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We calculate one-loop polarization in bilayer graphene in the four-band approximation for arbitrary values
of frequency, momentum, and doping. At low and high energy our results reduce to the polarization functions
calculated in the two-band approximation and in the case of single-layer graphene, respectively. The special cases
of static screening and plasmon modes are analyzed.
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I. INTRODUCTION

Graphene, a one-atom-thick layer of graphite, has attracted
a lot of attention from both theoreticians and experimentalists
since its fabrication.1 Quasiparticle excitations in graphene
have a linear dispersion at low energies and are described by
the massless Dirac equation in 2 + 1 dimensions. Theoretically
such behavior was predicted long ago,2 and its numerous
consequences were experimentally checked after the discovery
of graphene in the laboratory.

In contrast to the case of single-layer graphene (SLG),
low-energy excitations of the bilayer graphene (BLG) have
a parabolic spectrum, although the chiral form of the effective
two-band Hamiltonian persists because the sublattice pseu-
dospin is still a relevant degree of freedom. This changes many
electronic properties of the material (for a review, see Refs. 3
and 4) compared to the case of monolayer graphene. However,
the low-energy approximation in bilayer graphene is valid only
for small doping n < 1012 cm−2, while experimentally doping
can attain ten times larger densities. For such a large doping,
the four-band model5 should be used instead of the low-energy
effective two-band model.

In the literature, the screening effects in bilayer graphene
have mainly been reported within the low-energy effective
two-band model6,7 and in the presence of a magnetic field.8,9

Dynamical polarization plays an important role for finding
plasmon excitations as well as for studying the gap equation
and excitonic condensates in both single-layer10,11 and bilayer
graphene.7,9 Some attempts to obtain analytical results in
the four-band model for bilayer graphene were reported in
Refs. 12–14. An exact calculation of the polarization function
in the four-band model is interesting also from the purely
theoretical viewpoint, because then we can see how the known
results for the SLG (Refs. 15 and 16) and the two-band BLG
(Ref. 17) are recovered as limiting cases.

Recently, a lot of attention has been paid to investigation
of the properties of the polarization operator in SLG.18–22 The
most general expression for dynamical polarization of SLG at
finite temperature, chemical potential, constant impurity rate,
quasiparticle gap, and magnetic field is given in Ref. 23.

In this paper, we calculate the BLG dynamical polarization
in the four-band model within the random phase approximation
(RPA) for arbitrary wave vector, frequency, and doping. Our
results can be considered as an extension of the results obtained
in Ref. 13, although those results were obtained in a slightly
different approach. In Sec. II we describe the model used
and present our main result for the polarization function.

We consider in Sec. III A the static polarization function and
compare it with the corresponding SLG and two-band BLG
results. In Sec. III B we focus on the long-wavelength limit
and study plasmons. Finally, we provide the details of our
calculations in the Appendix.

II. RPA CALCULATION

We model BLG in the Bernal stacking arrangement,5 where
for two hexagonal lattices one sublattice of the bottom layer
is a near neighbor of the opposite sublattice of the top layer.
In the tight-binding approximation, we have the following
Hamiltonian:

H =
∑
k,σ

ψ
σ, +
k Hkψ

σ
k + 1

2

∑
k

2∑
α,β=1

ρα
k Vαβ(k)ρβ

−k. (2.1)

Here ψσ
k = (aσ

1 (k),bσ
1 (k),aσ

2 (k),bσ
2 (k))T , and aασ (k) and

bασ (k) are destruction operators of the Bloch states of the
two triangular sublattices on the graphene layers α = 1,2
with the additional flavor index σ that encodes spin and
valley. Further, ρα

q is the electron density on layer α, V11(k) =
V22(k) = 2πe2/(κk) is the Coulomb interaction of electrons
on the same layer, and electrons on different layers interact
via V12(k) = V21(k) = V11(k)e−kd , where d is the distance
between the layers and κ is the dielectric permittivity of
the substrate. The one-particle Hamiltonian has the following
form:

Hk =

⎛⎜⎜⎜⎝
0 ξε(k) 0 t⊥

ξε∗(k) 0 0 0

0 0 0 ξε(k)

t⊥ 0 ξε∗(k) 0

⎞⎟⎟⎟⎠ , (2.2)

where t⊥ ∼ 0.4 eV is the interlayer hopping amplitude,
ε(k) = h̄vF (kx + iky), and the vector k = (kx,ky) describes
a deviation from the K (ξ = 1) and K ′ (ξ = −1) points in the
Brillouin zone.24 Below we will consider only the K valley.
The one-particle Hamiltonian can be diagonalized with the
help of the unitary matrix U . Then one obtains the following
four-band spectrum:

Hk = U−1
k diag(E+

k , − E+
k ,E−

k , − E−
k )Uk, (2.3)

E±
q =
√

(h̄vF k)2 + t2
⊥/4 ± t⊥/2 . (2.4)

In what follows, for simplicity we set t⊥ = t and rescale all
momenta by k → k/h̄vf . Then the Fermi momentum equals
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kF = √
μ(μ + t) and the charge density at zero temperature

is given by n ≈ k2
F /t2 × 1013 cm−2. The charge density n =

1012 cm−2 corresponds to μ/t = 0.1, while the higher density
n = 1013 cm−2 corresponds to kF = t and μ/t ≈ 0.6. Here μ

is the chemical potential (Fermi energy). In the usual units,
kF = t corresponds to kF ≈ 0.06 Å−1.

If we denote the polarization matrix as
−i〈ρα(ω,k)ρβ(−ω̃,k̃)〉 = δ(3)(k − k̃)2�αβ(k), then the
interaction potential in the RPA is given by

V eff
11 (k) = k − α(1 − e−2kd )�11

kε(ω,k)[k − α(1 − e−kd )(�11 − �12)]
, (2.5)

V eff
12 (k) = ke−kd + α(1 − e−2kd )�12

kε(ω,k)[k − α(1 − e−kd )(�11 − �12)]
, (2.6)

ε(ω,k) = 1 − α(1 + e−kd )

k
(�11 + �12). (2.7)

Here α = e2/(h̄vF κ) is the effective coupling constant in
graphene and d ≈ 3 Å is the distance between the graphene
layers, which is relatively small, so in all exponents we can
set d = 0 (even for the largest possible momentum e−kF d ≈
0.85). Then we have V eff

11 = V eff
12 = 1/kε(ω,k), where the

dielectric permittivity equals ε(ω,k) = 1 − α�(ω,k)/k with
� ≡ 2(�11 + �12). The system is degenerate with respect
to spin and valley degrees of freedom; therefore now we
will consider polarization for one flavor degree of freedom:
� → �/Nf , Nf = 4. Then the one-loop polarization is given
by

�(ω,k) = T

∞∑
n=−∞

∫
d2q

2π
TrG(i�n,q)G(i�n + iωm,q + k).

(2.8)

Summation over the Matsubara frequency can easily be done.28

Then, performing the analytic continuation through the re-
placement iωm → ω + i0, we obtain the retarded polarization
function as

�(ω,k) =
∫

d2q

2π

∑
α,α′=±1

∑
λ,λ′=1,2

× nF

[
(−1)λEα

q

]− nF

[
(−1)λ

′
Eα′

q+k

]
(−1)λEα

q − (−1)λ′
Eα′

q+k − ω − i0

×Fλ+1−α,λ′+1−α′ (q,q + k), (2.9)

where the indices λ and α denote bands and Fij is a 4 × 4
matrix responsible for the chiral structure. It is defined as
follows:

Fij (q,p) = Tr(Z−1�iZ�j ), Z = U−1
q Up, (2.10)

and �j is a diagonal matrix with all zero elements except for
unity at position j . We find

F (q,p) =

⎛⎜⎜⎜⎝
U++ V −− V −+ U+−

V −− U++ U+− V −+

V +− U−+ U−− V ++

U−+ V +− V ++ U−−

⎞⎟⎟⎟⎠ , (2.11)

where

Us u = E(s)
q E(u)

p

4E
(0)
q E

(0)
p

(
1 + su

qp cos θqp

E
(s)
q E

(u)
p

)2

, (2.12)

V s u = E(s)
q E(u)

p

4E
(0)
q E

(0)
p

sin2 θqp, (2.13)

E(s)
q =

√
q2 + t2/4 + st/2, and θqp is the angle between

vectors p and q. Diagonal elements of F describe intraband
transitions while off-diagonal elements are responsible for
interband ones. At zero temperature, the Fermi functions in
Eq. (2.9) reduce to simple step functions. Then our retarded
polarization can be presented in the following form:

�(ω,k) = �0(ω,k) + �+(ω,k) + �−(ω,k), (2.14)

where

�0(ω,k) =
∫

d2q

π

∑
s=±

(
E

(s)
q+k + E(−s)

q

ω2 − (E(s)
q+k + E

(−s)
q

)2 U−s, s

+ E
(−s)
q+k + E(−s)

q

ω2 − (E(−s)
q+k + E

(−s)
q

)2 V s,s

)
, (2.15)

�u(ω,k) =
∫

E
(u)
q <μ

d2q

π

∑
s=±

(
usE

(s)
q+k − E(u)

q

ω2 − (usE
(s)
q+k − E

(u)
q

)2 Uu, s

+ usE
(−s)
q+k − E(u)

q

ω2 − (usE
(−s)
q+k − E

(u)
q

)2 V −u,s

)
, u = ±.

(2.16)

Clearly, �0 does not depend on the chemical potential and
characterizes the polarization at zero doping. It gives the
main contribution to screening. The functions �+ and �−
incorporate the effects of doping and are mainly responsible
for plasmon modes. It is obvious that �+ can be evaluated
immediately if �− is found for arbitrary values of μ and t . We
have �+

μ,t = θ (μ − t)�−
μ−t,−t .

Let us comment on the chirality matrix (2.11). In the
two limiting cases of weak (t → 0) and strong (t → ∞)
coupling, when the spectrum reduces to Eq = q and Eq =
q2/t , respectively, the chirality matrix F is greatly simplified
and depends only on one parameter uq . Then the polarization
function per one flavor degree of freedom29 equals

�(ω,k) =
∫

Eq>μ

d2q

π

1 − uq,k

2

Eq + Eq+k

ω2 − (Eq + Eq+k)2

+
∫

Eq<μ

d2q

π

1 + uq,k

2

Eq+k − Eq

ω2 − (Eq − Eq+k)2
,

(2.17)

where uq,k = (TrHqHq+k)/(2EqEq+k), which is equal to
cos θq,q+k and cos 2θq,q+k for weak and strong coupling,
respectively. Note that at weak coupling �+ = �− while
�+ = 0 at strong coupling.

In what follows we will consider an intermediate case for
which μ < t (only this regime is experimentally relevant).
In this case, �+ = 0. Calculation of �0 and �− is straight-
forward and the result can be written down in the following
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compact form:

�(ω,k) = �0(ω,k) + �−(ω,k) = −2μ + t

2
− k2t

4(k2 − ω2)
+ Pω + P−ω

4
− cωgω + gt−ω + gt+ω, (2.18)

where

Pω = Gω+t − cωGω + i
μ�

2

√
ρ2

ω − μ2
�

ω2 − k2
+ i0

k2 + ωμ�

ω2 − k2
+ k2 − ω(t + ω)

2ω
ln

ρ−2
ω k4μ2

|(k2 − ω2)[k2 − ω(2t + ω)]|

+ Q
μ�

−,ω − Q
ω−2μ
+,−ω−t + Q

2μ−ω
−,−ω−t − Q

μ�

−,−ω

2ω
− iπ |k2 − ω(t + ω)|

2ω
{θ [ω2 − k2 − t2] − θ [ω(ω + 2t) − k2]} (2.19)

with

cω = 3k4 − k2(t2 + 5ω2) + 2ω4

2(ω2 − k2)2
, ρω = k

√
ω2 − k2 − t2

ω2 − k2
, μ� = 2μ + t − ω, gω =

√
k2 − ω2

2
tan−1

√
k2 − ω2

t
, (2.20)

Gω =
√

ω2 − k2

[
ln

(
μ�sgn(k2 − ω2) +

√
k2 − ω2

√
ρ2

ω − μ2
�

ω2 − k2
+ i0

k2 + ωμ�

ω2 − k2

)
+ (μ� → t − ω)

]
, (2.21)

Qr
±,ω = |k2 − ω(t + ω)| ln

(
y + i

√
sgnρ2

ω − y2 + i0
k2 ± ωr

ω2 − k2

)
, y = ρ2

ω − r(ω + t)

|ρω(r − ω − t)| . (2.22)

Here the expressions i0(· · ·) are responsible for choosing the
correct branch of the cuts. The square root and logarithm have
a branch cut discontinuity in the complex plane running from
−∞ to 0. Equations (2.18)–(2.22) are our main results. Details
of the calculations as well as the expressions for the real and
imaginary parts are given in Appendixes 1 and 2. In the weak-
coupling limit t → 0, one can easily reproduce the results
obtained in Ref. 15 up to the overall factor 2 which reflects the
bilayer nature of the system [in this case we should formally
assume that μ > t and take into account �+(ω,k)]. In the
strong-coupling limit t 
 μ,k,ω, in order to reproduce the
results obtained in Ref. 17 one should take into account terms
of order Ek = k2/t .

It is convenient to normalize the polarization with
respect to the density of states at the Fermi level,
D(μ) = Nf (t + 2μ)/4π . So we introduce the normalized
polarization

�̂(ω,k) ≡ −2
�0(ω,k) + �−(ω,k)

t + 2μ
. (2.23)

Finally, the dielectric permittivity in terms of the normalized
polarization is given by

ε(ω,k) = κ

(
1 + 2παD(μ)

�̂(ω,k)

k

)
, α = e2

h̄vF κ
. (2.24)

In Fig. 1 we plot �̂(ω,k) for μ/t = 0.6. Note that the
corresponding plots are very similar to those in Ref. 3. The
static case ω = 0 and the long-wavelength limit k → 0 are
considered in Secs. III A and III B.

III. ANALYSIS OF TWO PARTICULAR CASES

A. Static screening

The static limit ω → 0 is relevant for screening of charged
impurities. Performing some mathematical transformations,
we find that Eqs. (2.18)–(2.22) imply

�(ω = 0,k) = t

2
ln

√
k2 + t2

μ
− t

4
− μ − 3k2 − t2

4k

× tan−1 k

t
−
√

t2 − k2 tanh−1

√
t2 − k2

t

+
[√

k2 − 4μ(t + μ)

(
t + 2μ

2k
+ k

2μ

)
− 3k2 − t2

2k
cos−1 t + 2μ√

k2 + t2

− t tanh−1 k
√

k2 − 4μ(t + μ)

k2 − 2tμ

]

× θ [k2 − 4μ(t + μ)]

2
+
(√

t2 − k2 sinh−1

× 2μ
√

t2 − k2

k2
−
√

k4

4μ2
− k2 + t2

)

× θ [k4 − 4k2μ2 + 4t2μ2]

2
. (3.1)

The behavior of the normalized static polarization �(k) ≡
−2�̂(ω = 0,k)/(t + 2μ) and the corresponding polarizations
for monolayer15 and bilayer graphene in the two-band
approximation17 are shown in Figs. 2(a)–2(c) as functions of
the normalized momentum k/kF . We see that the polarization
function calculated in the four-band model has a discontinuity
at k = 2kF similar to that found in the two-band model

085112-3



O. V. GAMAYUN PHYSICAL REVIEW B 84, 085112 (2011)

FIG. 1. (Color online) Normalized polarization function for μ/t = 0.6. (a) and (b) show density plots of the real and imaginary
parts of the normalized polarization bubble defined in Eq. (2.18), respectively. (c) and (d) present constant-frequency cuts for ω/μ =
0.5,1.0,1.5,2.0,2.5.

[see Fig. 2(e)]; however, it does not go to a constant value
at large momenta. Rather, it grows linearly as in the case
of monolayer graphene [see Fig. 2(f)]. For μ/t → 0, the
polarization function is similar to the polarization function
in the two-band model17 and tends to the SLG polarization
function for μ/t 
 1. The dielectric permittivity at large k for
bilayer graphene in the four-band model equals ε(k) = 1 +
παNf /4, whereas ε(k) = 1 in the two-band model. Note that
ε(k) = 1 + παNf /8 for the SLG; therefore, we conclude that
permittivities in the BLG in the four-band model and
the SLG coincide in view of the replacement Nf → 2Nf for
the BLG due to doubling of the number of layers.

Since the static polarization depends only on the absolute
value of the momentum, the RPA improved Coulomb potential
is given by the following formula:

V (r) =
∫ ∞

0
dk

kJ0(kr)

k + 2παD(μ)�(k)
. (3.2)

At finite doping the polarization function has a discontinuity
at k = 2kF ; therefore, at large distances the potential behaves
as

V (r) ∼ 1

r

sin(rkF )

rkF

, rkF → ∞. (3.3)

For zero doping, the discontinuity is absent and the leading
asymptote is determined by the long-wavelength behavior of
the polarization function. We find

V (r) ∼ 1

r

1

(rt)2 , rt → ∞. (3.4)

The RPA improved Coulomb potential is shown in Fig. 3.

B. Plasmons

The polarization function in the long-wavelength limit k �
t is given by the following expression:

�(ω,k) = k2

2ω2

(
μ + t + t2

4ω
ln

2μ + t − ω

2μ + t + ω

+ t2

4ω
ln

ω − t

t + ω
+ ω(ω + 2t)

4(t + ω)
ln

2μ − ω

2t + ω

− ω(ω − 2t)

4(t − ω)
ln

2t − ω

2μ + ω

)
. (3.5)

If ω is small then

�(ω,k) = k2μ(μ + t)

ω2(t + 2μ)
. (3.6)
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μ μ

μ μ

FIG. 2. The static polarization. (a), (b), and (c) show plots of the
normalized static polarization given by (3.1) at μ/t = 0.01, 0.1, and
0.6, respectively. Dotted lines correspond to the asymptotic values
�(k) = πk/2(t + 2μ). In (e) and (f) we show, respectively, the static
limit of the polarization function for the bilayer graphene in the
two-band approximation obtained in Ref. 17 and monolayer graphene
calculated in the Dirac approximation in Refs. 15, 25, and 3. The
dotted line in (e) corresponds to the asymptotic value �(k) = ln 4
while the asymptote in (f) is �(k) = πk/8μ.

The plasmon dispersion relation is determined by the equation
ε(k,ω(k)) = 0 which immediately gives

ω(k) =
√

k
e2Nf

κ

μ(μ + t)

μ + 2t
. (3.7)

This is the general expression for the plasmon mode in
two-dimensional (2D) systems, which for the general spectrum
of quasiparticle excitations can be written as17

ω(k) =
√

k
e2Nf

2κ
q

∂Eq

∂q

∣∣∣∣
q=qF

. (3.8)

Equivalently, this formula can be written as

ω(k) = 2π

√
k
e2Nf

κ

n

D(μ)
, (3.9)

where n = Nf k2
F /4π is the actual two-dimensional density of

particles while D(μ) is the density of states at the Fermi level.
In the case of the SLG D(μ) ∼ √

n so ω(k) ∼ k1/2n1/4.
We solved the equation Re[ε(k,ω(k))] = 0 numerically for

free-standing graphene (i.e., κ = 1). Results are shown at
Fig. 4. We see that except for “classical” plasmons with the
low-energy behavior (3.8), we also have modes with linear
behavior and high-energy modes that are analogous to the π

(a)

(b) (c)

FIG. 3. The RPA improved Coulomb potential at finite and zero
doping. In (a) the dashed line corresponds to the potential at μ = 0.4t

and the solid line to zero μ. (b) and (c) show asymptotes of the RPA
improved potential at zero and finite doping, respectively.

plasmons.26 The corresponding dispersion relation for small
momenta are

ω(k) = 2k(t + μ)

t + 2μ
− k2t2μ(t + μ)2

(t + 2μ)3
, (3.10)

ω(k) = t + e2Nf

2κ
k ln

(
1 + 2μ

t

)
. (3.11)

However, in contrast to the classical plasmons these modes
cannot be considered as fully coherent collective modes,
because they lie in the highly damped area which corresponds
to the gray shading on the plots. The boundaries of the damped
area are determined by the equation Im�(k,ω(k)) = 0 which
can be easily solved, and we obtain

ω±(k) =
√

t2

4
+ (k ± kF )2 −

∣∣∣∣ t2 ± μ

∣∣∣∣ , (3.12)

which describes the boundary of the single-particle excitation
continuum (Landau damping). Note that, in contrast to the
normal 2D electron gas, plasmons are damped at smaller
momenta due to the interband transitions.

All the described plasmons vanish at zero chemical
potential, which is consistent with the classical picture where
plasma oscillations are absent without matter. However, in
the quantum case this directly follows from the form of
the elementary excitation spectrum. Taking into account the
effects of “trigonal warping,” the low-energy spectrum trans-
forms into5

Ek = h̄2v2
F k2

t
→

h̄2v2
F k

√
k2 + k2

0 − 2kk0 cos 3φ

t
, (3.13)
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ω

μ

μ

ω

μ

μ

ω

μ

μ

FIG. 4. (Color online) (a), (b), and (c) present the dispersion
relations (black solid lines) for plasmons in free-standing graphene
at densities μ/t = 0.6, 0.3, and 0.05 respectively. Black dashed lines
describe the classical plasmon (3.8) and the high-energy plasmon
(3.11). Black dotted lines describe the additional low-energy plasmon
given by (3.10). Filled areas show domains with nonzero imaginary
part of the polarization whose boundaries (red dotted lines) are given
by Eqs. (3.12).

where k0 ≈ 5.7 × 107 m−1. In this case, as was shown in
Ref. 27, there exist weakly damped plasmons. The approx-
imate form of the dispersion relation can be estimated as

ω ≈ E0

√
Nf e2

h̄v0

k

k0
≈ 12.5E0

√
k

k0
, (3.14)

where E0 = h̄2v2
F k2

0/t ≈ 3.9 meV and v0 = E0/(h̄k0) =
105 m/s. As one can see these plasmons disappear for k0 → 0.

IV. CONCLUSION

In this paper we have derived a compact analytic expression
for the dynamical polarization for bilayer graphene in the
four-band model in the random phase approximation. Our
results are valid for arbitrary values of the wave vector,
frequency, doping, and interlayer coupling. Analyzing the
polarization as a function of the interlayer coupling, we
recovered the expressions for monolayer graphene polariza-
tion (weak coupling) as well as for bilayer graphene in
the two-band model (strong coupling). In the case where the
doping is smaller than the interlayer coupling we found the
polarization function in the static and long-wavelength limits.
Using these results, we obtained the RPA improved Coulomb
interaction and the dispersion relation for the plasmon mode.

We put aside temperature effects and effects of the finite
distance between layers; however, within this formalism they
can be easily investigated and we postpone this investigation
for a separate presentation.
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APPENDIX: CALCULATION OF THE POLARIZATION
FUNCTION

In this Appendix we present some major steps in the
calculation of the normalized polarization function. All quan-
tities are evaluated in units of energy (Sec. II). We restrict
our consideration to the case ω > 0 because the polarization
function for negative ω can be obtained through complex
conjugation.

1. �0(ω,k) calculation

In order to calculate �0(ω,k) given by (2.15), it is
convenient to introduce the following variables:

y = Eq + Eq+k, z = 4EqEq+k. (A1)

Then the measure of integration transforms as follows:∫
qdqdθ = 2

∫
dq2
∫ π/2

0
dθ

= 1

2

∫
√

k2+t2

dy√
y2 − k2

∫ y2

Q

zdz√
y2 − z

√
z − Q

,

(A2)
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Q = (y2 − k2)2 + t2k2

y2 − k2
. (A3)

Performing integration over z, we get

�0(ω,k) =
∫

√
k2+t2

dy

2

(√
y2 − k2(y − t)

ω2 − (y − t)2
+
√

y2 − k2(t + y)

ω2 − (t + y)2
− y[3k4 − k2(t2 + 5y2) + 2y4]

(y2 − k2)3/2(ω2 − y2)

)
+ δ�0(ω,k), (A4)

where δ�0(ω,k) is obtained by the proper change of variables,

δ�0(ω,k) =
(∫ √

t2/4+k2−t/2

√
t2+k2

+
∫ √

t2/4+k2−t/2

√
t2+k2−t

−
∫ −√

t2+k2−t

−t/2−
√

t2/4+k2
−
∫ −√

t2+k2

−t/2−
√

t2/4+k2

)
dy

2

ω2 + yt − k2

ω2 − y2
. (A5)

Now we can easily calculate the imaginary part for ω > 0:

Im�0(ω,k)

π
=
(

3k4 − k2(t2 + 5w2) + 2w4

4(w2 − k2)3/2
− |k2 − ω(ω − t)| + |k2 − ω(ω + t)|

4ω

)
θ (ω −

√
t2 + k2)

+ θ (ω + t −
√

t2 + k2)

( |k2 − ω(ω + t)|
4ω

−
√

(ω + t)2 − k2

4

)
+ θ (ω − t −

√
t2 + k2)

( |k2 − ω(ω − t)|
4ω

−
√

(ω − t)2 − k2

4

)
. (A6)

The real part is calculated treating all divergences in the principal value sense. After some algebra we obtain

Re�0(ω,k) = k2t

2(ω2 − k2)
− Re

[
3k4 − k2(t2 + 5ω2) + 2ω4

2(k2 − ω2)3/2
tan−1

√
k2 − ω2

t

]

+ [k2 − ω(ω − t)]

4ω
ln

∣∣∣∣ [k2 + (2t − ω)ω](k2 + t2 − ω2)

(k2 + (t − ω)ω)2

∣∣∣∣−k2 − ω(t + ω)

4ω
ln

∣∣∣∣(k2 + t2 − ω2) [k2−ω(2t + ω)]

[k2 − ω(t + ω)]2

∣∣∣∣
+ Re

[√
k2 − (t − ω)2

2
tan−1

(√
k2 − (t − ω)2

t

)
+
√

k2 − (t + ω)2

2
tan−1

(√
k2 − (t + ω)2

t

)]
. (A7)

In the t → 0 limit, we get

lim
t→0

�0(ω,k) = −π

4

k2

√
k2 − ω2 − i0

, (A8)

where we performed the shift ω2 → ω2 + i0 in order to reproduce the correct imaginary part.
In the large-t limit we must retain terms of order k2/t = Ek . Then t appears only as an overall factor:

�0(ω,k)

t/2
= ln

∣∣∣∣ E2
k − 4ω2

4E2
k − 4ω2

∣∣∣∣+ Ek

2ω
ln

∣∣∣∣ (Ek − ω)2

(Ek + ω)2

Ek + 2ω

Ek − 2ω

∣∣∣∣+ iπ

[(
1 − Ek

ω

)
θ [ω − Ek] −

(
1 − Ek

2ω

)
θ [2ω − Ek]

]
.

(A9)
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2. �−(ω,k) calculation

In order to calculate �−(ω,k) given by (2.16) we introduce
the new variable r = Eq − t/2. Then, performing some
algebraic manipulations, we find

�−(ω,k) =
∫ μ

0

dr

r

∫ 2π

0

dφ

16π

(
g(ω)

r + ω
+ g(−ω)

r − ω
− 8r − 4t

)
,

(A10)

where

g(ω)= k4 − 2k2[2r2 + 2rω + ω(ω − t)]+(2r + ω)2(t − ω)2

k2 + 2k
√

r(r + t) cos φ + (2r + ω)(t − ω)

− [k2 − (2r + ω)(2r + t + ω)]2

k2 + 2k
√

r(r + t) cos φ − ω(2r + t + ω)
. (A11)

All divergences should be dealt with using the prescription
ω → ω + i0. Then we can integrate over the angle using the
following integral:

1

2π

∫ 2π

0

dφ

a + iε0 + cos φ

= sgn[a]θ (a2 − 1)√
a2 − 1

− i
sgn[ε]θ (1 − a2)√

1 − a2
. (A12)

We obtain the real and imaginary parts of the polarization
function:

Re�−(ω,k) =
∫ μ

0

dr

2r

(
Re[gR(ω)]

4(r + ω)

+ Re[gR(−ω)]

4(r − ω)
− 2r − t

)
, Im�−(ω,k)

= −
∫ μ

0

dr

8r

(
Re[gI (ω)]

r + ω
− Re[gI (−ω)]

r − ω

)
,

(A13)

gR(ω) =
√

[k2 + (2r + ω)(t − ω)]2 − 4k2r(r + t)sgn[k2 + (2r + ω)(t − ω)]

− [k2 − (2r + ω)(2r + t + ω)]2sgn[k2 − ω(2r + t + ω)]√
[k2 − ω(2r + t + ω)]2 − 4k2r(r + t)

, (A14)

gI (ω) =
√

4k2r(r + t) − [k2 + (2r + ω)(t − ω)]2sgn

(
r − t

2
+ ω

)
+ [k2 − (2r + ω)(2r + t + ω)]2sgn

(
r + t

2 + ω
)√

4k2r(r + t) − [k2 − ω(2r + t + ω)]2
.

(A15)

We can calculate all the integrals separately keeping the regularization ε of possible divergences at r = 0. In order to write down
the answer in a compact form, we introduce the following notation. For any given function f (x), one can construct a new function
f̂ (x)|ba by the following rule:30

f̂ (x)|ba ≡ sgn(b − x)[f (b) − f (r)] − sgn(a − x)[f (a) − f (x)]. (A16)

Then one can present the polarization in the following form:

�−
ε (ω,k) = −μ − t

2
ln

2μ

ε
+ Re(Rω + R−ω) + iRe(Iω − I−ω)

2
− iπ

|k2 − (t + ω)ω|
4ω

θ (μ − ω)
[
θ
(
ρ2

t+ω

)− θ
(− ρ2

ω

)]
, (A17)

where Rω = Rε
ω + R̃ω, Iω = I ε

ω + Ĩω, and

Rε
ω = i

|k2 + (t − ω)ω|
2ω

[ ̂̃f ω
t−ω

(−k2

ω

) ∣∣∣∣2μ̃−ω

t−ω+ε

+ ̂̃f t−ω
ω

(
k2

ω − t

) ∣∣∣∣2μ+ω

ω+ε

− ̂̃f ω
t−ω

(
k2

ω

) ∣∣∣∣2μ̃+ω

t+ω

− ̂̃f t−ω
−ω

(
k2

ω − t

) ∣∣∣∣2μ+ω

ω

]
, (A18)

R̃ω = ̂̃vω

(−k2

ω

) ∣∣∣∣2μ̃−ω

t−ω

− 3k4 − k2t2 − 5k2ω2 + 2ω4

2(ω2 − k2)
̂̃uω

(−k2

ω

) ∣∣∣∣2μ̃−ω

t−ω

+ [(ω − t)2 − k2] ̂̃ut−ω

(
k2

ω − t

) ∣∣∣∣2μ+ω

ω

, (A19)

I ε
ω = |k2 + (t − ω)ω|

2ω

(
f̂ ω

t−ω(−ω)
∣∣2μ̃+ω

t+ω
− f̂ t−ω

−ω (t − ω)
∣∣2μ+ω

ω
− f̂ ω

t−ω(ω)
∣∣2μ̃−ω

t−ω+ε
+ f̂ t−ω

ω (t − ω)
∣∣2μ+ω

ω+ε

)
, (A20)

Ĩω = v̂ω(ω)|2μ̃−ω
t−ω − 3k4 − k2t2 − 5k2ω2 + 2ω4

2(ω2 − k2)
ûω(ω)|2μ̃−ω

t−ω − [(ω − t)2 − k2]ût−ω(t − ω)
∣∣2μ+ω

ω
. (A21)

Here

ρω =
√

k2
ω2 − k2 − t2

ω2 − k2
, μ̃ = μ + t/2, f ω

� (r) = tan−1

(
ei sin−1(r/ρω) − i�/ρω√

�2/ρ2
ω − 1

)
, f̃ ω

� (r) = sgn[ω(ω2 − k2 − t2)]f ω
� (r)

(A22)
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and

vω(x) = x
√

ρ2
ω − x2

4
√

k2 − ω2
, ṽω(x) = sgn[ω(k2 − ω2)]vω(x), uω(x) = sin−1(x/ρω)

4
√

k2 − ω2
, ũω(x) = sgn[ω(k2 − ω2)]uω(x). (A23)

Expression (A17) should be understood in the limit ε → 0. Taking this limit explicitly, we find

�−(ω,k) = −μ + Re
(
R

reg
ω + R

reg
−ω + R̃ω + R̃−ω

)
2

+ i
Re
(
I

reg
ω − I

reg
−ω + Ĩω − Ĩ−ω

)
2

− iπ
|k2 − (t + ω)ω|

4ω

(
θ (μ − ω)

{
θ
[
ρ2

t+ω

− θ
(− ρ2

ω

)]− π

2
θ (ω2 − k2 − t2)

})
− iπ

|k2 − (t − ω)ω|
4ω

θ [(ω − t)2 − ω2 − k2], (A24)

where

Rreg
ω = i

|k2 + (t − ω)ω|
2ω

(
G̃

2μ̃−ω,−k2/ω
ω,t−ω − G̃

2μ̃+ω,k2/ω
ω,t−ω + G̃

t+ω,k2/ω
ω,t−ω + G̃

2μ+ω,k2/(ω−t)
t−ω,ω − G̃

2μ+ω,k2/(ω−t)
t−ω,−ω + G̃

ω,k2/(ω−t)
t−ω,−ω

)
+ k2 + (t − ω)ω

2ω

(
isgn(ω)f̃ ω

t−ω

(−k2

ω

)
− 1

2
ln μ

√
ρ2

ω − (t − ω)2 + i(t − ω)

ρ2
ω − (t − ω)2

+ (ω → t − ω)

)
, (A25)

I reg
ω = |k2 + (t − ω)ω|

2ω

(
G

2μ̃+ω,−ω
ω,t−ω − G

t+ω,−ω
ω,t−ω − G

2μ+ω,t−ω
t−ω,−ω + G

ω,t−ω
t−ω,−ω − G

2μ̃−ω,ω
ω,t−ω + G

2μ+ω,t−ω
t−ω,ω

)
(A26)

+ |k2 + (t − ω)ω|
2ω

[
θ (k2 − ω2) cos−1

(
t − ω

ρω

)
− π

2
θ
(− ρ2

ω

)− f ω
t−ω(ω) + (ω → t − ω)

]
,

and

G
a,b
ω,� = sgn(b − a)

[
f ω

� (b) − f ω
� (a)
]
, G̃

a,b
ω,� = sgn(b − a)

[
f̃ ω

� (b) − f̃ ω
� (a)
]
. (A27)

In the weak-coupling limit t → 0, we have the following expression:

�−(ω,k) = −μ + Re
(
Rt=0

ω + Rt=0
−ω

)+ iRe
(
I t=0
ω − I t=0

−ω

)
2

, (A28)

Rt=0
ω = sgn[(k2 − ω2)(k2 − ω2 + 2ωμ)]((2μ − ω)

√
k2 − (2μ − ω)2 + k2{sin−1(k/ω) − sin−1[(ω − 2μ)/k]})
4
√

k2 − ω2
, (A29)

I t=0
ω = sgn(μ − ω)

(
(2μ − ω)

√
k2 − (2μ − ω)2

4
√

k2 − ω2
− k2{sin−1[(ω − 2μ)/k] + sin−1(ω/k)}

4
√

k2 − ω2
− ω

4

)
. (A30)

We can unite real and imaginary parts in one expression:

�−(ω,k) = −μ − t(k2 − 2ω2)

2(ω2 − k2)
+ Pω + P−ω

4
, (A31)

where

Pω = Gω+t − 3k4 − k2(t2 + 5ω2) + 2ω4

2(ω2 − k2)2
Gω + i

μ�

2

√
ρ2

ω − μ2
�

ω2 − k2
+ i0

k2 + ωμ�

ω2 − k2
+ Q

μ�

−,ω − Q
ω−2μ
+,−ω−t + Q

2μ−ω
−,−ω−t − Q

μ�

−,−ω

2ω

+ k2 − ω(t + ω)

2ω
ln

ρ2
ωμ2|(ω2 − k2)[ω(ω + 2t) − k2]|

[k2 − ω(ω + t)]4
+ iπ |k2 − ω(t + ω)|

2ω
{θ [ω2 − k2 − t2] − θ [ω(ω + 2t) − k2]},

(A32)

and the functions Gω and Qr
±,ω are determined in Eqs. (2.20)–(2.22).
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