑ck′↓c

†
q↓|ø〉|2M〉 c

†
k↑c

†
q↓|ø〉γ †

m↑|2M〉 unvnv2
m�(ξq )

(Ec−ξq−En)(−ξq )(−ξq−3Ec−Em)

15 ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑ck′↓c

†
q↑|ø〉γ †

n↓γ
†
m↓|2M + 2〉 c

†
k↑ck′↓|ø〉γ †

n↓|2M + 2〉 − unvnv2
m�(ξq )

(Ec−ξq−En)(ξq+En+Em)(Ec−En)

13 ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 c
†
k↑ck′↓c

†
q↓|ø〉γ †

n↑γ
†
m↓|2M + 2〉 c

†
k↑c

†
q↓|ø〉γ †

n↑|2M〉 − umvmv2
n�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(−ξq−3Ec−En)

13 ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑ck′↓c

†
q↑|ø〉γ †

n↓γ
†
m↓|2M + 2〉 c

†
k↑c

†
q↑|ø〉γ †

n↓|2M〉 − umvmv2
n�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(−ξq−3Ec−En)

C ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑ck′↓c

†
q↑|ø〉γ †

n↓γ
†
m↓|2M + 2〉 c

†
k↑c

†
q↑|ø〉γ †

m↓|2M〉 unvnv2
m�(ξq )

(Ec−ξq−En)(−ξq−En−Em)(−ξq−3Ec−Em)

7 ck′↓c
†
q↓|ø〉γ †

n↑|2M + 2〉 ck′↓|ø〉γ †
n↑γ

†
m↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M〉 − unvnu2
m�(ξq )

(Ec−ξq−En)(−En−Em)(Ec−Em)

7 ck′↓c
†
q↑|ø〉γ †

n↓|2M + 2〉 ck′↓|ø〉γ †
n↓γ

†
m↑|2M + 2〉 |ø〉γ †

m↑|2M〉 − unvnu2
m�(ξq )

(Ec−ξq−En)(−En−Em)(Ec−Em)
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TABLE IV. Virtual elastic processes to fourth order in single-particle tunneling. n, m, and q are dummy variables to be summed over. The
amplitudes labeled with a number are either UV and/or IR divergent. The amplitudes labeled with a letter are nondivergent. The amplitudes
grouped with the same number or letter are identical to one another in presence of particle-hole symmetry. For each of these groups, half of
the configurations involve electrons (c†q ) and half involve holes (cq ). For simplicity, we have assumed the tunneling amplitude to be simply a
constant; however, our results can be readily generalized to include more complicated situations. In the derivation of Fig. 1, we use

∑
q → ν

∫
dξ

and
∑

n → (1/δ)
∫

dn.

Label |n1〉 |n2〉 |n3〉 Contribution to A
(4)
i→f (in units of t4)

16 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑c

†
qσ |ø〉γ †

m,−σ γ
†
n↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

n↓|2M + 2〉 2 unvnv2
m�(ξq )

(Ec−En)2(ξq+En+Em)

16 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑cqσ |ø〉γ †

mσ γ
†
n↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

n↓|2M + 2〉 −2 unvnu2
m�(−ξq )

(Ec−En)2(ξq−En−Em)

7 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑|ø〉γ †

n↓γ
†
m↑|2M + 2〉 c

†
k↑cq↑|ø〉γ †

m↑|2M + 2〉 umvmv2
n�(−ξq )

(Ec−En)(En+Em)(ξq+Ec−Em)

17 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑c

†
q↑|ø〉γ †

m↓γ
†
n↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M + 2〉 − umvmv2
n�(ξq )

(Ec−En)(ξq+En+Em)(Ec−Em)

18 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑cq↑|ø〉|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M + 2〉 − umvmv2
n�(−ξq )

(Ec−En)ξq (Ec−Em)

11 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑cq↑|ø〉|2M + 2〉 c

†
k↑cq↑|ø〉γ †

m↑|2M + 2〉 − umvmv2
n�(−ξq )

(Ec−En)ξq (Ec+ξq−Em)

9 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑|ø〉γ †

n↓γ
†
m↑|2M + 2〉 c

†
k↑cq↓|ø〉γ †

n↓|2M + 2〉 unvnv2
m�(−ξq )

(Ec−En)(En+Em)(Ec+ξq−En)

18 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑c

†
q↓|ø〉|2M〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M + 2〉 unvnu2
m�(ξq )

(Ec−En)ξq (Ec−Em)

19 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑c

†
q↓|ø〉|2M〉 c

†
k↑c

†
q↓|ø〉γ †

m↑|2M〉 unvnv2
m�(ξq )

(Ec−En)ξq (ξq+3Ec+Em)

20 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑c

†
q↑|ø〉γ †

m↓γ
†
n↓|2M + 2〉 c

†
k↑c

†
q↑|ø〉γ †

n↓|2M〉 umvmv2
n�(ξq )

(Ec−En)(ξq+En+Em)(ξq+3Ec+En)

E ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑cqσ |ø〉γ †

mσ γ
†
n↓|2M + 2〉 c

†
k↑cqσ |ø〉γ †

mσ |2M〉 −2 unvnu2
m�(−ξq )

(Ec−En)(ξq−Em−En)(Ec+ξq−Em)

5 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑|ø〉γ †

n↓γ
†
m↑|2M + 2〉 c

†
k↑c

†
q↑|ø〉γ †

n↓|2M〉 umvmv2
n�(ξq )

(Ec−En)(En+Em)(ξq+3Ec+En)

D ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑c

†
qσ |ø〉γ †

m,−σ γ
†
n↓|2M + 2〉 c

†
k↑c

†
qσ |ø〉γ †

m,−σ |2M〉 −2 unvnv2
m�(ξq )

(Ec−En)(ξq+En+Em)(ξq+3Ec+Em)

17 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑cq↓|ø〉γ †

m↓γ
†
n↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M〉 unvnu2
m�(−ξq )

(Ec−En)(ξq−En−Em)(Ec−Em)

15 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 ck′↓c
†
k↑cq↓|ø〉γ †

m↓γ
†
n↓|2M + 2〉 c

†
k↑cq↓|ø〉γ †

n↓|2M + 2〉 unvnu2
m�(−ξq )

(Ec−En)(ξq−En−Em)(Ec+ξq−En)

21 ck′↓c
†
k↑|ø〉γ †

n↓|2M + 2〉 c
†
k↑|ø〉γ †

n↓γ
†
m↑|2M + 2〉 c

†
k↑c

†
q↓|ø〉γ †

m↑|2M〉 unvnv2
m�(ξq )

(Ec−En)(−En−Em)(−3Ec−ξq−Em)

D ck′↓cqσ |ø〉γ †
nσ |2M + 2〉 cqσ |ø〉γ †

nσ γ
†
m↑|2M + 2〉 |ø〉γ †

m↑|2M + 2〉 −2 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(Ec−Em)

A ck′↓cqσ |ø〉γ †
nσ |2M + 2〉 ck′↓cqσ c

†
k↑|ø〉γ †

nσ γ
†
m↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M + 2〉 −2 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(Ec−Em)

3 ck′↓cq↓|ø〉γ †
n↓|2M + 2〉 cq↓|ø〉|2M + 2〉 |ø〉γ †

m↑|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)ξq (Ec−Em)

14 ck′↓cq↓|ø〉γ †
n↓|2M + 2〉 cq↓|ø〉|2M + 2〉 c

†
k↑cq↓|ø〉γ †

m↓|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)ξq (ξq+Ec−Em)

19 ck′↓cq↑|ø〉γ †
n↑|2M + 2〉 ck′↓cq↑c

†
k↑|ø〉|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)ξq (Ec−Em)

12 ck′↓cq↑|ø〉γ †
n↑|2M + 2〉 ck′↓cq↑c

†
k↑|ø〉|2M + 2〉 cq↑c

†
k↑|ø〉γ †

m↑|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)ξq (ξq+Ec−Em)

13 ck′↓cqσ |ø〉γ †
nσ |2M + 2〉 cqσ |ø〉γ †

nσ γ
†
m↑|2M + 2〉 c

†
k↑cqσ |ø〉γ †

nσ |2M〉 −2 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(ξq+Ec−En)

13 ck′↓cqσ |ø〉γ †
nσ |2M + 2〉 ck′↓cqσ c

†
k↑|ø〉γ †

nσ γ
†
m↓|2M + 2〉 cqσ c

†
k↑|ø〉γ †

nσ |2M〉 −2 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(ξq+Ec−En)

5 ck′↓cq↓|ø〉γ †
n↓|2M + 2〉 ck′↓|ø〉γ †

m↑γ
†
n↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

n↓|2M〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(−En−Em)(Ec−En)

20 ck′↓cq↑|ø〉γ †
n↑|2M + 2〉 cq↑|ø〉γ †

n↑γ
†
m↑|2M + 2〉 |ø〉γ †

n↑|2M〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(Ec−En)

22 ck′↓cq↓|ø〉γ †
n↓|2M + 2〉 ck′↓cq↓c

†
k↑|ø〉γ †

n↓γ
†
m↓|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

n↓|2M〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(Ec−En)

5 ck′↓cq↑|ø〉γ †
n↑|2M + 2〉 ck′↓|ø〉γ †

m↓γ
†
n↑|2M + 2〉 |ø〉γ †

n↑|2M〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(−En−Em)(Ec−En)

6 ck′↓cq↑|ø〉γ †
n↑|2M + 2〉 ck′↓|ø〉γ †

m↓γ
†
n↑|2M + 2〉 ck′↓c

†
k↑|ø〉γ †

m↓|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(−En−Em)(Ec−Em)

21 ck′↓cq↓|ø〉γ †
n↓|2M + 2〉 ck′↓|ø〉γ †

m↑γ
†
n↓|2M + 2〉 |ø〉γ †

m↑|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(−En−Em)(Ec−Em)

C ck′↓cq↑|ø〉γ †
n↑|2M + 2〉 cq↑|ø〉γ †

n↑γ
†
m↑|2M + 2〉 c

†
k↑cq↑|ø〉γ †

m↑|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(ξq+Ec−Em)

C ck′↓cq↓|ø〉γ †
n↓|2M + 2〉 ck′↓cq↓c

†
k↑|ø〉γ †

n↓γ
†
m↓|2M + 2〉 c

†
k↑cq↓|ø〉γ †

m↓|2M + 2〉 umvmu2
n�(−ξq )

(ξq−3Ec−En)(ξq−En−Em)(ξq+Ec−Em)
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