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Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor
nanostructures: The case of strong nonlinearity
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We develop a quantum theory of the field-tunable nonlinear Fano effect in the hybrid metal-semiconductor
nanostructures, in which the plasmon (semicontinuous collective intraband excitation) and the exciton (discrete
single-particle interband excitation) are treated on the same footing. Our quantum theory shows that the quantum
interference due to the plasmon-exciton interaction leads to the nonlinear Fano effect described by a generalized
complex field-tunable Fano factor for the systems with strong external field and dephasing. We establish the
relation between quantum and semiclassical theories and show that the results of the quantum and semiclassical
theories differ both qualitatively and quantitatively in the strongly nonlinear regime—in particular, the quantum
theory predicts the absence of nonlinear instability in the hybrid systems with plasmon relaxation.
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I. INTRODUCTION

Recently, there have been many theoretical and experi-
mental studies on the hybrid nanostructures based on metal
nanoparticles (MNPs) and molecules and/or semiconductor
quantum dots (SQDs).1–8 Building blocks of hybrid super-
nanostructures, metal and semiconductor nanoparticles, have
very different electronic, optical, and thermal properties. The
superstructures composed of nanoparticles take the advantages
of the properties of their composite units and show many
interesting phenomena, for instance, plasmon-induced fluores-
cence enhancement and quenching,6 plasmon-assisted Forster
energy transfer,7 spin-plasmon interactions,9 etc. Moreover,
the hybrid systems have much more tunability for optical and
nonlinear properties due to the exciton-plasmon interaction.

Nanoscale superstructures made from different materials
are also interesting from the point of view of fundamental
physics. The elementary excitation of MNPs is a plasmon, the
intraband excitation of collective charge oscillation. While the
elementary excitation of SQD is an exciton–the electron-hole
pair, an interband excitation. Both plasmons and excitons play
very important roles in modern nano-optics. The interaction
among the elementary excitations of different natures in hybrid
semiconductor-metal systems leads to interesting properties.
For example, recent studies show that the exciton-plasmon
interaction leads to the formation of a unique quasiparticle, a
hybrid exciton with a renormalized frequency and a lifetime.1

The long-range Coulomb interaction between excitons and
plasmons leads to optimal hybrid nanostructures due to the
competition between the field enhancement (dominant for
large interparticle distances) and the quench effect (dominant
for small interparticle distances).2 Moreover, it was found that
the plasmon-exciton interaction induces the nonlinear Fano
effect,1 which has already been observed in the experiments
for the quantum-dot system with tunnel coupling10 and in the
plasmonic nanocrystal coupled with a polymer shell.11 The
nonlinear Fano effect is a generalization of the usual Fano
effect12 originally found in atomic and molecular systems.
Much recent attention has been paid to the Fano effects
in nanostructures, such as quantum dots13,14 and plasmonic
nanoparticles.15 For a recent review, see Ref. 16.

Our previous studies on the nonlinear Fano effect in
exciton-plasmon systems were based on the semiclassical
theory,1,2 where the exciton was described in the quantum
theory framework, while the description of the plasmon was
within the classical electromagnetic dynamics. The Fano
effect in quantum systems is a consequence of quantum
interference. Therefore, a quantum theory is needed for a
reliable description of the nonlinear Fano effect. We note
that, previously, a fully quantum theory for the nonlinear
Fano effect in the quantum dots coupled with a continuum
via a single-particle tunneling process was given in Ref. 10.
In contrast to Ref. 10, we develop here a nonlinear theory
for the exciton-plasmon systems with long-range Coulomb
coupling between excitations of quite different natures, which
have peculiar properties and are under active investigations in
the current literature. In our theory, the exciton and plasmon
are treated on the same footing. Importantly, we compare the
semiclassical and quantum theories and, in particular, we show
that the results coming from these theories are quantitatively
and qualitatively different in the strong nonlinear regime.
In contrast to the semiclassical theory, the quantum theory
involving the fast relaxation of plasmons predicts no nonlinear
instability and transparency effects in the nonlinear regime.
Our quantum theory can be applied to other systems, where
the quantum nature is important, for example, to the systems
with a discrete spectrum showing the confined Fano effect.

II. THEORETICAL FORMULISM

We consider a hybrid nanoparticle molecule consisting of
a SQD and a MNP in the presence of an external field E =
E0 cos(ω0t) [Fig. 1(a)]. The interaction between the exciton
and plasmon is described by the Hamiltonian Ĥ = Ĥ0 + Ĥint,

Ĥ0 = ε0c
+
0 c0 + εec

+
e ce − Eμ/εeff1(c+

0 ce + c+
e c0)

+
∑

j

εj c
+
j cj − E

∑
j

μj (c+
0 cj + c+

j c0), (1)

Ĥint =
∑

j

(Hjec
+
j ce + Hejc

+
e cj ), (2)
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FIG. 1. (Color online) (a) Model and geometry of the hybrid
system. (b) Schematic diagram of the system.

where c0 is the annihilation operator for the common ground
state, ce(cj ) is the annihilation operator for the excited state of
the exciton (plasmon), μ(μj ) is the dipole between the ground
state and exciton-excited state (plasmon-excited states), εeff1 =
(2εba + εs)/(3εba) is the screening factor with εba , εs being
the dielectric constants of the background medium and SQD,
respectively (the possible screening factor for MNP could be
moved to the definition of μj ), and Hej is the interaction
amplitude between the exciton and plasmon. The schematic
diagram of the system is shown in Fig. 1.

The dynamics of the system is described by the equation of
motion for the density matrix of the form

∂ρ̂

∂t
= − i

h̄
[Ĥ ,ρ̂] − � · ρ̂,

where the last term describes possible dissipation effects (for
instance, that from the spontaneous phonon emission).

Using the rotation wave approximation, we have the
following equations:

dρee

dt
= i�1(ρ̄0e − ρ̄e0) + (i/h̄)

∑
j

(Hjeρej − Hejρje)

−�eρee,
dρ̄0e

dt
= i(ω0 − ω)ρ̄0e + i�1(ρee − ρ00) + (i/h̄)

×
∑

j

Hjeρ̄0j + i
∑

j

�jρje − �0eρ̄0e,

dρej

dt
= i(ωj − ω0)ρej − i�j ρ̄e0 + (i/h̄)Hejρee

− (i/h̄)Hekρkj + i�1ρ̄0j − �ejρej ,

dρ̄0j

dt
= i(ωj − ω)ρ̄0j + i

∑
k

�kρkj − i�jρ00

+ (i/h̄)Hej ρ̄0e + i�1ρej − �0j ρ̄0j ,

dρjj

dt
= i�j (ρ̄0j − ρ̄j0)

+ (i/h̄)(Hejρje − Hjeρej ) − �jρjj , (3)

where the slow variables are defined by ρee = ρ̄ee,
ρ0e = ρ̄0ee

iωt , ρ0j = ρ̄0j e
iωt , and ρej = ρ̄ej . Also, �1 =

μE0/2h̄εeff1, �j = μjE0/2h̄, and ωj = (εj − ε0)/h̄. We
consider the steady-state solution for the case with
a large dissipation in MNP [i.e., �ej ≈ (�e + �j )/2 ≈
�j/2, �0j ≈ �j/2], and for the near resonant regime,
i.e., ω ≈ ω0, we have γρee = −i�eff ρ̄e0 + H.c., (ω0 − ω +
γ0e)ρ̄0e = �eff	, where 	 = ρ00 − ρee and �eff = �1 −∑

j

�j Hje

h̄ω′j is the renormalized field felt by SQD, with
�R = Re(�eff), �I = Im(�eff),ω′j = ωj − ω + i�0j , γ0e =∑

j

�2
j

ωj
′∗ − ∑

j

|Hej |2
h̄2ω′j + ∑

j 4Im[ 1
h̄ω′j ]Hje�j �1

γ
+ i�0e, and γ =

�e + ∑
j

2|Hej |2�ej

h̄2[(ωj −ω0)2+�2
ej ]

. We can obtain the solution for ρee

and ρ̄0e as

ρee = Y |�eff|2
K2 + �̃2

0e + 2Y |�eff|2
,

ρ̄0e = (K�R + �̃0e�I ) + i(K�I − �̃0e�R)

K2 + �̃2
0e + 2Y |�eff|2

, (4)

where K ≡ ω0 − ω + δ, δ = Re(γ0e), �̃0e = Im(γ0e), and Y =
2�̃0e/γ . Because of a fast dissipation in MNP, we assumed
above that ρ00 + ρee ≈ 1. It is easy to see the renormalized
frequency and the lifetime for exciton, i.e., the behavior of the
hybrid exciton.1

III. THE NONLINEAR FANO EFFECT

Now we consider the absorption of our hybrid system. Some
algebraic calculation shows that the total energy absorption
rate takes the form Qtot = QMNP + QSQD, with QSQD =
�eρeeh̄ω0 and

QMNP =
∑

j

�jρjjh̄ωj =
∑

j

2�0jμ
2
jh̄ωj

(ωj − ω0)2 + �2
0j

E2
0

(2h̄)2
F (K), (5)

F (K) = (K − βR)2 + (�̃0e − βI )2 + [β2(Y − 1) + Y ]|�eff|2
K2 + �̃2

0e + 2Y |�eff|2
, (6)

where βR = β�R , βI = β�I , and β = Hej/h̄�j . F (K)

can be written as F = |ε+q|2
1+ε2 = (ε+qR )2

1+ε2 + q2
I

1+ε2 , ε =
ω−ω0−δ√

�̃2
0e+2Y |�eff |2

, q = qR + iqI , qR = Hej �R

h̄�j

1√
�̃2

0e+2Y |�eff |2
, and

qI =
√

(�̃0e−βI )2+[β2(Y−1)+Y ]|�eff |2
�̃2

0e+2Y |�eff |2 .

Usually Hej ∝ μ · μj , then qR , qI is independent on the
index j. In the case of a strong laser field, or a weak laser
field with a short interparticle distance, the absorption rates
of our hybrid systems are dominated by the absorption rate
of MNP. It is because of the saturation effect of SQD (for
strong laser field), and/or the fast dissipation in MNP (for the
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case of strong interparticle interaction, i.e., short interparticle
distance). Since �0j is large, the absorption line shape is mainly
determined by F (K), as also seen in Refs. 1 and 2.

In the weak field limit, the qR term in F (K) is electric-
field independent and the usual linear Fano effect is recovered
when �0eis zero. The appearance of zero in the Fano function
F (K) at ε = −qR is a consequence of quantum interference.
In the presence of dephasing (which is unavoidable in a real
system), this zero is lifted due to the qI term. Thus, the qI term
describes the effect of dephasing on the quantum interference.
It is apparent, when �0e is very large, that the qI term dominates
and the linear Fano effect is washed out. It is just because the
discrete state is much broadened and becomes a wide or fat
state, and the condition for the Fano effect (a discrete state or
narrow state) is not satisfied.

A nonlinear Fano effect (with a field-dependent Fano factor
qR) appears for a strong external field, where the dipole of the
SQD (proportional to Re[ρ̄0e]) has a nonlinear dependence
on the external electric field [see Eq. (4)]. Figure 2 and
the above formula of qR show that the external field makes
the Fano factor qR smaller, and thus makes the Fano effect
more pronounced, i.e., the line shape is more asymmetric,
which has been observed in experiment.10 In general, qR and
qI determine the field-dependent line-shape and dephasing
effect. Here we also mention that the nonlinear Fano factor has
a more complicated and interesting relation with the interaction
strength compared to that for the usual linear Fano factor.

IV. THE QUANTUM-SEMICLASSICAL
CORRESPONDENCE (QSC)

Now we establish the quantum-semiclassical relation. Con-
sider the response of MNP to the external field E = E0e

−iωt .
The induced polarization can be calculated as17

P (t) = e−iωt
∑

j

−|μj |2
h̄(ω − ωj + i�0j )

E0.

FIG. 2. (Color online) The generalized Fano function F(K). βR =
−10.0, Y = 1. �I has been set to zero for simplicity and �̃0e is set
as the unit. We have neglected the weak field dependence of �̃0e.
The peak values have been normalized to 1 in the main panel. Insert:
The generalized Fano function F(K) in the regime of the very strong
external field.

Therefore, we have

P (ω)/E(ω) =
∑

j

−|μj |2
h̄(ω − ωj + i�0j )

≡ εbaχ (ω)a3

for a spherical MNP with radius a, which corresponds to
εba

εm(ω)−εba

εm(ω)+2εba
a3 in the classical theory, with εm the bulk

dielectric constant of the metal. Consider the dipole interaction
between a MNP and a SQD with Hej = −sαμ · μj/εeff2R

3,
where εeff2 = (2εba + εs)/3, R is the interparticle distance,
and sα = 2 (−1) for the exciton-dipole orientation parallel
(perpendicular to) the axis of the hybrid molecule of SQD and
MNP. Then we have

∑
j

|Hej |2
h̄(ωj − ω − i�0j )

= s2
αμ2χ (ω)a3

h̄εeff1εeff2R6
,

which is just the G(ω) defined in Ref. 1 accounting for the
shift and broadening of the exciton peak. With the QSC, the
physical meaning of some of the equations in the quantum
theory becomes also quite clear. For instance, in the weak field
regime, we obtain the following formula from Eq. (3):

∑
j

μj ρ̄0j ∝
∑

j

μj

�j − Hej ρ̄e0/h̄

ω′∗j
∝ χ (ω)a3(E0 + sαμρ̄0e/εeff2R

3). (7)

The left-hand side of the above equation is the dipole of MNP.
The right-hand side is the dipole of MNP induced by the
external field (the first term) and the dipole field from SQD
(the second term, PSQD ∝ Re[μρ̄0e]).

Using Eqs. (5) and (6) and the QSC, we can
also obtain the absorption rate for MNP QMNP =
3
2E2

0a
3ω| εba

2εba+εm
|2Im[εm]F (K) in the quantum theory with the

Fano factor qR = A
√

	, A = sαμ2�R

h̄εeff1εeff2�1R3�̃0e
. The semiclassi-

cal result is qC = A	, which agrees with the quantum result
in the weak field regime 	 ≈ 1. It is easy to see that the
semiclassical theory gives a smaller Fano factor than that in
quantum theory (

√
	 � 	).

To further establish the relation between semiclassical
theory and quantum theory and apply our theory to concrete
material systems, we first calculated the energy absorption
spectra for colloidal systems. In the calculation, we have used
the parameters for colloidal systems with a background di-
electric constant εba = 2.0 (polymer) and εSQD = 7.2 (CdTe);
the constant εm (Au) is taken from Ref. 18. R = 15 nm, and
a = 7.5 nm. In Fig. 3, we show the dependence of total energy
absorption rate on the laser intensity and dipole moments of
excitons (μ = er0). It is clearly seen that in the case with
a weak field or strong field off-resonance (	 ≈ 1), there is
good agreement for the total absorption rate between the
semiclassical theory and the quantum theory. For the case
with a strong field near resonance (	 is small), the quantum
results are quite different from the semiclassical results. In
general, the absorption line shape in quantum theory looks
more symmetric than that in the semiclassical theory, which is
consistent with the fact that qR > qC . Importantly, in the case
of a strong external field and large exciton dipole moment
[as shown in Fig. 3(f)], the absorption spectrum from the
semiclassical theory shows instabilities in the small energy
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FIG. 3. (Color online) Total energy absorption rates obtained
from the semiclassical theory (black curves with dots) and the
quantum theory (red curves with triangles) for different values of
dipole moment of SQD. (a)–(c) are for the weak field regime with
different exciton dipole moments. (d)–(f) are for the strong field
regime with different exciton dipole moments. In (f), the black curve
with dots, the blue curve with squares, and the purple curve with stars
show the three nonlinear steady states from the semiclassical theory.
The inset in (f) is the magnification of the near resonance regime; in
this graph, we have shifted the curves to make them clearer.

window near the resonance, as predicted before in Ref. 4.
In this near resonance regime, there are three steady-state
solutions (represented by the black curve with dots, the blue
curve with squares, and the purple curve with stars) with
different values of the exciton excited state population and
total absorption rate for each frequency. Beyond this energy
window, these three curves collapse to one curve, seen as
the blue curve with squares. This instability is described
by three nonlinear steady states [black curve with dots,
blue curve with squares, and purple curve with stars in
Fig. 3(f)] and one of the states [black curve with dots in
Figs. 3(e) and 3(f)] shows zero total absorption that is an
induced transparency effect. The absorption spectrum from
the quantum theory (red lines with triangles) does not show
instabilities and a transparency effect. The physical reason for
the absence of the instability and transparency effects in the
quantum theory is that the continuum states cannot be heavily
populated since the population nonlinearity for the metal
component cannot be achieved at the considered moderate light
powers.

Figure 4 shows the comparison between quantum theory
and semiclassical theory for the self-assembled systems. There
is little difference between the total absorption rate from
semiclassical theory and that from quantum theory in the weak
field regime. In the strong field regime, a large difference
between the two theories appears. The absorption has an

FIG. 4. (Color online) The total energy absorption rates obtained
from semiclassical theory (the black curves with dots) and quantum
theory (the red curves with triangles) for self-assembled systems with
parametersεba = εSQD = 12.

asymmetric line shape in the semiclassical theory, while it
develops antiresonance in the quantum theory.

V. THE NONLINEAR CONFINED FANO EFFECT

Our theory of the nonlinear Fano effect is based on the
Hamiltonian [Eqs. (1) and (2)] with a general interaction term,
and thus can be applied to more general systems. In particular,
it can be applied to systems where the quantum nature is
essential and the semiclassical theory is invalid. Bar-Ad et al.
have studied the confined Fano effect,19 where the spacing be-
tween the energy levels in the “semicontinuous” spectrum may
become large due to the confinement effect. In this case, a full
quantum theory is needed. If we consider the “picket fence”
model19,20 with ωj = j	ε, −∞ < j < ∞, assume μj = μ̄,
Hej = V to be constants, and neglect the small �0e, a simple
calculation shows that �̃0e = π (|V |2/h̄2 + �2

1μ̄
2/μ2)/	ε and

qR = V μ/h̄μ̄

√
�̃2

0e + 2Y |�eff|2, which reduces to q0 = h̄μ	ε

πμ̄V

in the case E0 → 0. The field-independent confined Fano
factor q0 found in Ref. 19 is recovered. q0 is proportional
to 	ε. With increasing 	ε, q0 increases and the asymmetric
line shape changes to symmetric line shape gradually, and
thus the Fano effect tends to disappear. In general, the linear
dependence of qR on 	ε becomes nonlinear in the presence
of an external field and qR is always smaller than q0. Here one
sees that the competition between the confinement effect and
nonlinear effect leads to the field-tunable nonlinear confined
Fano effect. The confinement induces enhancement of the Fano
factor on one side, and the external field reduces the Fano factor
by decreasing 	ε effectively on the other side, increasing the
possibility of observing an asymmetric Fano line shape—the
confined Fano effect.19

Finally, we would like to discuss the parameters. The largest
parameter in the case we considered is the damping rate of
plasmon. It is ∼10–100 meV, which is much larger than
the dissipation rates of the exciton �e ≈ μeV, �0e ≈ μeV.
For the case of weak field, for instance, I ≈ 1–10 W/cm2,
h̄|�eff|(≈μeV) � �̃0e (≈10 μeV), the system basically shows
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the linear behavior (with 	 ≈ 1). For a stronger field with
I ≈ 1000 W/cm2, i.e., h̄|�eff| ≈ 10 μeV (�meV). In this
case, �̃2

0e ≈ 2|�eff|2, the nonlinear effect shows up and 	 has
an appreciable difference from 1, indicating that the quantum
effect becomes important. We also want to point out that our
quantum theory can be applied to cases where the semiclassical
treatment of the Fano problem is invalid. In our quantum
approach, we can still use in our theory explicit information
about an electronic structure of the materials. Our theoretical
framework for the nonlinear Fano effect can be applied to
other experimental systems, such as a metallic tip–quantum
dot and/or molecule system.

To conclude, we present a quantum theory for the hybrid
MNP-SQD molecules, where the elementary excitations of
very different natures, the exciton and plasmon, are treated
on the same footing. The nonlinear Fano effect is described
by the Fano function F = |ε+q|2

1+ε2 with the generalized field-
dependent complex Fano factor q = qR + iqI , which includes

both the nonlinear and dephasing effects. We show that the
results from quantum theory differ from those of semiclassical
theory, especially in the strong field regime. For example, in
contrast to the semiclassical theory, the quantum treatment of
the exciton-plasmon Fano problem points out that there are no
bistable states in the strongly nonlinear regime. Our general
theoretical framework can be applied to other hybrid systems
with strong confinement, for instance, those with an interesting
nonlinear confined Fano effect.
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