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Induced spin texture in semiconductor/topological insulator heterostructures
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We show that a semiconductor thin film can acquire a nontrivial spin texture due to the proximity effect induced
by a topological insulator. The effect stems from coupling to the topological surface states and is present even
when the insulator is doped. We propose a semiconductor/topological insulator heterostructure as a device that
allows measuring interface properties and probing surface states in uncompensated samples. We also find that
the topological insulator surface modes can be significantly broadened and shifted by the presence of metallic
contacts.
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I. INTRODUCTION

The three-dimensional time-reversal invariant topological
insulators (TIs),1–6 or the so-called class AII TIs,7 have
attracted considerable interest in recent years following the
observation of characteristic TI surface states in a family
of strongly spin-orbit interacting Bi-based materials.8–10 The
surface states of these topological insulators are robust against
perturbations that do not break time reversal symmetry, (e.g.,
disorder or many body interactions) and form a helical metal
characterized by quasiparticles with the spin direction locked
by the momentum. This helical metal is key to a series of exotic
properties predicted to occur in structures containing TIs,
such as axion electrodynamics,11,12 Majorana fermions,13 and
topological exciton condensates.14 These exciting proposals
have created a flurry of activity dedicated to understanding the
properties of the helical metal. For a review, see for example
Refs. 15 and 16.

The main challenge to observing topological properties
in real materials stems from the fact that as-grown Bi2Te3

and Bi2Se3 have a significant intrinsic carrier density in the
bulk conduction band. This does not prevent the observa-
tion of surface states within the gap between the valence
and conduction bands using angle resolved photoemission
spectroscopy (ARPES)8–10 or scanning tunneling spectroscopy
(STS).17,18 However, characterization using other techniques,
including transport measurements, is severely restricted due to
the difficulty of separating the surface and bulk contributions.

Moreover, no exotic topological property can be present
in a noninsulating system. To fully realize the potential of
TI materials, they have to be integrated into heterostructures
containing superconductors, magnetic materials, or trivial
band insulators. Hence, a critical task is to characterize the
properties of the topological interface states. While their exis-
tence is guarantied by topology, key properties of such states
(e.g., dispersion, characteristic length scales, spin texture, and
mixing with other types of in-gap states) depend on the details
of the interface, such as the transparency on the interface or
the presence of defects and charged impurities. Being able
to characterize the interface states in the presence of bulk
carriers would present significant practical advantages. Finally,
as transport measurements involve placing metallic contacts on
the TI surface, a natural question that needs to be addressed
concerns the fate of the surface states in the presence of these
contacts.

In this paper, we propose a semiconductor thin
film/topological insulator heterostructure as a tool for studying
the properties of the helical metal and the dependence of these
properties on the parameters of the interface. The key idea
behind this proposal is that the states localized at the interface
between a TI and a semiconductor couple to the semiconductor
bands and induce certain specific properties (e.g., a spin
texture) due to proximity effect. Consequently, probing the
semiconductor states provides a direct characterization of the
interface states.

The present proposal addresses two critical questions:
(i) How can one disentangle the surface and bulk effects
in doped TI samples? (ii) What are the properties of the
interface in TI heterostructures and how can one control these
properties?

The potential advantages of using the semiconductor-TI
heterostructure proposed here to address these questions
stem from the fact that semiconductor-based heterostuctures
are, in general, easier to grow, while the properties of the
semiconductor thin film, and implicitly of the interface, can
be measured by a variety of optical and transport probes. In
addition, perfectly insulating TI samples are not required,
as the proximity effect involves only surface TI states and
quasi-two-dimensional semiconductor states. Furthermore, the
strong dependence of the TI-semiconductor coupling on the
thickness of the semiconductor film provides an extremely
useful knob for tuning the strength of the proximity effect.

To prove that the electronic properties of the semiconductor
thin film are modified in a very specific way by the coupling to
the TI, we derive a generic expression for the proximity effect
at the interface between a TI and a metal or semiconductor
and compare its predictions with the results of microscopic
tight-binding calculations. The remarkable agreement between
the two techniques reflects the robustness of the effect that we
are describing. In fact, as verified explicitly, even changes in the
Hamiltonian itself do not modify qualitatively our conclusions,
as long as the gap between the valence and the conduction TI
bands remains finite.

We emphasize that our conclusions are based on calcu-
lations using two different approaches: (i) a microscopic
tight-binding model for a three-dimensional TI-semiconductor
(or metal) structure in the slab geometry, and (ii) an effective
two-dimensional description of the interface using the standard
Green’s functions formalism (for an introduction to this
formalism, see, for example, Ref. 19).

085103-11098-0121/2011/84(8)/085103(6) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.085103


JIMMY A. HUTASOIT AND TUDOR D. STANESCU PHYSICAL REVIEW B 84, 085103 (2011)

The paper is organized as follows. The tight-binding
description is presented in Sec. II and includes a four-band
model for the the Bi-based TI’s, a one band model for the
metal/semiconductor and a coupling term. The simple TI
model can be generalized to include more bands and thus
provide quantitative predictions about the interface properties.
The other crucial ingredient required for obtaining quantitative
results is the coupling Hamiltonian, Eq. (2). The optimal
values of the tunneling matrix elements could be obtained
by comparison with future experimental measurements. These
values are critical for determining the strength of the proximity
effect and depend on the microscopic details of the interface. In
principle, diagonalizing numerically the tight-binding Hamil-
tonian should be enough for supporting our claims. However,
an effective low energy theory of the interface provides further
physical insight into the proximity effect and the changes
that it induces in the properties of the surface states. The
effective interface theory for a TI in contact with a metal
is presented in Sec. III. Within this framework, we study the
fate of the surface states in the presence of metallic contacts.
We find that the surface modes are shifted and broadened
by the coupling to a continuum, but do not loose spectral
weight. We address the case of an infinite metallic plate, as
well as finite size contacts. In Sec. IV we derive the effective
theory for a semiconductor thin film in contact with a TI. In
contrast with the case discussed in Sec. III, we now integrate
out the TI degrees of freedom and identify the effect of the
surface states on the semiconductor spectrum. Again, the
results are compared with the numerical solution of the tight-
binding model for the TI-semiconductor heterostructure. Our
conclusions and the proposal for the experimental realization
of the TI-semiconductor thin film device are presented in
Sec. V.

II. TIGHT-BINDING MODEL OF A TOPOLOGICAL
INSULATOR HETEROSTRUCTURE

The tight-binding Hamiltonian has the generic form

H = HT I + Hband + V. (1)

The first term represents a four band low-energy effective TI
model,

HT I =
∑
α,i,j

(
ε

(α)
0 δij + t

(α)
ij

)
c
†
iαcjα + c

†
iα(iλijδ · σ̂ )cjᾱ, (2)

where α,ᾱ ∈ {1,2}, α �= ᾱ are band indices, δ = rj − r i and
σ̂ = (σ̂x,σ̂y,σ̂z) are Pauli matrices.

The basis ψατ for this model contains even (α = 1) and odd
(α = 2) parity combinations of p orbitals with a mix of up
and down spins.20 Here, τ = ⇑ (⇓) represents a pseudo-spin
degree of freedom. The corresponding creation operators are
c
†
iα = (c†iα⇑,c

†
iα⇓).

The model is defined on a rhombohedral lattice with the lat-
tice parameters of Bi2Se3. The hopping parameters are nonzero
only for nearest neighbor in-plane and out-of-plane hoppings,
which are given by (t (1)

1 ,t
(2)
1 ,λ1) = (1.43, − 2.95,0.29) eV

and (t (1)
2 ,t

(2)
2 ,λ2) = (0.03, − 0.04,0.12) eV, respectively. In

the long wavelength limit, Eq. (2) reduces to the four-band
effective model of Zhang et al.20

The second term of the Hamiltonian, Hband, describes
the conduction band of a metal or the valence band of a
semiconductor and contains only nearest neighbor hoppings
on a hexagonal lattice that ensures simple matching conditions
at the interface. These bands are double spin degenerate.

Finally, the third term of the Hamiltonian describes the
coupling between the TI and the semiconductor (metal),

V =
∑
i,j

∑
α,τ,σ

[
t̃

(ατ,σ )
ij c

†
iατ ajσ + c.c.

]
, (3)

where the fermion operators ciατ and ajσ operate in the Hilbert
space of the TI and semiconductor (metal), respectively, and
t̃

(ατ,σ )
ij characterizes the transparency of the interface. Exper-

imentally, these parameters can be modified by depositing a
thin insulating layer at the interface.

Assuming for simplicity that the coupling parameters are
real, the coupling is described by four independent quantities,
t̃

(α⇑,↑)
ij = t̃

(α⇓,↓)
ij = t̃α and t̃

(α⇑,↓)
ij = t̃

(α⇓,↑)
ij = t̃ ′α , where i and j

represent nearest neighbor sites from interface boundary layers
of the TI and semiconductor (metal), respectively. We note that
the dominant contributions to the basis states ψατ come from
pz orbitals with spin parallel to the pseudo-spin.21 Hence, we
expect |t̃α| 	 |t̃ ′α|. The total tight-binding Hamiltonian is then
diagonalized numerically for a slab geometry.

III. TOPOLOGICAL INSULATOR SURFACE STATES IN
THE PRESENCE OF METALLIC CONTACTS

A. Infinite metallic plate

To obtain a deeper understanding of the physics at the
interface, we develop an effective two-dimensional description
of the relevant low-energy degrees of freedom (i.e., the TI
surface states and the semiconductor or metallic bands).
Specifically, we study the change of surface states induced
by the coupling to a thick metallic plate placed on the surface
of the TI. In this case, the effective model is obtained by
integrating out the metallic degrees of freedom and projecting
into the subspace spanned by the surface states.

In the translation invariant case, where the length and width
of the TI and metal are the same (taken to be infinity), we have

G−1
λλ′(k,ω) = [ω − ελ(k)]δλλ′ − 
λλ′(k,ω), (4)

where G−1(k,ω) is the inverse of the Green’s function for
the surface states and k the two-dimensional wave vector.
The energies ελ(k), λ = ± are the eigenvalues of the effective
Hamiltonian for a free surface (V = 0),

Hsurf = Ck2σ̂0 + (A0 + A2k
2)[σ̂ × k] · ẑ, (5)

where σ̂0 is the 2 × 2 identity matrix and ẑ is the unit vector
perpendicular to the surface. We note that there is a one-to-
one locking between the momentum and the spin, with no
out-of-plane spin component. The parameters of the model
were determined by the condition that ε±(k) match the tight-
binding surface modes (see Fig. 1): C = 13.33 eV·Å2, A0 =
3.49 eV·Å;, and A2 = 99.2 eV·Å3.

A priori, we can expect that upon coupling to the metal,
the spectrum of the surface states will be broadened. This
is because even though the spectral profile of the surface
states is trivial (i.e., is given by a Dirac δ function) viewed
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FIG. 1. (Color online) Top: Tight-binding spectrum of a TI
slab with a planar metallic contact. Orange (light gray) represents
uncoupled TI states, while blue (dark gray) corresponds to coupled
TI-metal states. In the darker region within the bulk TI gap the
spin degeneracy of the metallic states is lifted by coupling to
surface TI states. The small circles (yellow) are calculated using
the effective two-dimensional model (5) for the surface states.
Bottom: Local density of states at the TI-metallic contact interface
for k = (0,0) (lower curves) and k = (0.03,0) Å

−1
(upper curves;

shifted for clarity). Orange (light gray) filled lines represent tight-
binding calculations, while black lines are solutions of the effective
model (4).

from the (quasi) two-dimensional point of view, the spectral
profile of the metallic states is given by a broad continuous
function due to its dependence on the momentum on the z

direction. Therefore, upon coupling, the surface states will
inherit a nontrivial spectral density from the metallic states.
Such phenomena have also been observed in particle physics,
see, for example, Refs. 22 and 23.

In Eq. (4), the coupling to the metal is captured by the
self-energy24,25


λλ′(k,ω) =
∑
σ,ν

Vλ,νσ (k)GM
ν (k,ω)Vνσ,λ′ (k), (6)

where

Vλ,νσ (k) = 〈�λ(k)|V |φνσ (k)〉, (7)

are the matrix elements of the interaction Hamiltonian between
TI surface states and metal states and

GM
ν (k,ω) = (ω − Eν(k) + iη)−1, (8)

is the Green’s function for the metal.

Explicitly carrying out the summation in Eq. (6), we have


λλ′(k,ω) = gλλ′(k)�(k,ω), (9)

with

�(k,ω) = ω − ξk − �k

�k
− i

√
1 − (ω − ξk − �k)2

�2
k

. (10)

Here, ξk is the lowest energy of the metal at k, �k is the half-
bandwidth at the same wave vector and ξk � ω � ξk + 2�k

(i.e., the energy is within the metallic band).
To obtain the matrix gλλ′ , we note that in the vicinity of the

� point, k = (0,0), the four components of the surface states
at the boundary z = zb take the form

�λ(k; zb) = [u(k),iv(k),λu(k)eiϕk̂ , − iλv(k)eiϕk̂ ]T , (11)

with the real amplitudes u(k) and v(k) depending only on |k|
and the phase ϕk̂ determined by the direction k̂ of the wave
vector. If, for simplicity, we neglect the dependence on t̃ ′α , the
coupling becomes diagonal and we have

gλλ′ = 4
(
u2 t̃2

1 + v2 t̃2
2

)
�k

δλλ′ . (12)

We conclude that the self-energy in Eq. (4) is proportional
to the weight of the surface states at the boundary and to the
square of the coupling matrix elements. The real part of the
self-energy 
 shifts the surface modes, while the imaginary
part broadens the spectrum. This behavior is illustrated in
Fig. 1.

In Fig. 1, the upper panel shows the spectrum of a thick TI-
metal slab with coupling t̃1 = t̃2 = 0.1 eV and, for comparison,
the spectrum of an uncoupled TI slab, both obtained using
the tight-binding model. The energies of the surface states
can also be obtained by diagonalizing the effective surface
Hamiltonian (5) (small circles in Fig. 1). In the presence of
TI-metal coupling, the surface states hybridize with metallic
states and do not longer form sharply defined modes. In turn,
the spin degeneracy of the metal states is lifted (more on this
in the next section). The spectral weight distribution at the
interface is shown in the lower panel of Fig. 1. We note the
remarkable agreement between the tight-binding (filled lines)
and the effective model (black lines) calculations at energies
within the bulk TI gap. The positions of the peaks are given
by the real parts of the poles of the Green’s function (4), while
the widths are given by the imaginary parts. The nonzero local
density of states at the boundary generated by bulk TI states
can be captured only by the tight-binding approach. We also
note that the total weight of an in-gap resonance is independent
of the coupling strength, as long as the peak is inside the gap.
When the effective coupling gλλ is of the order of the gap, the
contribution from bulk TI states cannot be neglected and the
effective theory is no longer valid.

Before moving on to the case of finite size contacts, we
would also like to note that the broadening of the surface
modes by the metallic contact has also been observed in a
different tight-binding model.26

B. Finite size contacts

In transport measurements, the size of the contact is finite
and thus, translation invariance is broken. Therefore, let us

085103-3



JIMMY A. HUTASOIT AND TUDOR D. STANESCU PHYSICAL REVIEW B 84, 085103 (2011)

consider the case of a thin contact of length Lmetal
y � LTI

y ,
where LTI

y is the length of the TI, taken to be finite. The
dimensions in the x direction are the same. Since translational
invariance is broken, momentum in the y direction is no longer
conserved and the self-energy becomes a matrix in terms of
the discrete momentum ky


λλ′(ky,k
′
y,kx,ω) =

∑
k

D
(

2 k π
Lmetal

y
− ky

)
D

(
2 k π
Lmetal

y
− k′

y

)
Lmetal

y

×
λλ′

(
2 k π

Lmetal
y

,kx,ω

)
, (13)

where 
λλ′ ( 2 k π
Lmetal

y
,kx,ω) is given by Eq. (9) and the “diffraction”

function is given by

D(ky − k′
y) = 2 sin

[
Lmetal

y (ky − k′
y)/2

]
ky − k′

y

. (14)

The result for the band shift in this case is identical to the
translation invariant case, but with rescaled coupling constants,

t̃eff = t̃

√
Lmetal

y /LTI
y . (15)

The peak positions (see Fig. 1) are still given by the real
part of the poles of the Green’s function (4), ω±(kx,〈ky〉),
with 〈ky〉 the average ky component. However, the broadening
acquires an extra contribution ∂ω±/∂〈ky〉/LTI

y coming from
the momentum uncertainty.

This result can be generalized to the case where the contact
in the x direction is also finite in a straightforward manner.
We conclude that in the case of finite contact, when the size
of the metal is negligible compared to the size of the TI, the
shift and the broadening of the spectrum of the surface states
are negligible.

IV. INDUCED SPIN TEXTURE IN
SEMICONDUCTOR/TOPOLOGICAL
INSULATOR HETEROSTRUCTURES

Let us now consider a TI-semiconductor heterostructure
consisting of a thin semiconductor film on top of a thick TI
slab. A very thin insulating layer at the interface allows us to
control the coupling between the two subsystems. In this work,
we consider an “ideal” interface (i.e., we do not include effects
due to defects, charged impurities, or lattice mismatch). Our
analysis is intended to be a proof of concept in support of the
idea that a TI-semiconductor thin film heterostructure can be
used for (i) characterizing the TI surface states in the presence
of bulk carriers, and (ii) studying the physics of the interface.

The semiconductor film can be described by an effective
theory analogous to Eq. (4),

G−1
νσν ′σ ′(k,ω) = [ω − Eν(k)]δνν ′δσσ ′ − 
νν ′

σσ ′(k,ω), (16)

with


νν ′
σσ ′(k,ω) =

∑
λ

Vνσ,λ(k)
1

ω − ελ + iη
Vλ,ν ′σ ′(k), (17)

where Vνσ,λ is the coupling matrix element between a
semiconductor state with energy Eν and spin σ and a TI

surface state with energy ελ. In a thin film, the semiconductor
bands split into subbands indexed by ν and separated by
�E ∝ 1/m∗L2

z , where m∗ is the effective mass and Lz the film
thickness. The semiconductor has to be chosen so that the top
valence subband lies within the TI bulk gap. We assume that
the uncoupled semiconductor bands are spin degenerate (i.e.,
the spin-orbit coupling in the semiconductor is negligible).
However, when the coupling to the TI is turned on, 
σσ ′

acquires off-diagonal contributions, or in other words, an
effective spin-orbit coupling is induced by the proximity effect.

To understand qualitatively this effect, we focus on the top
valence subband ν = ν0 and we neglect the interband coupling


νν ′
σσ ′ ≈ 


(ν)
σσ ′δνν ′ . (18)

This becomes exact in the limit m∗ → 0, Lz → 0, but our final
conclusions are independent of this approximation. Taking into
account the form of the surface states at the interface, Eq. (11),
the relevant coupling matrix elements are

Vλ,ν0↑ = φν0 [u(t̃1 + λt̃ ′1e
iϕ) + iv(t̃2 − λt̃ ′2e

iϕ)], (19)

and Vλ,ν0↓ = eiϕV ∗
λ,ν0↑, where φν0 is the wave function of the

semiconductor state at the interface.
The induced spin texture is determined by the structure

of the matrix 

(ν0)
σσ ′ . Taking into account the properties of the

matrix elements Vλ,ν0σ we have



(ν0)
↑↑ = 


(ν0)
↓↓ , and 


(ν0)
↑↓ = [
(ν0)

↓↑ ]∗. (20)

As a result, the semiconductor states acquire a spin structure
characterized by nonvanishing in-plane spin and zero out-of-
plane component. This is a direct consequence of the helical
pseudo-spin structure of the TI surface states. In particular, one
can also verify that had the surface states had an out-of-plane
component, the induced spin would have had an out-of-plane
component as well. Therefore, for models with warped Dirac
cone, in which away from the � point Eq. (11) is no longer
valid, out-of-plane pseudo-spin and induced spin components
are generated.

The spin structure of the semiconductor thin film is
illustrated in Fig. 2 using a tight-binding calculation for a
heterostructure characterized by t̃1 = 0.1 eV, t̃2 = 0.15 eV,
and t̃ ′α = 0. The spin degenerate valence band hybridizes
with the TI surface states resulting three coupled modes
(upper panel). For a given mode, the value of the in-plane
spin (middle panel) is practically equal to the total spectral
weight inside the semiconductor. The orientation of the in-
plane spin is determined by the momentum direction (bottom
panel).

Near the � point, the spin structure of the top modes can
be described by an effective Rashba-like spin orbit coupling.
The effective Rashba coefficient can be read from the effective
model and for t̃1 = t̃2 = t , it is simplified to

A ≈ A0 + A2 k2
‖

2

⎛
⎝1 −

2π2

Lzm∗ − μ√(
2π2

Lzm∗ − μ
)2 + 4t2

�
2π2

Lzm∗

⎞
⎠ , (21)

where μ is the chemical potential and � is given by twice of
the lattice hopping parameter in the semiconductor.
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FIG. 2. (Color online) Top: Spectrum of a TI-semiconductor thin
film heterostructure. Orange (light gray) represents TI bulk states and
surface states localized near the free boundary. The blue (dark gray)
lines are coupled modes between TI interface states and top valence
band states. Middle: Induced in-plane spin inside the semiconductor
corresponding to the three coupled modes from the top panel. The
out-of-plane components of the induced spin are negligible (less than
10−3). Bottom: Dependence of the x component of the induced spin
on the direction in k space.

We note that t̃ ′α �= 0 (i.e., having each pseudo-spin ori-
entation coupled to both spin-up and spin-down) does not
induce out-of-plane spin polarization, but rather generates an
anisotropic structure characterized by the vanishing of the
effective spin-orbit coupling away from the � point.

V. CONCLUSION

In this article, we have studied the proximity effects of
the interface between TI and metal or semiconductor. The
proximity effects cause a shift and broadening of the spectrum
of the TI surface states, while lifting spin degeneracy on the
metal or semiconductor side. In particular, by probing the
induced spin texture in the semiconductor, one can learn about
the properties of the TI surface states in more details, even
in the excessive presence of the TI bulk carrier. Therefore,
we propose a semiconductor thin film/TI heterostructure
as a device for studying the properties of the TI surface
states.

The induced spin texture can be probed experimentally
using, for example, spin-resolved ARPES or STS. Identifying
the dispersion of the coupled modes provides direct infor-
mation about the coupling at the interface. In particular, the
strength of the coupling matrix elements can be determined
as a function of the thickness of the interface insulating
layer. The induced spin texture can also be probed using
optical measurements. For optical measurements on Bi2Se3-
semiconductor heterostructures, it is convenient to have the
conduction band about 1 eV above the valence band, within
the energy window characterized by a gap in the TI spectrum
at low wave vectors.9,20 This will prevent the coupling between
the conduction band and the TI, which can generate broadening
of the energy levels.

This proposal should complement direct measurement of
the spin properties of the surface states such as that found
in Ref. 27 and should play a role in resolving the puzzle
concerning the spin structure of TIs (see, for example, Ref. 28
vs. Ref. 29).

In the present study, we have considered the case of an ideal
interface. Future work is required for addressing problems
such as the presence of interface defects and impurities,
or the effects of the lattice mismatch. These studies of the
TI-semiconductor heterostructure will also help understand-
ing key properties of TI-superconductor and TI-ferromagnet
interfaces that play a critical role in realizing many of the
exotic properties of topological insulators.
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