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Interplay between real and pseudomagnetic field in graphene with strain
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We investigate electric and magnetic properties of graphene with rotationally symmetric strain. The strain
generates a large pseudomagnetic field with alternating sign in space, which forms a strongly confined quantum
dot connected to six chiral channels. The orbital magnetism, degeneracy, and channel opening can be understood
from the interplay between the real and pseudomagnetic fields which have different parities under time reversal and
mirror reflection. While the orbital magnetic response of the confined state is diamagnetic, it can be paramagnetic
if there is an accidental degeneracy with opposite mirror reflection parity.
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The recent successful preparation of a one-atom layer
of carbons, graphene,1,2 has provided the opportunity for
theoretical and experimental research of a massless Dirac
fermion in nanoelectronics. While quantum dots which confine
quasiparticles in graphene are basic building blocks for its
nanoelectronic application, the confinement turns out to be
nontrivial. It is because, in graphene, where the quasiparticles
are described by massless Dirac fermions, they can penetrate
large and wide electrostatic barriers due to the effect of Klein
tunneling.3 In principle, graphene dots can be realized by
a spatially inhomogeneous magnetic field, but the required
magnetic field for the confinement, however, is unreasonably
strong4 compared to usual electronics applications. Recently,
strain engineering of graphene5–7 has attracted great attention
as an alternative tool for graphene electronics because the
strain induces a strong pseudomagnetic field which guides
electrons. Thus, for the strained graphene to work successfully
in combination with existing technologies, it is now important
to understand the physical properties of the pseudomagnetic
field. In this Rapid Communication, we investigate the relative
contribution of real and pseudomagnetic fields to the electric
and magnetic properties of the graphene. We show that a
reasonable size of strain can generate a strong pseudomagnetic
field to form a graphene quantum dot with six chiral channels.
It will be demonstrated that the different symmetry of real
and pseudomagnetic fields give rises to rich properties of
channel opening and orbital magnetism. The pseudomagnetic
field appears since the variation of hopping energies by
elastic strains enters the Dirac equation.8–13 While the strong
confinement is due to the fact that the pseudomagnetic field
is very strong (∼10 T), the six chiral channels are due to the
topology of the pseudomagnetic field, where charged particles
propagate along the zero-field line. As we will show here, the
real and pseudomagnetic fields have different parities under
the symmetry operation, such as time reversal and mirror
reflection. From the symmetry arguments, we prove that while
the real magnetic field breaks the time-reversal symmetry in
its Hamiltonian, it does not lift the valley degeneracy. We
will demonstrate our theory by showing orbital diamagnetism
of the confined state. It will be shown that a paramagnetic
response is also allowed when a partially open state with
opposite parity becomes degenerate with the confined state.

Let us consider graphene where mechanical deformation
is allowed in a restricted disk shape. This can be realized
by a circular hole made in the substrate below the graphene
sheet, and the deformation is induced through an external
force. In experiments, circularly symmetric strain fields can
be applied with an atomic force microscopy (AFM) tip or by
a homogeneous gas pressure acting on graphene below the
substrate.14 When strain is induced by a homogeneous load,
the optimized vertical displacement h(r)is given by15

h(r) = f0

43D
[R2 − (x2 + y2)]2, (1)

where f0 is the force per unit area acting on the surface,
D is the bending rigidity, h0 = f0R

4/(43D) is the vertical
displacement at the center, and R is the radius of the region
where the deformation is allowed. The in-plane relaxation of
the carbon atoms ux,uy can be calculated by minimizing the
elastic free energy for the given vertical displacement h(r),
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where κ is the bending rigidity, λ ≈ 1 eV/Å2, and
μ(≈3λ) are Lamé coefficients,16 and uij is the strain
tensor. Here, the strain tensor uij (r) is related to the
displacement fields via uxx = ∂ux/∂x + 1

2 (∂h/∂x)2, uyy =
∂uy/∂y + 1

2 (∂h/∂y)2, and uxy = 1
2 (∂ux/∂y + ∂uy/∂x) +

1
2 (∂h/∂x)(∂h/∂y). Our numerical calculations show that the
in-plane relaxation has only a radial component which can be
maximally 6 Å. We find the in-plane relaxation weakens the
pseudomagnetic field but does not affect its symmetries, which
will be discussed in this Rapid Communication.

We consider spinless fermions in a graphene lattice.
The spinless quasiparticle in the graphene can be described
by a four-component wave function �T = (�T

K,�T
−K ) =

(ψA,K,ψB,K,ψA,−K,ψB,−K ). These are the electron wave
functions near two inequivalent points (also called valleys)
±K in a hexagonal Brillouin zone in the two crystalline
sublattices A and B. We ignore the valley mixing by the
strain based on the results of a tight-binding calculation
showing that the two inequivalent valleys are not coupled
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FIG. 1. (Color online) The vertical displacement of our consid-
ered systems in the text (a) and the pseudomagnetic fields (b). The
radius is R = 100 nm and the height is h0 = 20 nm.

under uniaxial deformations up to 20%.17 The main effect
of the strain field on the electrons is to modify the energy
for electron hopping between the nearest-neighbor atoms. The
modified quasiparticle energy by the strain is well described
by introducing the pseudogauge field Aps(r) in the massless
Dirac equation

H = vF

(
�σ · (p + eAps) 0

0 −�σ ∗ · (p − eAps)

)
, (3)

where −e is the electric charge, p = −ih̄(∂x,∂y), and �σ =
(σx,σy) are Pauli matrices acting in the sublattice space. The
Fermi velocity is given by vF = 3ta/2h̄, where t ≈ 2.8 eV
is the electron hopping energy between the nearest π orbitals
and a is the nearest distance between carbon atoms. Here, we
choose the x axis which has a zigzag structure in real space and
take two K points [K = π

a
( 4

3
√

3
,0), − K]. The pseudogauge

field Aps(r) is written as10

Aps = tβ

evF

(uxx − uyy, − 2uxy), (4)

where β ≡ − ∂ ln t
∂ ln a

≈ 2–3 is the dimensionless coupling pa-
rameter for the lattice deformation.8–11,18 In Fig. 1, we plot
the pseudomagnetic field Bps = Bpsk = ∇ × Aps. This is the
pseudomagnetic field experienced by the particle in the K

valley, and for the particle in the −K valley, the sign of the
magnetic field is opposite.

To investigate the confinement of the quasiparticles in
graphene, we compute the eigenenergies of the system as the
total graphene size used in the calculation L increases and
observe whether the energy is insensitive to the system size.
The graphene in the calculation is a disk defined as r < L and
the graphene is deformed only in the region of r < R. We im-
pose the boundary condition �A(r = L) = �B(r = L) = 0.
While the wave functions which extend over the total system
are sensitive to the boundary conditions, localized states in the
deformed region are not affected by the boundary condition.
We obtain the eigenvalues of the Hamiltonian using the basis
functions ψA,B = ∑

c
A,B
n,l φn,l(r), where φn,l(r) = Jl(

αnl

L
r)eilθ .

Here, αnl is the nth zero of the Bessel function Jl(x) of order
l, and we use the indices l = 0, ± 1, ± 2, . . . , n = 1,2,3, . . ..

As shown in Fig. 2, we find that at certain energies there
exist eigenstates whose eigenenergies are insensitive to the
system size L. These particular energy values are determined
by the strength of the pseudomagnetic field. These are the
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FIG. 2. (Color online) The eigenenergies as a function of the
system size L. We set R = 100 nm and h0 = 20 nm. Note that at
a certain energy (marked by an arrow), the eigenenergy becomes
insensitive to the system size L.

localized states induced by the deformation of the graphene.
Compared to the midgap states in a ripple array studied in
Ref. 8, which shows weak size dependence in a logarithmic
scale, the eigenenergies of the localized states show almost
no size dependence. From an analytic calculation, the length
and energy scales for the localized state can be obtained by
bringing the asymptotics of the differential equation for the
wave function to dimensionless form. This is done by rescaling
r → r0r̃ , E → E0Ẽ, with

r0 =
(

h̄vF R4

8tβh2
0

)1/3

, E0 = h̄vF /r0. (5)

The scale r0 thus plays a role in the localization length and can
be estimated as (R4a/h2

0)1/3, where a is the lattice constant.
Since the localization length must be shorter than the hole
radius, otherwise the Dirac equation with a pseudomagnetic
field cannot apply, the localization length expressed in the
above equation is valid only for a strong enough load h0 
√

Ra. The scale E0 is associated with the depth of the potential
well and the energy of the localized energy levels.

It proves useful to consider the symmetries to understand
the energy spectra of quantum systems. The time-reversal
symmetry is not broken by the strain if we consider the problem
with both of the valleys. A time-reversal operation defined by

T = τxK (6)

satisfiesT HT −1 = H ,T iT −1 = −i.19 HereK is the complex
conjugate operator and (τx,τy,τz) are the Pauli matrices acting
in the valley space. Note that the Kramers degeneracy is not
relevant here since the original system has an orthogonal
symmetry T 2 = 1.

The quasiparticle can remain in a given valley provided
there is no short-range scattering (e.g., lattice defects). In this
restricted case of a single valley, the time-reversal symmetry is
broken by the pseudomagnetic field. The usual two-component
time-reversal operator for 1/2 spin S = −iσyK does not
commute with the Hamiltonian in Eq. (3). The Hamiltonian is
symmetric under the symplectic time-reversal transformation
only in the absence of the strain (S2 = −1); SH (Aps =
0)S−1 = −H (Aps = 0). The relevant Kramers degeneracy
here is lifted by the pseudomagnetic field Aps �= 0.
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FIG. 3. (Color online) (a) Probability densities of the localized wave functions |ψA,K (r)|2 and (b) |ψB,K (r)|2. We set R = 100 nm, h0 =
20 nm. (c) Classical closed orbits of a charged particle in the inhomogeneous magnetic field given by Bps which resemble the probability
density of the localized states shown in (a) and (b). (d) Classical paths describing three outgoing channels.

The Hamiltonian in Eq. (3) is also symmetric under a mirror
reflection

M = σxπx, (7)

MHM−1 = H, (8)

where πx acts as x → x, y → −y. The valley index remains
the same under the mirror reflection but inevitably changes
its lattice index. The spatial symmetry (|ψA,K (x,y)|2 =
|ψB,K (x, − y)|2) of the probability density of the localized
state shown in Figs. 3(a) and 3(b) reflects the M symmetry in
the Hamiltonian.

To understand the electronic structure of the strained
graphene, we rewrite the Hamiltonian in Eq. (3) for a given
valley K and eigenenergy E,[

v2
F (p + eAps)

2 + h̄ev2
F (∇ × Aps)zσz

]
�K = E2�K. (9)

The first term on the left-hand side of Eq. (9) comes from
the kinetic energy and the second term is due to the pseudo
Zeeman coupling. The pseudomagnetic field is strongest at six
points, forming a hexagon (Fig. 1) where local Landau levels
might be formed. For a given pseudospin and valley, one can
see the maximum probability density around only three points
[Figs. 3(a) and 3(b)]. This is because of a necessary condition
for the stable confinement on the pseudo Zeeman coupling,

(∇ × Aps)zσz < 0. (10)

In this case, more energy is expended for a quasiparticle to
go out to the weaker field region. The triangular (instead
of hexagonal) shape of the wave function for a given lattice
and valley is due to the selective stabilization by the pseudo
Zeeman coupling.

The confinement of channeling in the strained graphene
can be visualized by investigating classical trajectories of
the charged particles in the pseudomagnetic field [Figs. 3(c)
and 3(d)]. Among the periodic orbits around the pseudo-
magnetic field maxima, we find clover-shaped orbits which
resemble the localized wave functions in Fig. 3(c). These
closed orbits are very unstable against small perturbation.
In quantum mechanics, the clover-shape motion might be
responsible for a quantum transition between the sites of
the local density maxima. We also find outgoing trajecto-
ries [Fig. 3(d)] for different initial velocities. A charged
particle can propagate along the line where the magnetic
field changes sign, which is the so-called snake orbit.20

Due to the symmetry of the pseudomagnetic field, there are
incoming trajectories in 60◦ rotated angles from those of
the outgoing trajectories. Quantum mechanically, for given
components of the lattice and valley, the graphene quantum
dot is connected to three incoming and three outgoing chiral
channels.

The opening of the channels manifests in the energy spectra.
The localized energy level undergoes crossing and avoided
crossing as the graphene size L changes. [See Figs. 2 and 4(a)

081401-3



RAPID COMMUNICATIONS

KYUNG-JOONG KIM, YA. M. BLANTER, AND KANG-HUN AHN PHYSICAL REVIEW B 84, 081401(R) (2011)

110 120 130 140

0.04

0.045

0.05

E
 [e

V
]

0 0.010.01 0.020.02 0.030.03 0.040.04 0.050.05
-1.5-1.5

-1

-0.5

0

0.5

1

1.5

B [T]B [T]

L [nm]L [nm]

L=126nmL=126nm

L=128nmL=128nm

L=130nmL=130nm

L=122nmL=122nm
L=124nmL=124nm

m
−

(a)(a)

(b)(b)

FIG. 4. (Color online) (a) A detailed energy spectra as a function
of the system size L which shows crossing and avoided crossing.
(b) The orbital magnetic response − ∂E

∂B
of localized states. Mostly

the magnetic response is diamagnetic − ∂E

∂B
< 0 but the response

for a level crossing point (indicated by the dotted line) shows a
paramagnetic response (positive value). We set R = 100 nm and
h0 = 20 nm.

for more details.] When the channels open, the eigenenergy of
the confined state is affected by the graphene size, so it has
avoided crossing. Meanwhile when the two levels cross each
other, the channels remain closed and the eigenenergy of the
localized state is insensitive the graphene size. In the process
of avoided crossing, the confined state undergoes a transition
to an outer state and a new outer state becomes localized.
Since any parity does not change in this continuous process,
the confined state transits only to the state with the same
parity.

Let us consider the response of the strained graphene to
the real magnetic field. When the real magnetic field Bre =
∇ × Are is applied, minimal coupling of the electromagnetic
gauge field Are is done by replacing p with p + eAre in Eq. (3).
The Hamiltonian becomes H + H ′, where

H ′ = vF e

(
�σ 0

0 −�σ ∗

)
· Are, (11)

and Are = 1
2 (−y,x)B is the gauge field for the real magnetic

field in the z direction.

We want to address here that the application of the real
magnetic field breaks the time-reversal symmetry of the
Hamiltonian, but it does not lift the valley degeneracy. This
can be proved by showing 〈�±K | ∂H ′

∂B
|�±K〉 = 0. The proof

comes from the fact that the eigenstates have either an even
or odd parity of the mirror reflection symmetry in Eq. (8),
M2 = 1: 〈�K | ∂H ′

∂B
|�K〉 = 〈�K |(−yσx + xσy)|�K〉 =

〈�K |M(+yσx − xσy)M|�K〉 = −〈�K |(−yσx + xσy)|�K〉.
Since 〈�K | ∂H ′

∂B
|�K〉 is equal to its own negative value, it

must be zero. The leading magnetic field dependence of
the eigenenergy in the presence of the magnetic field is not
linear but quadratic, ∝B2. It comes from the kinetic energy
and its sign is positive. Therefore, the orbital magnetization
of the strain-induced quantum dot at zero temperature is
diamagnetic(−∂E/∂B < 0) and is proportional to the applied
magnetic field strength [see Fig. 4(b)].

In contrast to the diamagnetic response of the confined
state, the orbital magnetic response can be paramagnetic
(−∂E/∂B > 0) when there are level crossings. Near the region
of the level crossings, there are two energy levels with an
opposite parity of M. One of the states is a localized state and
the other is a partially opened state (not shown). The accidental
degeneracy which occurred here can be lifted by applying a real
magnetic field because H ′ is odd under the mirror reflection
MH ′M = −H ′. Then energy splitting arises, proportional
to the real magnetic field strength, which contributes to the
paramagnetic response.

In conclusion, we have shown that the rotationally symmet-
ric strain in graphene can be considered a quantum dot with
spatially separated six chiral channels. The chiral channels
exist along the line where the pseudomagnetic field changes
sign. The real and pseudomagnetic fields have different
symmetries under a mirror reflection, which causes the orbital
magnetism to be diamagnetic or paramagnetic depending on
the degeneracy. The orbital magnetic response of the confined
state is diamagnetic due to its kinetic energy. When there is an
degeneracy with opposite mirror reflection parity, the orbital
magnetism can be paramagnetic. Quite recently, we became
aware of a work on the dynamics of electrons in strain-induced
pseudomagnetic fields.21
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