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We calculate the optical conductivity σ (ω) for doped rare-earth manganites based on the recently proposed
microscopic “two fluid” �−b model. We study the temperature dependence of σ (ω) for La0.825Sr0.175MnO3, which
has a metallic ground state. At low temperatures, the calculated σ (ω) shows a “two-peak” structure consisting
of a far-infrared coherent Drude peak and a broad mid-infrared “polaron” peak, as observed in experiments.
Upon heating, the Drude peak rapidly loses spectral weight, and σ (ω) crosses over to having just a single broad
mid-infrared peak. The temperature dependence of the mid-infrared peak and the spectral weight transfer between
the two peaks are also in agreement with experimental findings. We also study the doping dependence of σ (ω) for
the same compound. The integrated spectral weight under the Drude peak increases rapidly as the doping level
is increased from an underdoped, insulating state (x = 0.1) to a highly doped, metallic state (x = 0.3), again in
agreement with trends seen experimentally.
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I. INTRODUCTION

The discovery1 of colossal magnetoresistance (CMR)
phenomena in alkaline-earth doped rare-earth manganites
Re1−xAxMnO3 (Re is a rare-earth atom, e.g., La, Nd, Pr, and
A is an alkaline-earth atom, e.g., Ca, Sr, Ba) triggered an
explosion of activity in the exploration of their properties,2–5

reviving interest in these rather old systems.6 The parent
compound, e.g., LaMnO3, is a Mott insulator with an A-type
antiferromagnetic ground state. When divalent cations, e.g.,
Ca, Sr, etc., are substituted for La, the resulting materials show
a rich variety of electronic and magnetic phases and properties
depending on the doping level x and the cation (characterized,
e.g., by its radius), including such intriguing phenomena like
CMR, different types of charge, orbital and magnetic ordering,
metal insulator transitions, and nanoscale and mesoscale phase
separation.

The optical properties of the doped manganites are also very
interesting and puzzling (see Refs. 7–12 and numerous other
references from the review articles cited above2–5). Typically,
at sufficiently low temperatures T � Tc (the magnetic order-
ing temperature), the optical conductivity σ (ω) in the metallic
phase consists of two major features. First, a Drude-like
(approximately half Lorentzian) peak in the far-infrared region
with an anomalously small integrated weight, amounting to
less than 10% of the carrier number;7,8 second, a broad peak
or shoulder in the mid-infrared region (h̄ω ≈ 1 eV) often
attributed to polarons (e.g., see Refs. 9 and 11). As the
temperature increases, there is transfer of spectral weight over
a frequency or energy region much larger than the temperature,
e.g., from the Drude peak to the mid-infrared peak. If the
high-temperature phase is a metal, a weak Drude peak is still
present at high temperatures; whereas if it is an insulator, there
is no Drude peak. In recent measurements12 on manganite
samples with cleaved surfaces (rather than on those with
polished surfaces as in the experiments mentioned above) it
has been suggested that σ (ω) is better described with a single
curve with a nonintegral power law ω−ν rather than in terms
of a small Drude peak and a broad mid-infrared peak.13 On the

other hand, measurements on thin-film systems14,15 show that
the optical conductivity is dominated by a broad mid-infrared
peak. The thin-film systems are inherently more disordered in
nature (due to surface strain effects, etc.) and hence coherent
features like a Drude peak in the far-infrared region can have
very low spectral weight.

In this paper, using the two-fluid �−b picture proposed and
developed in a series of recent papers,16–23 we present detailed
calculations for the optical conductivity of doped manganites,
which capture many of the key features of the experimental
data discussed above. Needless to say, there have been many
earlier theoretical papers24–33 aimed at describing the optical
properties of manganites. We present a detailed discussion of
these vis-a-vis our work later (see Sec. IV) in this paper.

The two-fluid �−b model17–19,21 pictures the (1 − x) eg

electrons (per site) in the doped manganite as spontaneously
reorganizing themselves into two interpenetrating fermionic
fluids, the large majority being a collection of localized small
polarons (�j ) self-trapped on sites accompanied by large
Jahn-Teller distortions, and a small minority being mobile
band electrons (bi) hopping around on nearly undistorted
Mn sites avoiding the � polarons. It has been shown that
this model explains a number of the characteristic properties
of manganites, e.g., colossal magnetoresistance,17 ubiqui-
tous metal-insulator transitions induced by doping16 or by
temperature,17 nanoscale phase separation,22 and anomalous
temperature-dependent photoemission satellites.23 We use this
same model (described in greater detail in Sec. II) here for
a calculation of the optical properties of doped manganites
for different hole doping x and temperature T (Sec. III).
We find that the real part of the frequency-dependent optical
conductivity σ (ω) indeed has a Drude-like feature, originating
mainly from the b electrons, and a far-infrared peak or
shoulder, connected with the � polarons. Furthermore, there
is a dramatic transfer of spectral weight from the former to
the latter as the temperature increases and crosses Tc, the
magnetic (as well as metal-insulator34) transition temperature.
The results are expected to be directly applicable to the orbital
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fluid regime of doped manganites (e.g., La1−xCaxMnO3 for
0.1 < x < 0.4) under conditions when the quantum coherence
between the polarons and the mobile electrons is suppressed.
We present our results and compare them with experiments
in Sec. IV, where we also discuss at some length the
earlier theoretical work vis-à-vis our work. The concluding
section (Sec. V) mentions some open questions and ways in
which the present calculations need to be and can be further
improved.

II. TWO-FLUID �−b MODEL

The �−b model is represented by the following Hamilto-
nian:

H�b =
∑
i,σ

(ε�−μ) n�iσ −μ
∑
j,σ

b
†
jσ bjσ −

∑
〈jj ′〉σ

t̄jj ′b
†
jσ bj ′σ

+U�b

∑
i,σ,σ ′

n�iσ nbiσ ′ − JH

∑
i

(�s�i +�sbi) · �Si

− J̄F

∑
〈ij〉

�Si · �Sj . (1)

Here, n�iσ is the number operator for an eg electron self-
trapped in a localized polaronic state centered at a site i with a
local Jahn-Teller (JT) distortion, and EJT (≡ −ε�) denotes the
binding energy of the polaron. b

†
jσ creates mobile eg electrons

that hop primarily among undistorted sites j,j ′ with some
average amplitude t̄jj ′ (see the Appendix for details); they
are kept away from the distorted sites where the � polarons
reside by the large Coulomb repulsion term U�b. The chemical
potential μ is adjusted to ensure the constraint (due to the
doping) that the average number of eg electrons per site must
equal (1 − x):

N−1
∑

i

〈ni〉 ≡ N−1
∑

i

∑
σ

(〈n�iσ 〉 + 〈nbiσ 〉) = (1 − x). (2)

For simplicity we have not explicitly exhibited in Eq. (1) the
other Coulomb interactions that are present, such as Ubb and
U��. Because the b electrons are itinerant, and, as we show later,
their concentration is sufficiently small in the doping regions,
in our work we focus on the fact that the effect of the Ubb

term can be treated within a Hartree-Fock (HF) approximation,
which just renormalizes the chemical potential. The local �

electron occupation number n�i ≡ ∑
σ n�iσ is a conserved

quantity and has values 0, 1, and 2. We include the effect
of a large U�� by simply excluding the configurations with
n� = 2. Only U�b ≡ U , which is shown explicitly in Eq. (1),
plays a nontrivial role and is also the highest energy scale
(5–10 eV as estimated from photoemission35 and band-
structure calculations36) in the problem. J̄F , the effective
ferromagnetic coupling between the t2g “core spins” �Si on the
Mn sites, arises from the “virtual double exchange”17–19,21,37

mechanism, due to the fast (nonadiabatic) virtual hopping of an
� electron to a nearest-neighboring site and back, leaving the
local lattice distortion unrelaxed, by paying a lattice energy
cost of 2EJT in the intermediate state, provided that the
neighboring site is empty and the t2g core spins at the two sites

are parallel to each other. For EJT 	 t̄ , this process gives
rise to a new, � occupancy dependent (x dependent), ferro-
magnetic exchange coupling between the t2g core spins of the
form

JF =
[

t̄2

2EJT S2

]
[n�i(1 − nj ) + n�j (1 − ni)]. (3)

For the purposes of this work, where the doping regimes ex-
plored involve no charge ordering, we have replaced this by an
averaged ferromagnetic coupling J̄F ∼ t̄2x(1 − x)/(EJT S2),
and use it as an adjustable parameter.38 JH is the ferromagnetic
Hund’s coupling between the core spin at a site i and the spin
of the eg electron at the same site, whether it is that of the �

polaron (�s�i) or of the b electron (�sbi). It is large (∼2 eV) and
essentially forces the spin of the eg electron to be aligned with
the core spin.

Although the �−b model so far not been rigorously
derived from a microscopic Hamiltonian, there are fairly
compelling arguments one can make17–19,21 as to why it is
the appropriate low-energy Hamiltonian in the orbital liquid
regime (albeit with parameters renormalized from their bare
values) even when EJT is of order t so that the bare bandwidth
D0 	 EJT . For, due to the competing effects of the various
strong interactions present and the filling constraints, the
kinetic-energy gain, by having the eg electrons mobile, gets
suppressed, so the majority of the electrons would rather
become localized polarons and gain JT energy. The t2g core
spins are large enough (S = 3/2) that they can be well
approximated as classical spins S�̂i of length S, where �̂i

are unit vectors that point anywhere on a unit sphere. In
that case, H�b is similar to the well-known Falicov-Kimball39

model (FKM) for nonhybridizing localized (f ) electrons
interacting with itinerant (d or p) electrons. At T = 0, in
the ferromagnetic phase, it in fact reduces to the FKM. The
b electrons move around in the presence of an annealed
random medium, strongly repelled (repulsion U ) from sites
with static � electrons; hence for large U their amplitude is
largest on the undistorted sites unoccupied by the polarons.
At T �= 0, there is also annealed randomness in �̂i , which
scatters b electrons via JH . If we assume that the annealed
randomness is homogeneous, i.e., n̄�i = n̄� and n̄bi = n̄b such
that n̄� + n̄b = (1 − x) and that 〈�̂i〉 = m, then even for
strong U and JH , one can solve this problem16,17,37 within
the approximation of dynamical mean-field theory (DMFT),40

which is exact at dimensionality d = ∞, and is quite accurate
for d = 3. As mentioned earlier, the results for thermody-
namic, spectral, and transport properties, even in the simpler
JH → ∞ limit, give an excellent account of the properties
of manganites. The results for a realistic tight-binding band
structure and a semicircular density of states with bare half
bandwidth D0 are close to each other (for details, see Ref. 37).
Hence in this work41 we study the frequency-dependent
conductivity, i.e., the optical conductivity σ (ω) of the �−b

model in the same framework, i.e., using the propagators for
the � polarons and b electrons obtained within the DMFT,
in the JH → ∞ limit and using a semicircular density of
states.
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III. OPTICAL CONDUCTIVITY IN THE �−b MODEL

The optical conductivity σμν(ω) is the linear response of
the current operator jμ(ω) to an externally applied electric
field E,

〈jμ(ω)〉 = σμν(ω)Eν(ω). (4)

For a system without any of-diagonal long-range order
(ODLRO) (such as superconductivity), the real part of con-
ductivity tensor σμν(ω) is given by42

σ
μν

R (ω) = e2

ω
Im[χμν(ω+)], (5)

where χμν(ω) is the retarded current-current correlation
function defined as

χμν(ω) = − i

h̄

∫ +∞

−∞
dt 	(t)eiωt 〈[jμ(t),j ν(0)]〉. (6)

Equivalently, it can be calculated for the even Matsubara
frequencies, iνm ≡ 2πmkBT , in a thermal Green’s function
or Matsubara formalism as

χμν(iνm) =
∫ β

0
dτ eiνmτ
μν(τ );

(7)


μν(τ ) = −1

v
〈Tτ [jμ(τ )jν(0)]〉

and then analytically continued to real frequencies.42 In order
to proceed with its calculation within the �−b model, we
need to model the current operator jμ within the same
framework.

The current operator will clearly have contributions from
both types of electrons. The contribution from the b electrons,
which we denote jbb, is the easiest to model. Consistent with
Eq. (1) according to which the b electrons hop around with
amplitudes t̄jj ′ on the undistorted sites of the lattice, one has
the standard expression42

j
μ

bb = i

2h̄

∑
〈i,j〉

t̄ijR
μ

ij (b†iσ bjσ − b
†
jσ biσ ). (8)

The second important contribution to the current operator,
which we label j�b, arises from the fast motion of an �

electron (i.e., leaving the lattice distortion at its site frozen) to
a neighboring undistorted site, i.e., as a b electron. Similarly
to the above, we write (see the Appendix for details)

j
μ

�b = i

2h̄
α�b

∑
〈i,j〉

t̄ijR
μ

ij [(�†eiσ bjσ − b
†
jσ �eiσ )

+ (b†iσ �ejσ − �
†
ejσ biσ )]. (9)

Here, for clarity, we have added a subscript e to the �

electron creation and destruction operators to distinguish
them from the operators for creating and destroying the �

polarons. Furthermore, we have multiplied the expression
for j�b by a semiphenomenological parameter α�b � 1 in
order to compensate for the limitations of our modeling
and calculations, for the b electrons are effective degrees of
freedom that represent in an averaged way the eg electrons
of both orbital types on the undistorted sites, whereas the
� electrons are trapped in specific orbital combinations that

are consistent with the “orientations” of the JT distortions at
their sites (see the Appendix for details). The modeling and
the approximate DMFT treatment we use below to calculate
their current current correlations do not capture accurately the
relevant short-range and short-time constraints on their orbital
correlations and the effects arising from the avoidance of the
� polarons by the b electrons. Furthermore, in our modeling
we have completely neglected �−b hybridization effects. α�b

can in principle vary with temperature and doping, but a
microscopic theory that allows one to calculate it taking into
account all the factors that are responsible presents tremendous
theoretical challenges. For the purposes of the present study
we treat it as an adjustable constant.

We do not consider currents of the form j��, which involve
the hopping of an � electron to a neighboring site which is also
distorted, whence it is likely to be occupied in the initial state
and hence all contributions to σ (ω), the optical conductivity,
will involve energy costs of local double occupancy and will
have spectral weights only at very large energy scales (of order
U , corresponding to excitations to the upper Hubbard bands).

Thus within the above level of modeling, where we ignore
quantum coherent hybridization between the � polarons and
the b electrons, and at the energy scales of our interest,
χμν(iνm) can be expressed as the sum

χμν(iνm) = χ
μν

bb (iνm) + χ
μν

�b (iνm) + χ
μν

b� (iνm). (10)

In Fig. 1 we have shown, diagrammatically, the contributions
arising from the diagonal b−b channel and the off-diagonal
�−b channels. In the first process, the oscillatory time-
dependent transport of b electrons generating particle-hole
excitations on undistorted sites directly contributes to the
optical conductivity, termed σbb(ω). In the other processes,
contributing to σ�b(ω), � polarons get excited to a b-like state
on neighboring undistorted sites by temporarily unbinding
from their polaronic clouds, analogous to the Frank-Condon
excitation processes known in molecular spectra.

The total optical conductivity σ (ω) is then given by

σ (ω) = σbb(ω) + σ�b(ω), (11)

where

σbb/�b(ω) = Im[χbb/�b(ω + iδ)]

ω
(12)

with χbb(iνm) = − 1

Nβ

∑
k

v2
kx

∑
σ

∑
n

Gσ
bb(εk,iωn)

×Gσ
bb(εk,iνm + iωn) (13)

bb
Π niω( ) =

νm

niωniω

niω νmi+
b

b

i

Π
l

n =)
b
(iω

niω νmi+
bniω

νmi

l

niω niω

νmi

niω νmi+
l niω

b
+

FIG. 1. Two independent bubble diagram contributions to the
optical conductivity.
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χ�b(iνm) = − (α�b)2

2Nβ

∑
k

v2
kx

∑
σ

∑
n

[
Gσ

�e�e
(iωn)Gσ

bb(εk,iνm

+ iωn) + Gσ
bb(εk,iωn)Gσ

�e�e
(iνm + iωn)

]
. (14)

Here,

Gσ
bb(εk,iωn) = 1

iωn + μ − εk − �σ
bb(iωn)

(15)

is the single-particle propagator of the b electron with
momentum k and spin index σ (which can be up or down),

which is dependent only on εk, as its self-energy �σ
bb(iωn)

is evaluated within the DMFT and is hence local and only
frequency dependent. Their features have been discussed in
detail elsewhere.16,17,37 Gσ

�e�e
(iωn) is the � electron propagator.

In contrast to the b propagator, within the framework of
our modeling the � electron propagator is purely local, and
does not have a momentum dependence. We discuss it further
below.

By using standard techniques42 to evaluate the summations
over the odd Matsubara frequencies above, we get

σbb(ω) = πe2

h̄a

∫ +∞

−∞
Dbb

tr (ε)dε

∫ +∞

−∞
dω′ ∑

σ

Aσ
bb(ε,ω′)Aσ

bb(ε,ω + ω′)
[
nF (ω′) − nF (ω′ + ω)

ω

]
, (16)

σ�b(ω) = πe2(α�b)2

2h̄a

∫ +∞

−∞
Dbb

tr (ε)dε

∫ +∞

−∞
dω′ ∑

σ

[
Aσ

�e�e
(ω′)Aσ

bb(ε,ω′ + ω) + Aσ
�e�e

(ω′ + ω)Aσ
bb(ε,ω′)

] [
nF (ω′) − nF (ω′ + ω)

ω

]
.

(17)

Here Aσ
bb(ε,ω) = − 1

π
Im[Gσ

bb(ε,ω+)] is the energy-dependent
single-particle spectral function of the b electrons, Aσ

�e�e
=

− 1
π

Im[Gσ
�e�e

(ω+)] is the spectral function for the � electrons,
nF (ω) ≡ 1/[1 + exp(βω)] is the Fermi function, and a is the
lattice spacing. Dbb

tr (ε) is the transport density of states for the
b electrons43 defined as

Dbb
tr (ε) ≡ 1

N

∑
k

v2
kxδ(ε − εk). (18)

For the hypercubic lattice in infinite dimensionality it is
proportional to the bare density of states D0(ε) and is given by
Dbb

tr (ε) = t2D0(ε). Hence we use this relation for the purposes
of our work, although for simplicity we use the semicircular
density of states (DOS) for D0(ε).

Gσ
�e�e

(ω) in the above equations is the Green’s function
for the � electrons with spin σ , which can be obtained from
the “polaronic” � state by deconvoluting its polaronic cloud.
The two terms in Eq. (17) correspond to the two processes
in which � electron is either being removed from or put into
a distorted site. As already mentioned, the � states that arise
due to strong coupling of orbitally degenerate eg electrons
to JT distortion are polaronic in nature, and cannot take part
directly in real transport phenomena. Currents are carried by
the original electrons in one of the twofold degenerate eg

orbitals, corresponding to the operator �e. Because of the fast
time scale of electron hopping, the hopping of an �e electron
from a polaronic distorted site to a neighboring undistorted
site is a nonadiabatic process leaving the local lattice distortion
unrelaxed, and causes transitions to high-energy intermediate
states of energy ∼EJT . These are similar to the Frank-Condon
processes in molecular physics. They can be taken into account
by expressing the �e operator as a composite of the � operator
and the (inverse of the) Lang-Firsov transformation factor44

that generates the phonon distortion that characterizes the
polaron. (It is for the same reason that the low-energy scale
quantum amplitudes for the hopping of the � polarons to

the neighboring sites are reduced by the exponentially small
“Huang-Rhys” factor,45 and become sizable only at energies
of order EJT .)

For the purposes of this paper, we model these processes
in a way that captures their essential features while retaining
simplicity in calculations by approximating them as single
band Holstein polaronic states (i.e., ignoring the complexity
of the Jahn-Teller and breathing mode phonon distortions
that accompany the polarons in doped manganites). Then the
Green’s function for � electrons is given by42

G�e�e
(τ ) = exp[−�(τ )]G�p�p

(τ ),

where �(τ ) = g0[(Nph + 1)(1 − e−τωph) + Nph(1 − eτωph)],

Nph = 1

eβωph − 1
with β ≡ 1

kBT
, (19)

g0 ≡ EJT

ωph
is the dimensionless electron-phonon coupling

strength, ωph is the frequency of the (Jahn-Teller/Holstein)
phonons, and G�p�p

(τ ) is the Green’s function of the polaron.
(Here and below we include the subscript p to denote polarons
for clarity of presentation, although in the �−b model we had
not used this subscript, for notational simplicity.)

By using an explicit Matsubara representation of Eq. (19),
followed by a Wick rotation to real frequency, we get
the following expression for the spectral function of the �

electrons:

Alele (ω) = e−g0(2Nph+1)

[
Alplp (ω) +

∞∑
n=1

fn{Alplp (ω − nωph)

×F1(ω,nωph) + Alplp (ω + nωph)F2(ω,nωph)}
]
,

(20)
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where

fn = 2 sinh

[
βnωph

2

]
In{2g0

√
Nph(Nph + 1)}, (21)

F1(ω,nωph) = 1 + 1

eβnωph − 1
− 1

eβ(ω−nωph) + 1
, (22)

F2(ω,nωph) = 1

eβnωph − 1
− 1

eβ(ω+nωph) + 1
, (23)

and In(x) is the familiar modified Bessel function of order n.
For the purposes of the present work, where �−b hybridization
effects are neglected, the polaronic Green’s function is site
diagonal. Furthermore, within the spirit of the dynamical
mean-field treatment of H�b, the polaronic spectral function
Alplp (ω) is well approximated by the simple form46

Alplp (ω) = δ(ω − ε̄�), where ε̄� = ε∗
� − μ, (24)

where ε∗
� is the fully self-consistent renormalized Jahn-Teller

energy level that arises in the DMFT treatment.16,17,37

With this kind of polaronic spectral function we get
the following exact analytical expressions for σ�b(ω);
σ�b(ω) = σ

(1)
�b (ω) + σ

(2)
�b (ω), with σ

(1)
�b (ω) and σ

(2)
�b (ω) being

given by

σ
(1)
�b (ω) = C�b

∫ +∞

−∞
dε D0(ε)

∑
σ

[
Aσ

bb(ε,ω + ε̄�)F3(ω,ε̄�)

+
∞∑

n=1

fn

{
Aσ

bb(ε,ω + ε+
n )F1(ε+

n ,nωph)F3(ω,ε+
n )

+Aσ
bb(ε,ω + ε−

n )F2(ε−
n ,nωph)F3(ω,ε−

n )
}]

, (25)

σ
(2)
�b (ω)=C�b

∫ +∞

−∞
dεD0(ε)

∑
σ

[
Aσ

bb(ε,ε̄� − ω)F3(ω,ε̄�− ω)

+
∞∑

n=1

fn

{
Aσ

bb(ε,ε+
n −ω)F1(ε+

n ,nωph)F3(ω,ε+
n − ω)

+Aσ
bb(ε,ε−

n − ω)F2(ε−
n ,nωph)F3(ω,ε−

n − ω)
}]

.

(26)

Here, F1 and F2 are as defined earlier;

C�b ≡ σ0π
2α2

�bt̄
2 exp[−g0(2Nph + 1)],

F3(ω,ω′) = nF (ω′) − nF (ω + ω′)
ω

;

ε±
n ≡ ε̄� ± nωph and D0(ε) = 2

πD2
0

√
D2

0 − ε2;

with σ0 ≡ e2/(ha) (� 38.05 (k� cm)−1 for a = 1 Å) setting
the basic scale of conductivity in the system, t̄ being the
hopping amplitude for the b electrons. The zero frequency
or dc conductivities can be straightforwardly and separately
calculated by taking the limit ω → 0 of σ (ω) and are explicitly
given by the formulas

σdc
bb ≡ σbb(0) = −Cbb

∫ +∞

−∞
D0(ε)dε

∫ +∞

−∞
dω′

×
∑

σ

[
Aσ

bb(ε,ω′)
]2

n′
F (ω′), (27)

σdc
�b ≡ σ�b(0) = −C�b

∫ +∞

−∞
D0(ε)dε

∑
σ

[
Aσ

bb(ε,ε̄�)n′
F (ε̄�)

+
∞∑

n=1

fn

{
Aσ

bb(ε,ε+
n )F1(ε+

n ,nωph)n′
F (ε+

n )

+Aσ
bb(ε,ε−

n )F2(ε−
n ,nωph)n′

F (ε−
n )

}]
, (28)

where n′
F (x) ≡ [ dnF (ω)

dω
]ω=x , and Cbb ≡ 2σ0π

2t2. For the pur-
poses of the calculations we present in the next section, we
treat D0, JF , and α�b as adjustable parameters. We choose
EJT and U based on known estimates for the LaSr system. We
adjust JF and D0 so as to recover the experimental magnetic
transition temperature Tc and the resistivity at Tc.37 We choose
α�b = 1 but in general α�b � 1 (see the Appendix) for more
details.

IV. RESULTS AND COMPARISON WITH EXPERIMENTS
VIS-À-VIS OTHER THEORIES

The computation of the optical conductivity of the �−b

model using the above formalism is straightforward. First, for
a given choice of the parameters of the model, picked as stated
above, and of doping and temperature, the DMFT is carried out
along the lines that have been well discussed elsewhere.17,18,37

From such a calculation we obtain the b spectral function and
the renormalized � binding energy, ε∗

� . From these we calculate
the optical conductivities as above. We have carried out such
calculations for a wide range of temperatures, and for several
doping values.

As mentioned earlier and discussed in more detail later in
this paper (see Sec. V), because of the neglect of the intersite
�−b coherence effects in the DMFT treatment presented here,
σbb is greatly underestimated at low temperatures. Correcting
this in a fully satisfactory way presents major theoretical chal-
lenges, and we address these issues elsewhere. For the purposes
of this paper, we have tried to correct this in an ad hoc way by
boosting the contribution to the optical conductivity from the
b−b channel by a factor of 8. This gives rise to dc conductiv-
ities close to the experimentally observed values reported in
Ref. 7. As σ�b has its dominant contributions at relatively large
frequencies, we expect that it will be affected very little by
the neglect of the �−b coherence effects, and hence we do not
correct it. In the last section (Sec. V) of this paper we discuss
issues related to �−b coherence effects in greater detail.

First, we consider the canonical system La1−xSrxMnO3

(x = 0.175). This system is barely metallic (xc = 0.16) and
has a ferromagnetic ground state, which upon heating goes to
a paramagnetic insulating state. We use the following param-
eters for our calculations: D0 = 1.245 eV, JF = 72.5 meV,
EJT = 0.535 eV, ωph = 75 meV, and U = 5 eV. With these
parameters the calculated magnetic transition temperature was
found to be Tc = 280 K as compared to the experimental
Tc = 283 K.

In Fig. 2 we have plotted σ (ω) at various temperatures
as indicated. Broadly σ (ω) has features similar to those
in the experimental data mentioned earlier, consisting of a
coherent Drude-like peak in the far-infrared region (ω → 0)
along with a broad peak in the mid-infrared region. In our
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FIG. 2. (Color online) Optical conductivity, σ (ω), for the system
La1−xSrxMnO3 at various temperatures as indicated, for x = 0.175.

calculations,the coherent Drude-like peak arises from the b−b

channel contribution σbb(ω), whereas the mid-infrared peak
arises from the excitation of the polaronic states (� electrons)
present in the system. The position of the mid-infrared peak is
at ω ∼ 2EJT and is comparable to the experimentally observed
energy scale (∼1.5 eV).

As we can see from Fig. 2 the height of the Drude peak
decreases dramatically with increasing temperature up to Tc.
But for temperatures above Tc there is slow building up of
the Drude peak in the far-infrared region. Correspondingly,

as can be observed from Fig. 3(b), the integrated spectral
weight

Ibb(ωc) =
∫ ωc

0
σbb(ω)dω

(with a cutoff frequency ωc, set equal to 3.5 eV) also shows
a similar kind of behavior and becomes extremely small
near Tc. This is to be attributed to the fact that in the �−b

model, the effective b bandwidth shrinks with increasing
temperature due to the increasing scattering from the t2g core
spins, which get increasingly disordered, its bottom eventually
rising above the renormalized � level leading to a metal-
to-insulator transition at Tc; and consequently the average
(thermodynamic) b-electron number per site, n̄b, decreases
rapidly with increasing temperature up to Tc. n̄b again increases
slowly above Tc due to the increasing thermal excitation of
carriers across the insulating gap, as can be observed from
Fig. 3(a). Our results are very similar to what is seen in
many doped manganites, and in particular to the experimental
observations of Okimoto et al.8 Furthermore, n̄b, as well as
Ibb(ωc), is not proportional to m2, in contrast to what arises in
a DMFT study of the pure double exchange (DE) model by
Furukawa.24

On the other hand, the temperature evolution of mid-
infrared peak is significantly different. As is clear from
Fig. 2, with increasing temperatures up to Tc, the spectral
weight under the coherent Drude peak gradually gets trans-
ferred to higher frequencies (mid-infrared region) whereas
above Tc this trend gets reversed and there is a slow rebuilding
of the coherent Drude peak. The integrated spectral weight
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FIG. 3. (Color online) (a) Temperature variation of average (thermodynamic) b-electron number per site, n̄b. Inset: Temperature variation
of square of magnetization, m2. (b) Temperature variation of Ibb(ωc) (see text for definition). (c) Same thing for I�b(ωc) Inset: Change in
I�b(ωc) as a function of m2. (d) Temperature variation of Itot (ωc) ≡ Ibb(ωc) + Ilb(ωc). All the calculations have been done for the system
La1−xSrxMnO3 (x = 0.175).
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FIG. 4. (Color online) (a)–(c) Temperature variation of peak position (p), peak height (h), and peak width (w) of the mid-infrared peak for
the system La1−xSrxMnO3 with x = 0.175. Inset ((c): Peak width of the mid-infrared peak has been indicated for two temperatures T = 9 K
(solid line) and T = 275 K (dashed line).

from the �−b channel,

I�b(ωc) =
∫ ωc

0
σ�b(ω) dω,

decreases slightly with temperature up to Tc [Fig. 3(c)].
(Note the scale on the y axis; the total change is only
about 7.5%.) More interestingly, the slope of the reduction
in spectral weight is found to be proportional to m2, the
square of the local magnetization, as shown in the inset of
Fig. 3(c). The height of the mid-infrared peak (h) as inferred
from the total conductivity initially decreases with increasing
temperature, due to rapid decrease of σbb(ω) and then increases
slowly up to Tc, as shown in Fig. 4(b). The position of the
peak (p) monotonically shifts toward higher frequencies with
increasing temperature, mainly due to shift in local chemical
potential μ [Fig. 4(a)]. The width of the peak (w), shown in
[Fig. 4(c)], initially increases and reaches a saturation value
∼0.78 eV at around T = 150 K but eventually decreases
near Tc.

We note that the total integrated spectral weight Itot (ωc),
shown in Fig. 3(d), also decreases with increasing temperature,
the temperature dependence of the decrease being clearly
dominated by that of Ibb(ωc). The apparent violation of the
optical sum rules, particularly the f -sum rule,∫ ∞

0
σ (ω) dω = −πe2〈τ xx〉

≡ −πe2

2a

∫
dεD0(ε)ε

∫
dω

π
nF (ω) Im[G(ε,ω)],

(29)

is in itself interesting, and is characteristic of strongly
correlated systems. It results from the transfer of spectral
weights to very high energy scales, such as the upper Hubbard
bands due to the changing occupancies of the polaronic levels,
and the upper Hund bands due to the disorder in the t2g spins,
which we have not considered in the calculations above.

So far we have discussed the temperature variation of
the optical conductivity spectra in the canonical system
La1−xSrxMnO3 (x = 0.175). Next we discuss the doping
dependence of optical conductivity spectra. We choose five
La1−xSrxMnO3 systems with their doping values given by x =
0.1, x = 0.14, x = 0.175, x = 0.24, and x = 0.3. The first two
samples have ferromagnetic insulating (FI) ground states and
undergo transitions to paramagnetic insulating (PI) states upon
heating. All the other samples have ferromagnetic metallic
(FM) ground states, but upon heating undergo transitions either
to paramagnetic insulating states (in the case of x = 0.175,
x = 0.24) or to a paramagnetic metallic (PM) state (in the
case of x = 0.3).

In our calculations, for all the systems we use the same
set of parameters except for different ferromagnetic exchange
coupling JF (which, being generated by the virtual double ex-
change mechanism in our model, is indeed doping dependent).
We choose JF = 40, 55, 72.5, 85.7, and 92.5 meV for x = 0.1,
x = 0.14, x = 0.175, x = 0.24, and x = 0.3, respectively. The
calculated Tc’s were found to be 150, 213, 280, 340, and 370 K,
respectively, as compared to their experimental values 145,
215, 283, 338, and 369 K.

In Fig. 5 we have shown the doping dependence of
total optical conductivity σ (ω) for a temperature T = 9 K.
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FIG. 5. (Color online) Doping dependence of σ (ω) at a fixed
temperature T = 9 K for the system La1−xSrxMnO3. Inset: Contri-
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For systems with insulating ground states, the “coherent”
Drude part in the far-infrared region is dramatically, but
understandably, absent; and σ (ω) is completely dominated by
the incoherent, broad, mid-infrared peak. This is due to the
fact that in such systems the number of thermally excited b

electrons is exponentially small (in our DMFT calculations16

the the effective b band is so narrow due to the strong exclusion
scattering from the � polarons that its bottom is above the
renormalized � level, so that the b band is essentially empty
except for the thermally excited carriers) and their contribution
to σbb(ω) as well as σ (ω) is negligible. As we increase the
doping the effective b bandwidth increases and the ground
state of the system changes from a ferromagnetic insulating
state to a ferromagnetic metallic state16 at xc = 0.16. As
we have already discussed in the last section, for a barely
metallic system (x = 0.175), σ (ω) consists of a far-infrared
coherent Drude peak and an incoherent broad mid-infrared
peak. As we increase the doping further the Drude peak height
as well as spectral weight under the Drude peak increases
substantially. For the optimally doped system (x = 0.3), the
total conductivity σ (ω) is overwhelmingly dominated by the
coherent Drude part. So, as we go from a deep insulating
state (x = 0.1) to a good metallic state (x = 0.3) σ (ω) shows
a crossover from the one dominated by the incoherent mid-
infrared spectrum to that dominated by the coherent “Drude”
spectrum.

The integrated spectral weights Ibb(ωc), I�b(ωc), and Itot(ωc)
increase monotonically with increasing doping as can be
observed from Fig. 6. However, the contribution from the b−b

channel Ibb(ωc) increases dramatically above xc as compared
to I�b(ωc). We find that Ibb(ωc) fits a doping dependence
of the form a(x − xc) + b(x − xc)2 for x > xc; whereas the
contribution from the �−b channel I�b(ωc) as well as the total
integrated spectral weight Itot(ωc) in the insulating systems
is proportional to the doping x (a similar result has been
mentioned in the study by Chen et al.33). The peak height
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FIG. 6. (Color online) Integrated spectral weights at T = 9 K as
a function of doping x for the system La1−xSrxMnO3. Inset : Detail
variation of I�b.

for σ�b(ω) increases with x but the peak position shifts toward
lower frequency as can be observed from inset of Fig. 5.

The above discussions show that our results are similar
to those seen in a wide class of doped manganites, and in
particular with the experimental observations from the Tokura
group.7,8 It is also fair that we compare and contrast our results
with results from various earlier theoretical calculations of the
optical conductivity of doped manganites. We do this in the
rest of this section.

The pure double exchange model (which can be recovered
from the �−b model if EJT is driven positive, so that there
are no polarons in the system, all the electrons are mobile b

electrons, and JF is set to zero) was one of the earliest models
that was proposed47 as an explanation for the ferromagnetism
seen in the manganites, and calculations of the optical
conductivity have been made for this model within a DMFT
framework.24,30 For a finite JH , in the ferromagnetic metallic
(FM) state, σ (ω) indeed shows a two-peak structure consisting
of a Drude-like peak arising from intraband transitions in
the lower spin split (Hund) band, and a peak at ω ∼ 2JH

arising from inter-Hund-band transitions, from the lower to the
upper spin split band. However, by all accounts the relevant
values of JH appropriate to the manganites are around 2 eV,
whence the position of this peak would not be consistent
with the experimentally determined mid-infrared peak position
at ω ∼ 1−2 eV. Also, the detailed temperature and doping
dependence of σ (ω) for this model has not been reported, and
is unlikely to be consistent with the data. But more seriously,
for systems with ferromagnetic insulating (FI) ground states
this model cannot be applied, as the pure double exchange
model always has a FM ground state, and cannot describe FI
ground states or FI to FM transitions as a function of doping.

Kumar and Majumdar25 treated a similar, single orbital,
double exchange model, but in the limit of infinitely strong
Hund’s coupling, and with added quenched disordered site
energies, numerically on large clusters. Their calculated σ (ω),
for temperatures T � Tc, shows only a Drude peak for the
pure case, but acquires an incoherent mid-infrared peak in
the presence of the quenched disorder, the scale of the peak
position being determined by the strength of the disorder
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potential. However, with increasing temperature the mid-
infrared peak height in this work decreases, which is the
opposite trend to that seen experimentally.

In a subsequent approach Kumar et al.26 added Holstein
phonons to the above-mentioned double exchange model.
The phonons were treated as annealed classical displacement
variables to which electrons are coupled through their local
density ni with a coupling strength λ. For sufficiently large λ

they find that quenched disorder can promote the self-trapping
of carriers in such a way that it can give rise to a (low-
temperature) metal (M) to (high temperature) insulator (I )
transition, whereas, in the absence of quenched disorder, i.e., in
the pure Holstein–double exchange model one gets only M-M
(for weak electron-phonon coupling) or I -I transitions (for
strong electron-phonon coupling). Sen et al.27 have considered
essentially the same model with an added antiferromagnetic
superexchange interaction between the core spins, as well
as a more realistic (for manganites) two-orbital model. They
have studied the properties of these models, again numerically,
using exact diagonalization of the fermionic sector for a given
configuration of the classical phonons and t2g core spins, which
configurations are then updated via a Monte Carlo simulation
(MC) procedure, but on square lattices with fewer sites, up to
12 × 12, and find similar results. To the best of our knowledge
no studies of optical conductivity in these models at a level
comparable to what we have discussed in our paper have been
reported so far for these models.

In all of these cases, the physics behind polaron for-
mation is the localization of charge carriers arising due to
the combination of the quenched disorder (whose source
in the real materials is the random substitution of A-site
cationic species), and the annealed disorder arising from
the phonon displacements and the spin disorder. Some of the
consequences arising from such classical polaronic states,
and especially in the work by Kumar et al. and Sen et al.,
are at a qualitative level not very different from those in the
two-fluid �−b model without the coherence effects, and thus
are also consistent with several experimental features of the
manganites.

However, although all doped manganites are indeed disor-
dered, it is very unlikely that the disorder scales can be as large
(eV ) as required by these models in order for them to generate
the experimentally observed features, for the quenched disor-
der potential arises from the dopant impurities, which are well
away from the Mn sites, and there is evidence that it is strongly
dielectrically screened even in the insulating manganites (see
Ref. 22 for a discussion and references). Furthermore, they
cannot explain certain important experimental results like the
very strong isotope dependence of Tc, the sign reversal of Hall
resistivity at low temperatures, etc., which depend crucially on
the existence of the polaron-mobile electron coherence scale.
The two-fluid model discussed here in principle includes the
quantum dynamics of phonons in as much as it gives rise
to the �−b coherence effects (via the Huang-Rhys factor),
although the detailed calculations presented in our paper have
not included these coherence effects, and have focused more
on the mid-infrared regime where the coherence effects are
unlikely to play a prominent role.

Millis, Muller and Shraiman28 were the first to emphasize
the importance of including the Jahn-Teller electron-phonon

coupling in models of manganites in order to obtain insulating
states at finite doping. While their model included doubly
degenerate eg electrons coupled to both the Jahn-Teller modes
(Q2 and Q3) the phonons were treated only as adiabatic
or classical displacement variables, and without including
co-operative JT effects. In a companion work,29 t2g core
spins (treated classically as in our work) were included
as well. The models were studied using DMFT, as here.
They found that the model does indeed produce insulating
states if the dimensionless electron-phonon coupling λe−ph

is strong enough. However, there are no metal-to-insulator
transitions with changes of doping or of temperature—if λe−ph

is strong enough to generate an insulator at low doping,
the system stays insulating for increased doping as well,
and vice versa. Thermal transitions are also either metal to
(bad) metal, or insulator to insulator (though in this case
there are portions of the temperature-dependent resistivity
at intermediate temperatures that “look metallic”). These
limitations are also reflected in the optical conductivity (see
Figs. 7 and 10 of Ref. 29)—σ (ω) has either a Drude peak
or a mid-infrared peak, but one does not get both at low
temperatures, with transfers of spectral weights as a function of
doping or temperature, as seen experimentally and as obtained
in our work.

Yunoki et al.31 considered essentially the same model as
in Ref. 29, but with an added antiferromagnetic exchange
between the t2g core spins. The model was studied numerically,
using Metropolis Monte Carlo methods, on one-dimensional
(1D) lattices of up to 22 sites, 2D cluster of size up to 42 sites,
and 3D clusters of up to 43 sites, for temperatures down to
1/50 (in units of t). The results found are qualitatively similar
to those of Ref. 29. Optical conductivities were calculated
only for the 1D models, it being suggested that the results in
two and three dimensions would be similar. If λe−ph is not
big enough (results shown for λe−ph = 1 and a doping of 0.3),
σ (ω) has a Drude peak at low temperatures. As the temperature
is increased, leading to a bad metal, the Drude peak drops,
and a peak appears at finite frequency that gradually moves
outwards to higher frequencies as T increases. Though these
results share some features of the experimental observations
of Takenaka et al.12 they do not show the two-peak structure
observed in the wide class of doped manganites. For large
λe−ph (1.5), σ (ω) has what seems like a mid-infrared peak
(at ω ∼ 4t ∼ 0.8 eV for x = 0), but again, the peak moves
to smaller frequencies with doping. This is again very
different from the behavior seen in experiments and in our
work.

The work of Allen and Perebeinos32 comes the closest
in spirit to the work we have presented in this paper. They
used a model for the parent compound LaMnO3, which is
similar to that considered in Ref. 29, but keeping the coupling
of the eg electrons only to the Q3 mode, corresponding
to the orthorhombic Jahn-Teller distortions. However, they
included cooperative JT effects, and intraorbital Coulomb
correlation effects between the eg electrons in the U = ∞
limit (which effectively projects out one orbital from the
Hilbert space). The model was again studied with the electron-
phonon coupling treated under an adiabatic approximation
(i.e., treating the distortions as purely classical variables), the
ground state of the system being inferred through an exact
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diagonalization of the model on a lattice comprising of four
unit cells. Some effects of quantized lattice vibrations were
added heuristically (as we have done in the present work)
subsequently, by arguing that if an additional hole is added
on to this ground state then it can become site localized
provided the electron-phonon interaction is strong enough
and one treats various delocalization effects perturbatively.
The calculated optical conductivity showed a mid-infrared
peak arising due to Frank-Condon excitations of the phonon
sidebands.

This work was later extended33 to lightly hole doped
systems (x ∼ 0.1) and it was shown, by treating electron-
phonon coupling in the Born-Oppenheimer approximation and
various delocalization effects perturbatively, that the doped
holes get self-trapped and hence give rise to nearly site
localized small polaronic states. The optical spectra obtained
from excitation of these again give rise to a mid-infrared peak,
whose integrated spectral weight is proportional to doping.
It is clear that this work contains several of the ingredients
present in our model, and in a very similar spirit. However, the
method of exact diagonalization is limited to small clusters
and small doping regimes, and cannot access the doping
driven magnetic and insulator-metal transitions, or the thermal
transitions.

By contrast, in our work, by adding in a second fluid
of mobile b electrons to such a fluid of polarons, including
Coulomb interaction driven exclusion effects between the
two fluids, and treating the model in the DMFT framework,
we are able to understand all these as well as several other
observed phenomena in manganites in a simple way, and
perform calculations appropriate to bulk systems, with the
results discussed above.

V. CONCLUSION AND PROSPECTS

In summary, in this paper we have presented a study of the
temperature evolution as well as the doping dependence of
the optical conductivity of doped rare-earth manganites based
on the recently proposed two-fluid �−b model. As shown
in an earlier series of papers, with choices of parameters
that are natural for these systems this model can reproduce
the experimentally observed phase diagram for a significant
doping range (e.g., 0.05 < x < 0.4 for La1−xCaxMnO3 and
La1−xSrxMnO3) and hence can be applied for systems with
both metallic and insulating ground states.

In the first part of the presentation of our results we
discussed the temperature dependence of σ (ω) for the canon-
ical system La1−xSrxMnO3 (x = 0.175). This system has a
ferromagnetic metallic ground state and goes to a paramagnetic
insulating state upon heating. At low temperatures σ (ω)
consists of a coherent Drude peak in the far-infrared region,
arising from intraband transitions of b electrons, and a broad
peak in the mid-infrared region, due to Frank-Condon-like
excitations from polaronic states. This is a simple and
natural explanation for the two-peak structure seen in several
experimental findings. The energy scale of the peak position
(ω ∼ 2EJT ) is also quite consistent with experiments. Upon
heating the metallic system, the Drude peak as well as the
spectral weight under this peak decreases quite rapidly as the
b band gets depopulated due to the reduction of its effective

bandwidth via double exchange induced scattering from
the increasing disorder of the core spins. The high-temperature
spectrum is therefore dominated by the mid-infrared peak only.
The height of the mid-infrared peak initially decreases and
then increases monotonically up to Tc and the position of
the peak shifts to higher frequencies. The width of the peak
initially increases, then nearly saturates at high temperatures,
but eventually decreases near Tc. Most interestingly, with
increasing temperature up to Tc spectral weight gets transferred
from the far-infrared Drude region to the mid-infrared region,
over energy scales that are much higher than kBT . Above Tc

the trend gets reversed.
In the second part we presented a systematic study of

the doping dependence of σ (ω). We showed results for five
different systems x = 0.1, x = 0.14, x = 0.175, x = 0.24,
and x = 0.3. With a suitable choice of parameters we have
reproduced magnetic transition temperatures Tc, close to
experimental Tc. The first two systems have insulating ground
states and the remaining systems have metallic ground states.
For the insulating systems, corresponding to low x, σ (ω)
consists only of the broad mid-infrared peak; the Drude peak
is absent as only an exponentially small number of thermally
activated mobile electrons populate the b band. As we increase
the doping x the model shows a transition from insulating
to metallic ground states at a critical doping xc. On the
metallic side b-electron numbers, and hence the integrated
spectral weight, increase dramatically with increasing doping
because of the increase in bandwidth (D ∝ √

x for U = ∞) as
well as the decrease in Coulomb correlation effects (reduced
scattering from the decreasing number of � electrons). Metallic
systems close to xc show a two-peak structure as has been
discussed in the last paragraph but close to optimal doping
σ (ω) is overwhelmingly dominated by the Drude part. So,
with increasing doping σ (ω) shows a crossover from the mid-
infrared dominated spectra to the Drude dominated spectra.
All these trends are again in agreement with experiments in a
wide class of manganites.

In the present paper we have refrained from making
a detailed, quantitative comparison of the σ (ω) from our
calculations with experimental data. The main reason is that,
as pointed out elsewhere as well,18,19,21 in the present study we
have neglected the effect of intersite �−b hybridization and the
consequent coherence effects, which are especially important
for the metallic systems for ω,kBT � kBTcoh(∼5−10 meV).
This results in a much exaggerated scattering of the b electrons
from the random distributions of the � polarons down to the
lowest temperatures, causing the overall size of our calculated
dc conductivities (and hence also of the Drude conductivities)
to be much smaller (i.e., the resistivities much larger) than
what is observed in many manganites. Since σbb involves two
b propagators, and σ�b only one, the exaggerated scattering
of the b electrons does not affect the two quantities to the
same degree. Furthermore, the dominant contributions to σ�b

occur at mid-infrared frequencies, where the �−b coherence
effects are not operative. Hence to compensate partly for this,
in this paper we boosted our calculated σbb by a factor of
8. However, to the extent that in the theory presented here
we (1) do not yet have a microscopic theory for the possible
doping and temperature dependence of this factor, or of the
orbital correlations encoded in α�b (see the Appendix), both
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of which will affect the relative contributions of the Drude
and the mid-infrared contributions to the total conductivity,
(2) have taken the JH → ∞ limit, thereby suppressing the
contributions to the optical conductivity from the upper Hund
bands, the tails from which could contribute in the mid
infrared region, and (3) have not included realistic band-
structure effects, a detailed quantitative comparison might not
be very meaningful. We note that the same �−b coherence
issues are also presumably responsible for the difference
between the temperature and doping dependence of optical
conductivities from samples with cleaved12 versus polished7,8

surfaces.13 Our expectation is that the polishing of the surfaces
generates substantial amount of stresses and oxygen disorder
well into the bulk, suppressing �−b coherence effects, and
rendering our calculations more applicable. On the other
hand, in very high quality single-crystal samples with cleaved
surfaces and at doping values well into the metallic regime,
the coherence effects could become sufficiently prominent
so as to render the JT distortions dynamic, dramatically
reduce polaronic effects, substantially increase the Drude peak,
and suppress the mid-infrared contribution, as seen in the
experiments by Takenaka.12 Even within a DMFT framework,
the inclusion of �−b coherence effects is very challenging, as
the effective impurity problem is no longer exactly soluble,
and requires sophisticated techniques such as the numerical
renormalization group (NRG).41 We hope to address these
effects in future work.
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APPENDIX

For a system whose electronic states are labeled by orbital
and spin indices, the expression for the current density operator

jμ on a lattice is given by

jμ = i

2h̄

∑
〈i,j〉

t
αγ

ij R
μ

ij (a†
iασ ajγ σ − a

†
jγ σ aiασ ), (A1)

where R
μ

ij = R
μ

i − R
μ

j is the μth component of the relative
displacement vector Rij between site i, described by Ri , and
a neighboring site j , described by Rj , and the repeated Greek
indices represent the orbital indices and are summed over.
For manganites, the specifics of the relationship of the �e

and b electron creation operators to the microscopic twofold
degenerate eg electron creation operators depend on the details
of the modeling of the JT phonons, and are not of crucial
importance for the purposes of this paper. For example, when
the JT phonons are treated in an approximation which neglects
the cooperative JT effects, then on the distorted sites,

b
†
iσ ≡ cos

(
θi

2

)
a
†
i1σ + sin

(
θi

2

)
a
†
i2σ , (A2)

�
†
eiσ ≡ − sin

(
θi

2

)
a
†
i1σ + cos

(
θi

2

)
a
†
i2σ , (A3)

where θi ≡ tan−1(Q2i/Q3i) is an angle variable that deter-
mines the “orientation” of the local distortion in terms of
the amplitudes of the two JT modes Q2i and Q3i . On the
undistorted sites, among which the b electrons primarily move,
b
†
iσ can then be any linear combination of the two eg creation

operators. We do not keep track of the orbital labels in this
paper, assuming that they get averaged over in the “orbital
liquid” doping regimes that we focus on in this paper. For
a discussion of how one might treat these in contexts where
orbital correlations are important, see Ref. 20.

It is important to mention that at a given distorted site
if we express the electron phonon Hamiltonian, involving
the twofold degenerate eg electrons coupled to the two JT
modes Q2i and Q3i whose dynamics is described by quantum
mechanical phonons, then in the above basis {bi,�ei}, in the
limit of strong electron-phonon coupling, g0(≡ EJT

ωph
) 	 1,

we get the broad band (bi) and polaronic (�i) states and
subsequently in a lattice description the hopping amplitude
of polaronic �i states get renormalized by the Huang-Rhys
factor exp{−EJT /2ωph} (see Ref. 48 for more detail).

Now if we express the current operator jμ in b
†
iσ and �

†
eiσ

operators then we get

jμ = i

2h̄

∑
〈i,j〉

R
μ

ij

[
αbb

ij

(
b
†
iσ bjσ − b

†
jσ biσ

)+ α�b
ij

(
�
†
eiσ bjσ − b

†
jσ �eiσ

)+ αb�
ij

(
�
†
eiσ bjσ − b

†
jσ �eiσ

)+ α��
ij

(
�
†
eiσ �ejσ − �

†
ejσ �eiσ

)]
. (A4)

Here onwards � will correspond to �e unless mentioned otherwise. The various coefficients αbb
ij , etc. are given by

αbb
ij = t11

ij cos
θi

2
cos

θj

2
+ t22

ij sin
θi

2
sin

θj

2
+ t12

ij cos
θi

2
sin

θj

2
+ t21

ij sin
θi

2
cos

θj

2
, (A5)

α��
ij = t11

ij sin
θi

2
sin

θj

2
+ t22

ij cos
θi

2
cos

θj

2
− t12

ij sin
θi

2
cos

θj

2
− t21

ij cos
θi

2
sin

θj

2
, (A6)

α�b
ij = t22

ij cos
θi

2
sin

θj

2
− t11

ij sin
θi

2
cos

θj

2
+ t21

ij cos
θi

2
cos

θj

2
− t12

ij sin
θi

2
sin

θj

2
, (A7)

αb�
ij = t22

ij sin
θi

2
cos

θj

2
− t11

ij cos
θi

2
sin

θj

2
+ t12

ij cos
θi

2
cos

θj

2
− t21

ij sin
θi

2
sin

θj

2
. (A8)
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We write down the contribution for χμν(iωn) in various incoherent channels as

χμν(iωn) = χ
μν

bb (iωn) + χ
μν

�� (iωn) + χ
μν

�b (iωn) + χ
μν

b� (iωn). (A9)

The “polarization bubble” in the b−b channel is given by



μν

bb (τ ) ∝
∑
〈i,j〉

∑
〈m,n〉

R
μ

ijR
ν
mn

〈
αbb

ij αbb
mn

〉[
Gbb

mjσ (τ )Gbb
inσ (−τ ) − Gbb

miσ (τ )Gbb
jnσ (−τ ) − Gbb

njσ (τ )Gbb
imσ (−τ ) + Gbb

niσ (τ )Gbb
jmσ (−τ )

]
(A10)

and a similar term for the �−� channel with b replaced by �. For the off-diagonal channel �−b we have



μν

�b (τ ) ∝
∑
〈i,j〉

∑
〈m,n〉

R
μ

ijR
ν
mn

[〈
α�b

ij αb�
mn

〉{
Gbb

mjσ (τ )G��
inσ (−τ ) + G��

niσ (τ )Gbb
jmσ (−τ )

}
− 〈

α�b
ij α�b

mn

〉{
G��

miσ (τ ) × Gbb
jnσ (−τ ) + Gbb

njσ (τ )G��
imσ (−τ )

}]
. (A11)

Under orbital liquid (i.e., there is no long-range orbital order) approximation such terms will vanish unless indices m,n are not
equal to indices i,j , etc.

Under single site DMFT approximation we express the various “polarization bubbles” in terms of site diagonal Green’s
functions involving two sites i and j as



μν

bb (τ ) ∝ −
∑
〈i,j〉

R
μ

ijR
ν
ij

〈
αbb

ij

(
αbb

ij + αbb
ji

)〉[
Gbb

iiσ (τ )Gbb
jjσ (−τ ) + Gbb

jjσ (τ )Gbb
iiσ (−τ )

]
(A12)

and for the off diagonal �−b channel



μν

�b (τ ) ∝ −
∑
〈i,j〉

R
μ

ijR
ν
ij

〈
α�b

ij

(
α�b

ij + αb�
ji

)〉[
G��

iiσ (τ )Gbb
jjσ (−τ ) + Gbb

jjσ (τ )G��
iiσ (−τ )

]
(A13)

and similar expression for 

μν

b� (τ ) with the replacement b ↔ �. 〈· · ·〉 represents average over thermal and orbital degrees of
freedoms. We now write down orbital dependant various hopping matrix elements for manganites,

t11
x = −

√
3t12

x = −
√

3t21
x = 3t22

x = 3t0

4
, (A14)

t11
y =

√
3t12

y =
√

3t21
y = 3t22

y = 3t0

4
, (A15)

t11
z = t12

z = t21
z = 0; t22

z = t0. (A16)

By explicitly putting the matrix elements we get



xx/yy

bb (τ ) ∝ −
∑
〈i,j〉

(
R

x/y

ij

)2
[

5t2
0

4
ξij + 3t2

0

4
ζij

][
Gbb

iiσ (τ )Gbb
jjσ (−τ ) + Gbb

jjσ (τ )Gbb
iiσ (−τ )

]
, (A17)


zz
bb(τ ) ∝ −

∑
〈i,j〉

(
Rz

ij

)2
2t2

0 ξij

[
Gbb

iiσ (τ )Gbb
jjσ (−τ ) + Gbb

jjσ (τ )Gbb
iiσ (−τ )

]
, (A18)

and for the off-diagonal process we will get



xx/yy

�b (τ ) ∝ −
∑
〈i,j〉

(
R

x/y

ij

)2
[

5t2
0

4
ζij + 3t2

0

4
ξij

][
G��

iiσ (τ )Gbb
jjσ (−τ ) + Gbb

jjσ (τ )G��
iiσ (−τ )

]
, (A19)


zz
�b(τ ) ∝ −

∑
〈i,j〉

(
R

x/y

ij

)2
2t2

0 ζij

[
G��

iiσ (τ )Gbb
jjσ (−τ ) + Gbb

jjσ (τ )G��
iiσ (−τ )

]
, (A20)

where 〈
cos2 θi

2
cos2 θj

2

〉
= ξij =

〈
sin2 θi

2
sin2 θj

2

〉
, (A21)〈

cos2 θi

2
sin2 θj

2

〉
= ζij =

〈
sin2 θi

2
cos2 θj

2

〉
. (A22)

Evaluation of ξij and ζij requires detail modeling of the short-range orbital correlation effects and is beyond the scope of the
simplistic �−b model used here.
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However if we assume that the orbital correlations are only nearest neighbor and translationaly invariant then we can replace
ξij and ζij by its nearest-neighbor constant values ξ0 and ζ0. For such a case we can parametrize ξ0 and ζ0 by a single parameter
α as

ξij = ξ0 = 1
4 (1 + α) and ζij = ζ0 = 1

4 (1 − α). (A23)

The ratio between the diagonal (b−b) and off-diagonal (�−b,b−�) channels (averaged over all three directions) is then λ = 2−α
2+α

.
Hence the diagonal and off-diagonal channels contribute to the total optical conductivity in the ratio 1 : λ. The prefactor α�b,
appearing in Eq. (9) for current density operator j

μ

�b, is simply then
√

λ.
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