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Interplay of Kondo and superconducting correlations in the nonequilibrium Andreev transport
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Using the modified perturbation theory, we theoretically study the nonequilibrium Andreev transport through a
quantum dot coupled to normal and superconducting leads (N-QD-S), which is strongly influenced by the Kondo
and superconducting correlations. From the numerical calculation, we find that the renormalized couplings
between the leads and the dot in the equilibrium states characterize the peak formation in the nonequilibrium
differential conductance. In particular, in the Kondo regime, the enhancement of the Andreev transport via a
Kondo resonance occurs in the differential conductance at a finite bias voltage, leading to an anomalous peak
whose position is given by the renormalized parameters. In addition to the peak, we show that the energy levels of
the Andreev bound states give rise to other peaks in the differential conductance in the strongly correlated N-QD-S
system. All these features of the nonequilibrium transport are consistent with those in the recent experimental
results [Deacon et al., Phys. Rev. Lett. 104, 076805 (2010); Phys. Rev. B 81, 121308 (2010)]. We also find that
the interplay of the Kondo and superconducting correlations induces an intriguing pinning effect of the Andreev
resonances to the Fermi level and its counter position.
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I. INTRODUCTION

Electron transport through nanofabrications has attracted
much attention in the studies of fundamental quantum physics
as well as potential future devices. In particular, a quantum dot
(QD), which has discrete energy levels where the electrons
are correlated, provides an ideal arena to study the local
Coulomb interaction effect on the transport.1–3 The magnetic
doublet states with spin 1/2 are stabilized at an isolated QD
with an odd number of electrons and the strong Coulomb
interaction, which results in the Coulomb blockade for the
transport through the QD coupled to leads. At sufficiently
low temperatures, however, the local moment of the doublet
states is screened by the electrons of the leads owing to
the Kondo effect, and thus the Kondo singlet is stabilized,
resulting in an anomalous enhancement of the zero bias
conductance.4–9

If we replace the leads by s-wave superconductors, a
different situation arises; the doublet is not screened due to the
lack of low-lying energy states of the leads. Even in the system,
a singlet state can be stabilized due to the superconducting
(SC) proximity effect, and the system thus shows a transition
between the doublet and the singlet.10–17 Away from the
transition point, one of the two states becomes the ground state
and the other an excited state which is localized at the QD [i.e.,
the Andreev bound states (ABS)]. In this system, however, it is
difficult to directly observe ABS via transport measurements
because of a supercurrent and a multiple Andreev reflection
process.18–28

Recently, Deacon et al. have observed ABS experimentally
not in the above system but in the system with a QD coupled to
normal and SC leads (N-QD-S) where an Andreev reflection
dominates the transport.29,30 In the N-QD-S system, however,
the doublet states should be replaced by the Kondo singlet state
owing to the screening by the electrons of the normal lead (N
lead), leading to a crossover between the Kondo singlet to the
SC singlet. A lot of studies have thus far focused on how the

competition between the Kondo and SC correlations affects the
Andreev transport experimentally29–33 and theoretically.34–48

Indeed, Kondo-type anomalous phenomena have been ob-
served in the measurement of zero bias conductance in the
recent experiment.30

Experimentally, characteristics of ABS emerge under
nonequilibrium steady-state conditions where a finite bias
voltage is applied to the N lead. Some theoretical studies
have dealt with the nonequilibrium transport properties in
an N-QD-S system with an emphasis on the influence of
the Kondo effect34–36,39–42,45–47 and also on ABS.48 However,
the coexistence of the phenomena related to the Kondo
effect and ABS in the experiments indicates the necessity of
further theoretical studies; it is needed for the comprehensive
understanding of the transport to include ABS as well as the
interplay between the Kondo and SC correlations into the
theory.

In this paper, we study the nonequilibrium Andreev
transport, by taking into account the above different aspects
of the N-QD-S system in a unified way. To this end, we
employ the modified second order perturbation theory (MPT)
used previously by Cuevas et al.38 and extend it to the
nonequilibrium steady-state conditions. MPT was originally
formulated in the equilibrium Anderson model,49 then has
been used in several different systems (e.g., a quantum dot
coupled to normal leads50–54 and as a impurity solver for the
dynamical mean-field theory55,56). Furthermore, we exploit
the exact solution of the QD-S system with an infinitely
large SC gap, which is here called “SC atomic limit” and
still has the essence of ABS, to improve the perturbation
theory. In MPT, the modified self-energies give the correct
values both in the SC atomic limit, where the competition
between the Coulomb interaction and the SC proximity effect
is taken into account, and in the weak interaction limit. In the
intermediate regime, MPT provides an interpolation scheme
for the modified self-energies, which can describe the interplay
of the Kondo and SC correlations in the nonequilibrium states.
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Since the interplay of the Kondo and SC correlations
in nonequilibrium states is an ongoing issue with no exact
solution and few established theories, it is needed to construct a
theory with which we can take it into account properly. By sys-
tematically examining the nonequilibrium transport properties
in a wide variety of the system parameters, we demonstrate that
the theoretical results obtained in this paper are qualitatively
in good agreement with the recent experiments,29,30 which
suggests that MPT is an efficient method which enables us to
systematically deal with the nonequilibrium properties with
the competing correlations.

This paper is organized as follows. In Sec. II, the model
Hamiltonian is introduced and we formulate MPT in Keldysh-
Nambu space of the Green’s function. In Sec. III, we assess
the validity of our method in the equilibrium case and define
the renormalized parameters which characterize the electron
transport in the nonequilibrium states. The results of nonequi-
librium transport are shown in Sec. IV. We also analyze the
SC pair amplitude and the local density of states at the QD
in the nonequilibrium states. The correspondence between the
theoretical and experimental results is also discussed in this
section. A summary is given in Sec. V. We note that a part of
the present results was briefly reported in Ref. 47.

II. MODEL AND METHOD

A. Model Hamiltonian and Keldysh Green’s function
in Nambu space

To describe the electron transport in the N-QD-S system,
we use a single level QD coupled to a normal metal and a
superconductor, which is applicable for the system with large
level spacing of the QD,

H = HQD + HN + HS + HTN + HTS, (1)

where

HQD = εd

∑
σ

ndσ + Und↑nd↓, (2)

HN =
∑
kσ

(
εN
k − μN

)
c
†
kσ ckσ , (3)

HS =
∑
qσ

(
εS
q − μS

)
a†

qσ aqσ +
∑

q

(�Sa
†
q↓a

†
−q↑ + H.c.),

(4)

HTN =
∑
kσ

(tNc
†
kσ dσ + H.c.), (5)

HTS =
∑
qσ

(tSa
†
qσ dσ + H.c.). (6)

Here, d†
σ creates an electron with spin σ at the QD which

has an energy level εd and the Coulomb interaction U . Here,
ndσ ≡ d†

σ dσ . c
†
kσ (a†

qσ ) denotes the creation operator of an
electron with spin σ and wave vector k (q) in the normal
(SC) lead. The SC lead is assumed to be described by the
BCS Hamiltonian with a SC gap �S = � exp(iθS). The QD is
coupled to the normal and SC leads labeled by α = N,S with
hybridization tα .

To define nonequilibrium steady states of the N-QD-S
system with a bias voltage V , we treat the Coulomb interaction

U as a perturbation. The noninteracting problem can be solved
exactly with the Keldysh Green’s function technique in Nambu
space, from which we can define the chemical potentials of the
normal and SC leads as μN = eV and μS = 0, respectively.

In the noninteracting case, several different Green’s func-
tions in Nambu space at the QD are defined as

gr (t,t ′) = −iθ (t − t ′)

(〈[d↑(t),d †
↑ (t ′)]〉0 〈[d↑(t),d↓(t ′)]〉0

〈[d †
↓ (t),d †

↑ (t ′)]〉0 〈[d †
↓ (t),d↓(t ′)]〉0

)
,

(7)

ga(t,t ′) = iθ (t ′ − t)

(〈[d↑(t),d †
↑ (t ′)]〉0 〈[d↑(t),d↓(t ′)]〉0

〈[d †
↓ (t),d †

↑ (t ′)]〉0 〈[d †
↓ (t),d↓(t ′)]〉0

)
,

(8)

g<(t,t ′) = i

(〈d †
↑ (t ′)d↑(t)〉0 〈d↓(t ′)d↑(t)〉0

〈d †
↑ (t ′)d †

↓ (t)〉0 〈d↓(t ′)d †
↓ (t)〉0

)
, (9)

g>(t,t ′) = −i

(〈d↑(t)d †
↑ (t ′)〉0 〈d↑(t)d↓(t ′)〉0

〈d †
↓ (t)d †

↑ (t ′)〉0 〈d †
↓ (t)d↓(t ′)〉0

)
, (10)

where gr and ga denote the retarded and advanced Green’s
functions, which are also used in the equilibrium case, and g<

and g> represent the lesser and greater Green’s functions. We
consider a sufficiently wide band of electrons in the leads, in
which the coupling strength �N(S)(ω) ≡ π |tN(S)|

∑
k(q) δ(ω −

ε
N(S)
k(q) ) becomes a constant �N(S). Integrating out the electron

degrees of freedom in the two leads, we obtain the Fourier
transformed Green’s functions,

gr,a(ω) = [
(ω ± iη)I − εdσ 3 − �r,a

t (ω)
]−1

, (11)

g<,>(ω) = −gr (ω)�<,>
t (ω)ga(ω), (12)

where

�r
t (ω) =

(−i [�N + �Sβ(ω)] i�Sβ(ω)�S

ω

i�Sβ(ω)�∗
S

ω
−i [�N + �Sβ(ω)]

)
,

(13)

�a
t (ω) = [

�r
t (ω)

]†
, (14)

�<
t (ω) = −i2�N

(
f (ω − μN ) 0

0 f (ω + μN )

)

− i2�SRe[β(ω)]

(
1 −�S

ω

−�∗
S

ω
1

)
f (ω), (15)

�>
t (ω) = i2�N

(
1 − f (ω − μN ) 0

0 1 − f (ω + μN )

)

+ i2�SRe[β(ω)]

(
1 −�S

ω

−�∗
S

ω
1

)
[1 − f (ω)]. (16)

Here, η is a positive infinitesimal and σ i (i = 1,2,3) is a
Pauli matrix in Nambu space. β(ω) = |ω|√

ω2−�2 θ (|ω| − �) +
ω

i
√

�2−ω2 θ (� − |ω|) and f (x) = [ex/kBT + 1]−1. The upper
(lower) sign in Eq. (11) and hereafter refers to the retarded
(advanced) Green’s function.
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FIG. 1. Second order self-energy diagrams we consider in this
paper. The solid lines indicate the propagators and the dashed lines
mean the Coulomb interaction.

If we obtain the self-energies due to the Coulomb inter-
action, the full retarded and advanced Green’s functions are
determined from the Dyson equation

Gr,a(ω) = [
[gr,a(ω)]−1 − �

r,a
U (ω)

]−1
. (17)

The full lesser and greater ones are calculated from the relation

G<,>(ω) = −Gr (ω)[�<,>
t (ω) + �

<,>
U (ω)]Ga(ω). (18)

Here we examine the self-energy �U , using the perturbation
theory in the Keldysh Green’s function formalism. The first
order contributions to the retarded and advanced self-energies
are �

r,a
1st = U 〈N〉 with

〈N〉 ≡
(

〈nd〉 〈d↓d↑〉
〈d↓d↑〉∗ −〈nd〉

)
, (19)

where 〈nd〉 denotes the expectation value of the electron
number at the QD per spin. There is no first-order contribution
to the lesser and greater self-energies because the Coulomb
interaction at the QD takes place without delay. The second
order skeleton diagrams are depicted in Fig. 1. The corre-
sponding contributions to the lesser and greater self-energies
are obtained from the equation

�
<,>
2nd (ω) = −U 2

∫
dω1

2π
<,>(ω + ω1)σ 2[g>,<(ω1)]T σ 2,

(20)

where

<,>(ω) =
∫

dω1

2π
[g<,>

11 (ω1)g<,>
22 (ω − ω1)

− g
<,>
12 (ω1)g<,>

21 (ω − ω1)]. (21)

Here, gij denotes the (i,j ) component of g. Using the above
self-energies, we calculate the second order contributions to
the retarded and advanced self-energies

�
r,a
2nd(ω) = i

2π

∫
dω1

ω − ω1 ± iη

[
�<

2nd(ω1) − �>
2nd(ω1)

]
.

(22)

Although the second order self-energies are believed to give
reasonable results for the nonequilibrium transport through a

strongly interacting QD coupled to two normal leads (N-QD-N
system) at least for the particle-hole symmetric case,57,58 this
technique is not directly applicable to the N-QD-S system
because of the lack of symmetry of the leads. The main
difficulty in our N-QD-S system comes from the fact that
the simple second order self-energies do not correctly give
the formula in the atomic limit where the QD and the leads
are disconnected. Indeed, the qualitatively correct description
of the Kondo effect in a particle-hole symmetric N-QD-N
system with the second order self-energy is ensured by the fact
that the corresponding formula becomes exact not only in the
weak-U but also in the atomic limit.55 In the N-QD-S system,
furthermore, the SC correlations at the QD, which come from
the SC proximity effects, must be taken into account, so that
we have to introduce a suitable atomic limit to study the
strong-U regime. For this purpose, we here make use of the
exact solution of the QD-S system with an infinitely large SC
gap.

Below, we describe how to construct the modified self-
energies, �̃2nd, which reproduce the correct results in the
atomic limit as well as the weak-U limit within the above
second order perturbation. The self-energy due to the Coulomb
interaction up to second order thus reads �U = �1st + �̃2nd.

B. Superconducting atomic limit

In the limit of � → ∞, the quasiparticle degree of freedom
in the SC lead is decoupled from the QD. Therefore, the
Hamiltonian is simplified as

H�inf = H�inf
dot + HN + HT N, (23)

H�inf
dot = εd

∑
σ

ndσ + (�dd
†
↑d

†
↓ + H.c.) + Und↑nd↓, (24)

where �d ≡ �S exp(iθS). In this case, �S corresponds to the
effective SC gap at the QD owing to the proximity effect.

In the limit of �N → 0, the QD is decoupled from the
normal lead and the effective Hamiltonian (23) becomes a
one-site problem with the SC paring potential and the Coulomb
interaction. Hereafter, we call the limit of (� → ∞,�N/U →
0) “SC atomic limit”.17 In the SC atomic limit, the self-energies
at the QD can be exactly obtained as

�
r,a
atm(ω) = U 2χ [(ω ± iη)I − �]−1, (25)

�
<,>
atm (ω) = ∓i2ηU 2χ [(ω + iη)I − �]−1

× [(I ∓ σ 3)/2 + 〈N〉][(ω − iη)I − �]−1, (26)

where

χ ≡ 〈nd〉(1 − 〈nd〉) − |〈d↓d↑〉|2, (27)

� ≡
(

εd + U (1 − 〈nd〉) �d − U 〈d↓d↑〉
�∗

d − U 〈d↓d↑〉∗ −εd − U (1 − 〈nd〉)

)
. (28)

Note that we omit the first order contributions of U in the
atomic-limit self-energies.

Next, we consider the second order self-energies, following
the formula derived in the previous section. We assume that
one-particle Green’s functions in the second order diagrams
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(Fig. 1) are dressed with energy shifts, which are determined
by the following one-body Hamiltonian

H = H dot + HN + HS + HT N + HT S, (29)

H dot = (εd + U 〈nd〉)
∑

σ

d †
σ dσ + (U 〈d↓d↑〉d †

↑d
†
↓ + H.c.),

(30)

where 〈nd〉 and 〈d↓d↑〉 are the effective parameters represent-
ing the energy shifts of the one-particle Green’s function.

In the SC atomic limit, the above one-particle Green’s
functions behave like a sum of δ functions, so that the second
order self-energies can be evaluated as

�
r,a
2nd(ω) → U 2χ0 [(ω ± iη)I − �0]−1 , (31)

�
<,>
2nd (ω) → ∓2ηU 2χ0[(ω + iη)I − �0]−1[(I ∓ σ 3)/2

+〈N〉0][(ω − iη)I − �0]−1, (32)

where

χ0 ≡ 〈nd〉0(1 − 〈nd〉0) − |〈d↓d↑〉0|2, (33)

�0 ≡
(

εd + U 〈nd〉 �d + U 〈d↓d↑〉
�∗

d + U 〈d↓d↑〉∗ −εd − U 〈nd〉

)
, (34)

〈N〉0 ≡
(

〈nd〉0 〈d↓d↑〉0

〈d↓d↑〉∗0 −〈nd〉0

)
. (35)

Here, 〈nd〉0 and 〈d↓d↑〉0 are the expectation values of the
particle number per spin and the SC correlation at the QD
under the one-body Hamiltonian (29).

We find that in the SC atomic limit, the second order self-
energies have the functional forms similar to the exact ones,
except that they have different constants; (χ0, �0, 〈N〉0) and
(χ , �, 〈N〉). Exploiting this fact, we construct the modified
second order self-energies in the following.

C. Modified second order perturbation theory

First, we formulate the modified self-energies for the
retarded and advanced sectors. For the sake of clarity, we
follow the procedure of MPT in the N-QD-N system by
Kajueter and Kotliar.55 In this procedure, the modified self-
energies are assumed to have the following functional forms

�̃
r,a
2nd(ω) = A

[[
�

r,a
2nd(ω)

]−1 − B
]−1

, (36)

where A and B should be determined for the self-energies
to reproduce the exact ones in the high-energy limit as well
as the SC atomic limit. The exact high-energy limit of the
self-energies can be calculated from the continued-fraction
expansion of the corresponding Green’s functions,59,60

�
r,a
U (ω) = U 〈N〉 + U 2χ

ω
I + O

(
1

ω2

)
. (37)

The first term coincides with the first order self-energy in
U . On the other hand, in the limit of ω → ∞, the modified
self-energies are expanded as

�̃
r,a

2nd(ω) = AU 2χ0

ω
I + O

(
1

ω2

)
. (38)

The coefficient A in Eq. (38) is determined from the condition
that the leading terms of the modified self-energies are
identical to the corresponding ones in the exact self-energies
in Eq. (37). Accordingly, we set A as χ/χ0.

We next determine the matrix B from the condition that
the modified self-energies give the correct values in the SC
atomic limit. In the limit, the modified retarded and advanced
self-energies become

�̃
r,a
2nd(ω) → U 2χ [(ω ± iη)I − �0 − U 2χ0 B]−1. (39)

To eliminate the difference between the right-hand side of the
above equation and that of Eq. (25), we set B as follows

B = 1

Uχ0

(
1 − 〈nd〉 − 〈nd〉 −〈d↓d↑〉 − 〈d↓d↑〉

−〈d↓d↑〉∗ − 〈d↓d↑〉∗ −1 + 〈nd〉 + 〈nd〉

)
.

(40)

Note that in the limit of � → 0 or �S → 0, the SC
correlations at the QD vanishes and the off-diagonal
terms in Eq. (36) become zero. Furthermore, A =
〈nd〉 (1 − 〈nd〉) /[〈nd〉0 (1 − 〈nd〉0)] and the nondiagonal terms
of B vanish. As a result, the modified self-energies of Eq. (36)
just coincide with those in the previous studies.55 Therefore,
we believe that the modified self-energies obtained here are
proper extensions of those used in the N-QD-N system.

We have to calculate the modified lesser and greater self-
energies to obtain the transport properties. By generalizing the
strategy used previously,55 we define the modified lesser and
greater self-energies as

�̃
<,>

2nd (ω) = 1

A
�̃

r

2nd(ω)
[
� r

2nd(ω)
]−1

�
<,>
2nd (ω)

× [
� a

2nd(ω)
]−1

�̃
a

2nd(ω). (41)

We now confirm that the above self-energy reproduces the
atomic-limit form. Multiplying the modified self-energy (41)
on the left and right by the inverse matrices of �̃

r

2nd(ω) and
�̃

a

2nd(ω), we take the SC atomic limit[
�̃

r

2nd(ω)
]−1

�̃
<,>

2nd (ω)
[
�̃

a

2nd(ω)
]−1

→ ∓2iη

U 2χ
[(I ∓ σ 3)/2 + 〈N〉0]. (42)

In the limit, the above matrix does not depend on ω. In a similar
way, we multiply the atomic-limit lesser self-energy (41) on
the left and right by the same matrices. The resulting matrix
also becomes a constant in the limit,[

�̃
r

2nd(ω)
]−1

�
<,>
atm (ω)

[
�̃

a

2nd(ω)
]−1

→ ∓2iη

U 2χ
[(I ∓ σ 3)/2 + 〈N〉]. (43)

Therefore, the difference between Eqs. (42) and (43) can be
ignored in the limit of η → 0, and Eq. (41) reproduces the
atomic-limit form indeed,

�̃
<

2nd(ω) → �<
atm(ω) (� → ∞,�N → 0). (44)

So far, we have formulated the modified retarded, ad-
vanced, lesser, and greater self-energies. However, these four
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self-energies are not independent, but have to satisfy the
following equality,

�̃
<

2nd(ω) − �̃
>

2nd(ω) = �̃
r

2nd(ω) − �̃
a

2nd(ω). (45)

We indeed confirm that the modified self-energies satisfy the
equality.

D. Current conservation and consistency of the energy shifts

Using the resulting full Green’s function, we calculate the
current though the N-QD-S system. The current flowing in
the normal and SC leads can be calculated from the time
evolution of the particle number operators N̂N,S in each lead:

ÎN (t) = −e dN̂N (t)
dt

and ÎS(t) = −e dN̂S (t)
dt

. Since we assume that
the system is in a nonequilibrium steady state, the expectation
values of these operators are time independent, which are given
by

〈ÎN 〉 = −4e�N

h
Im

∫ [
2f (ω − μN )Gr

11(ω) + G<
11(ω)

]
dω,

(46)

〈ÎS〉 = −4e�S

h
Im

∫
dω

[
2ρ̃S(ω)f (ω)Gr

11(ω) + β∗(ω)G<
11(ω)

− �S

ω

(
2ρ̃S(ω)f (ω)Gr

12(ω) + β∗(ω)G<
12(ω)

)]
, (47)

where ρ̃S(ω) ≡ Re[β(ω)] and Gij denote the (i,j ) component
of G. We define the current I in this system as I = 〈ÎN 〉 =
−〈ÎS〉. However, it is known that the current calculated by
the second order perturbation theory may not be conserved in
some quantum dot systems except in a special condition.57,58,61

In the N-QD-S system, the simple application of the second
order self-energy usually breaks the current conservation rule
(i.e., 〈ÎN 〉 + 〈ÎS〉 = 0).

In our modified second order perturbation theory, the
problem in the current still exists. To resolve this difficulty
within our framework, we introduce the source term λ coupled
to the current operator and add the term into the one-body
Hamiltonian (29)

λ(ÎN + ÎS). (48)

The effective parameters 〈nd〉, 〈d↓d↑〉, and λ are determined
by the following consistency conditions on the energy shifts
and the current conservation⎧⎪⎨⎪⎩

U 〈nd〉 = U 〈nd〉 + Re
[
�̃

r

2nd(μN )
]

11,

U 〈d↓d↑〉 = U 〈d↓d↑〉 + [
�̃

r

2nd(μS)
]

12,

〈ÎN 〉 + 〈ÎS〉 = 0,

(49)

where [�̃
r

2nd]ij denotes the (i,j ) component of the modified
retarded self-energy. 〈nd〉 and 〈d↓d↑〉 are also determined in a
self-consistent manner.

Here, we check the U → 0 limit of the modified self-
energies. In the small-U limit, �̃

r,a

2nd becomes the simple
second order self-energy �

r,a
2nd which is calculated from the

one-particle Green’s functions dressed with the mean-field
energy shift because the consistency conditions in Eq. (49)
are reduced to 〈nd〉 = 〈nd〉 = 〈nd〉0 and 〈d↓d↑〉 = 〈d↓d↑〉 =

〈d↓d↑〉0. Therefore, �̃
<,>

2nd is also reduced to �
<,>
2nd evaluated

with using the mean-field Green’s functions.
Note that the above modified self-energies are applicable to

impurity systems with or without the SC correlations. We will
show below that the above method works very well except for
some special cases with large bias voltage where we cannot
find the convergent parameters 〈nd〉, 〈d↓d↑〉, and λ. In this
paper, we mainly focus on the reasonable parameter region
where the bias voltage is not so large. We demonstrate that a
variety of intriguing phenomena emerge due to the interplay
of the Kondo and SC correlations, some of which indeed
reproduce the experimental results qualitatively well.

III. LINEAR-RESPONSE CONDUCTANCE
AND PHASE DIAGRAM

In this section, we study the transport properties in
the linear-response regime and check the validity of our
approximation for the linear-response transport. In addition,
the renormalized couplings of tunneling are introduced, which
clearly specify various regimes appearing in the nonequilib-
rium electron transport addressed in the next section.

A. Zero bias conductance and the renormalized couplings
in the equilibrium states

Let us first consider the zero bias conductance obtained
in two different ways within the same framework of MPT
to confirm the consistency of our approximation. Here, we
concentrate on the symmetric coupling case, �N/�S = 1,
with particle-hole symmetry, εd/U = −0.5, in the equilibrium
state.

We first obtain the zero bias conductance by directly
differentiating the current by the bias voltage. In this case,
we have to calculate the lesser and greater self-energies to
obtain the current from Eqs. (46) and (47). The current-voltage
characteristics thus obtained for several values of U , are shown
in Fig. 2(a). In addition to the suppression of the current,
we can see the enhanced nonlinear behavior. To observe the
nonlinearity in more detail, we show the conductance, I/V ,
near the zero bias voltage in Fig. 2(b). In this figure, the
conductance curve for U/�N = 0 is almost flat near the zero

 0

 0.5

 1

 1.5

 2

 2.5

 0  0.2  0.4  0.6  0.8  1

I 
(e

/h
)

eV / Δ

U/ΓN=0
U/ΓN=5

U/ΓN=10
U/ΓN=15
U/ΓN=20

 1

 2

 3

 4

 0  0.1  0.2

I/
V

 (e
2 /h

)

eV / Δ

(a) (b)

FIG. 2. (Color online) (a) Current-voltage characteristics for
several values of U : �S/�N = 1, εd/U = −0.5, �/�N = 0.5, and
kBT /�N = 0.005. (b) Conductance as a function of the bias voltage.
The parameters used are the same as in (a).

075484-5



YASUHIRO YAMADA, YOICHI TANAKA, AND NORIO KAWAKAMI PHYSICAL REVIEW B 84, 075484 (2011)

bias voltage, implying that the linear response theory can be
safely applied in this finite voltage region. For U/�N = 5,
the conductance is suppressed, yet keeps the flat structure.
With further increase in U , however, the conductance shows
a convex curve; the linear response regime is restricted to the
very tiny voltage region (i.e., |eV |/� � 0.01 for U/�N =
20).

In the case of εd/U = −0.5, we have an alternative
expression for the zero bias conductance at absolute zero in
terms of the renormalized couplings as38,44

dI

dV

∣∣∣∣
V =0

= 16e2

h

(�̃S/�̃N )2

[1 + (�̃S/�̃N )2]2
, (50)

where �̃N and �̃S are the renormalized couplings defined by

�̃N = z�N, (51)

�̃S = z
(
�S + [

�r
U (0)

]
12

)
, (52)

z =
(

1 + �S

|�| − d
[
�r

U (ω)
]

11

dω

∣∣∣∣
ω=0

)−1

. (53)

Here, [�r
U ]ij denotes the (i,j ) component of the Nambu matrix

of the retarded self-energy at the QD. It is worthwhile to note
that �̃N and �̃S can be calculated only from the retarded (or
advanced) self-energy in the equilibrium states and there is
no need to calculate the lesser and greater self-energies. The
physical meaning of �̃N corresponds to the Kondo temperature
in the limit of �S → 0, although the exponential decay of �̃N

with increasing U may not be described properly in MPT.
Figure 3(a) shows the zero bias conductance obtained in

the above-mentioned two different ways. The values of the
conductance obtained from the differentiation (triangle) well
coincide with those obtained from Eq. (50) with the renormal-
ized parameters (circle). This fact confirms the consistency of
our MPT treatment at least around the zero bias voltage.

In Fig. 3(a), the zero bias conductance decreases with
increasing U , which is due to the suppression of the Andreev
reflection by the Coulomb interaction. The suppression of
the Andreev reflection between the QD and the SC lead and
also the single-electron tunneling between the QD and the
N lead are seen in the Coulomb interaction dependence of
the renormalized couplings [Fig. 3(b)]. With increasing U ,
�̃S decreases more rapidly than �̃N , indicating that the entire
N-QD-S system is approximately decoupled into two parts in
the low energy region: SC lead and QD-N systems. Therefore,
the Kondo singlet state becomes dominant in the ground state
of the QD for large U , leading to the suppression of the
Andreev reflection.

We next discuss the zero bias conductance with infinitely
large �, in comparison with the results obtained with the
numerical renormalization group (NRG) calculations.44 In
Fig. 3(c), the closed and open circles denote the conductance
obtained with the MPT and NRG calculations. Although our
approach is based on the perturbation expansion in U , the MPT
results reproduce the NRG results in both weak and strong U

regions since in the MPT framework the effective parameters
〈nd〉 and 〈d↓d↑〉 are self-consistently determined to reproduce
the atomic limit correctly. Only in the intermediate region
around U/�N = 6, we see some discrepancies between the
two results (less than 0.3 e2/h).
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FIG. 3. (Color online) (a) Zero bias conductance as a function of
U obtained from the two different methods for �S/�N = 1, εd/U =
−0.5, �/�N = 0.5, kBT /�N = 0, which are, respectively, denoted
by circles (scheme of renormalized parameters) and triangles (scheme
of direct differentiation). (b) Renormalized couplings �̃N and �̃S . The
parameters used are the same as in (a). (c) Zero bias conductance as
a function of U with infinitely large �. The closed and open symbols
denote the results of the modified second order perturbation theory
(MPT) and the numerical renormalization group (NRG). The other
parameters are the same as in (a).

We now look at the local density of states (LDOS) at the
QD with and without the Coulomb interaction U . The LDOS
in the noninteracting case is shown in Fig. 4(a). For �S = 0,
there is a broad resonance around the Fermi energy due to the
decoupling of the QD from the SC lead, which means that
the QD is in the mixed valence regime. For small �S , the
weight of the LDOS is suppressed at ω = ±� since at the
same energies, the divergence of DOS of SC lead occurs. With
further increasing �S , the LDOS develops a pseudogap at the
Fermi energy and a double-peak structure appears inside the
gap owing to the SC proximity effect; the SC singlet state
becomes dominant at the QD. Since the two resonances inside
the gap are reduced to ABS for �N/�S = 0, we here refer
to them as the Andreev resonances. The Andreev resonances
are located at ω � ±�̃S with the same width �̃N . The change
from a single resonance to the Andreev resonances clearly
characterizes the crossover in the dominant couplings at the
QD, which occurs around �S/�N = 1.

In Fig. 4(b), the LDOS at �S/�N = 1 (crossover regime)
is shown for several choices of U . With the increase in U ,
the Andreev resonances are merged into a single resonance,
indicating that the SC correlations are reduced by the strong
Coulomb interaction and the Kondo correlations are enhanced
instead; the Kondo singlet state dominates the SC singlet
state at the QD. The broad peaks corresponding to the charge
excitations are also observed at ω � U/2 for large U . The
U dependence of the LDOS in Fig. 4(b) is consistent with the
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FIG. 4. (Color online) (a) LDOS for several values of �S : U =
εd = 0, �/�N = 0.5, and kBT = 0. (b) LDOS for several values
of U : �S/�N = 1, εd/U = −0.5, �/�N = 0.5, and kBT = 0. The
inset is the enlarged picture in the region around the Fermi energy.

preceding the MPT calculations by Cuevas et al.,38 though they
did not address its relationship to the Kondo and SC singlet
states.

In the particle-hole symmetric case (εd/U = −0.5) with
symmetric couplings �S/�N = 1, the strong Coulomb inter-
action favors the Kondo singlet ground state, as discussed
above. If we change the ratio �S/�N , however, the SC singlet
state can be dominant in the ground state in the strong Coulomb
interaction regime. Such examples are shown in Fig. 5, where
the zero bias conductance and the corresponding renormalized
couplings are plotted as a function of �S for �N/U = 0.05. For
�S/U = �N/U = 0.05, the N lead is strongly coupled to the
QD; �̃N > �̃S . As �S increases, �̃S increases more rapidly than
�̃N , although both of them are enhanced because the Coulomb
interaction effects are suppressed by the SC proximity effects.
We can indeed see that the crossover in the dominant couplings
occurs around �S/U � 0.1. A further increase in �S leads to
the enhancement of �̃S and the suppression of �̃N , driving the
system into the SC lead dominant coupling regime where the
SC singlet is dominant at the QD.

Since the zero bias conductance has the maximum value
for �̃S/�̃N = 1 [see Eq. (50)], the conductance shows a peak
structure around �S/U � 0.1 as shown in Fig. 5(a). Away
from the crossover regime, the conductance decreases both
in the N lead and SC lead dominant coupling regimes. For
any finite values of �N/U and �/U , the crossover in the
dominant couplings occurs at a finite �S/U . We will see in the
next section that the renormalized quantities �̃N and �̃S also
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FIG. 5. (Color online) (a) Zero bias conductance as a function of
�S for �N/U = 0.05, εd/U = −0.5, �/U = 0.025, and kBT /�N =
0. (b) The renormalized parameters as a function of �S .

characterize the differential conductance even at a finite bias
voltage.

B. Phase diagram

We summarize the results for the equilibrium N-QD-S
system in the phase diagram specified in terms of the dominant
couplings. Figure 6(a) shows the phase diagram of the particle-
hole symmetric N-QD-S system as functions of logarithms of
�N/U and �S/U . In this figure, the solid lines, which are
determined by �̃N = �̃S , characterize the crossover behavior.
In the left (right) region divided by the crossover line, the

(a)

(b)

FIG. 6. (Color online) (a) Phase diagram for the particle-hole
symmetric N-QD-S system in equilibrium conditions. The dominant
state for finite �N and the ground state for �N = 0 at the QD are
denoted in italic. (b) Phase diagram for the particle-hole symmetric
QD-S system for �N = 0. The first order transition points of the
ground state are denoted by the diamond (�/U = 0.025) and the
square (�/U = ∞).
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coupling between the QD and the N lead (SC lead) is dominant,
�̃N > �̃S (�̃N < �̃S).

First, let us look at the case of � = ∞ in Fig. 6(a). For large
�N/U , the crossover line approaches �N/�S = 1 denoted by
the dotted line because the effects of the Coulomb interaction
become weak there and then �̃N/�̃S � �N/�S [see Eqs. (51)
and (52)]. In the region of large �N/U but small �S/U , the
QD is strongly coupled only to the N lead and the Coulomb
interaction is week, so that the QD is in a mixed-valent
singlet state. With increasing �S , the proximity effects are
enhanced and a pseudogap is formed in the LDOS at the
QD, thus leading to the SC dominant state at the QD. On
the other hand, in the small �N/U region (π�N/U < 1), the
crossover line considerably deviates from the noninteracting
one (�N/�S = 1) due to the renormalization effects by the
Coulomb interaction. For π�N/U < 1, the mixed valence
state is gradually changed into the Kondo singlet state, so that
the crossover from the Kondo singlet state to the SC singlet
state occurs as �S/U increases.

The crossover line terminates at �S/U = 0.5 in the limit
of �N/U → 0 as shown in Fig. 6(b), where the crossover is
changed to a doublet-singlet transition. This doublet-singlet
transition is easily seen in the case of � = ∞, where the
effective Hamiltonian of the QD-S system is simplified since
the coupling between the Bogoliubov quasiparticles and the
QD vanishes. It has a single level with the SC pairing
potential characterized by the hybridization �S as already
noted in Eq. (24). The resulting effective Hamiltonian can
be diagonalized by the Bogoliubov transformation, leading to
four eigenstates: two singly occupied states with spin 1/2, |↑〉
and |↓〉, and two states with total spin 0 consisting of a linear
combination of the doubly occupied and empty states. In the
particle-hole symmetric case, the spin-0 singlet states are given
by

|S1〉 = 1√
2

(|0〉 − |↑↓〉), (54)

|S2〉 = 1√
2

(|0〉 + |↑↓〉). (55)

Note that the singly occupied states are degenerate at the zero
energy, and |S1〉 and |S2〉 have the different energies, ES1 =
U
2 − �S and ES2 = U

2 + �S . Therefore, the candidates for the
ground state are the magnetic doublet state, |σ 〉, and the SC
singlet state, |S1〉. Either of these two states can be the ground
state depending on the parameters, and a first order transition
occurs at �S/U = 0.5, which is denoted by the black square on
the �N = 0 line in Fig. 6(b); for �S/U < 0.5 (�S/U > 0.5),
the ground state is the doublet state (singlet state). If �N is
small but has a finite value, the local moment of the doublet
ground state is screened by the electrons in the N lead and the
Kondo singlet state becomes the ground state. Therefore, the
characteristic behavior in the crossover line for small �N/U

reflects a remnant of the doublet-singlet transition at �N = 0.
When the SC gap � becomes finite, the system is not

so much simplified because of the existence of the coupling
between the quasiparticles in the SC lead and the QD even
for �N = 0. Therefore, the competition between the Kondo
effect and the SC proximity effect becomes important. Even
in this case, there is still a doublet-singlet transition, which

is confirmed by several authors in the problem of a magnetic
impurity in superconductors62–68 and the 0–π transition of
the QD-Josephson junctions.10–17 The transition point shifts
toward lower �S with decreasing �. We denote the transition
point for �/U = 0.025, which is obtained with the NRG
calculation, by the diamond in Fig. 6(b).

Summarizing, the ground state of our system is always in the
singlet phase for finite �N , where three different-type singlet
regions are smoothly connected to each other via crossover
behaviors. Only for �N = 0, there exists a transition between
the singlet and doublet states.

C. Andreev bound states

Here some comments are in order on the nature of excited
states. We start with the �N = 0 and � = ∞ case. Since there
are only four discrete eigenstates at the QD in this case as
discussed above, the excited states are localized at the QD.
For �S/U > 0.5, |σ 〉 becomes the first excited state with the
energy ωb = |ES1|. In contrast, for �S/U < 0.5, |S1〉 becomes
the excited state with the energy ωb. The other singlet state,
|S2〉, is always the second excited state with the energy ωb2 =
ES2 − min(ES1,0) which is larger than ωb. The one-particle
excitation from the ground state to the excited states localized
at the QD is observed as sharp peaks in the LDOS. These sharp
peaks correspond to ABS. Therefore, there may be four ABS
in the LDOS when the ground state is a magnetic doublet with
energy ±ωb and ±ωb2. On the other hand, when |S1〉 becomes
the ground state, there are only two peaks with energy ±ωb

because there is no one-particle excitation from |S1〉 to |S2〉.
In the finite � case, there still exist ABS inside the gap

which correspond to |σ 〉 or |S1〉 for any values of � though
the energy of the bound states ωb cannot be obtained easily.
Moreover, the second excited state corresponding to |S2〉 may
be outside of the gap and be absorbed into the continuum
energy spectrum for small � (Ref. 17). In that case, there are
only two ABS at the QD even though the magnetic doublet
state is the ground state.

In the recent experiments,29,30 Deacon et al. have found that
ABS at the QD can be detected in the nonequilibrium transport
measurements in an N-QD-S system. In the experiments, there
are only two kinds of peaks which correspond to two kinds of
the first excited bound states. This fact may be attributed to the
small SC gap prepared in the experiments. This issue will be
addressed in the next section focusing on the nonequilibrium
transport.

IV. NONEQUILIBRIUM ELECTRON TRANSPORT

In this section, we study the nonequilibrium electron
transport in the N-QD-S system with a special focus on the
influence of the Kondo effect and the Andreev scattering on
the nonlinear transport. In particular, we clarify the origin
of the characteristic structures in the conductance profile in
comparison with the recent experiments.

Before elucidating the Coulomb interaction effects on the
nonequilibrium electron transport, it is instructive to discuss
the differential conductance, dI/dV , in the noninteracting
case. Here, we set εd = 0, where dI/dV has a symmetric
profile with respect to the V = 0 axis. Figure 7 shows the
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FIG. 7. (Color online) (a,b) Bias voltage dependence of the
differential conductance for several values of �S , U/�N = 0, εd = 0,
�/�N = 0.5, and kBT /�N = 0. Here, we only show the results
either for positive or negative V since dI/dV is symmetric with
respect to V = 0. (c) Peak position of dI/dV , VC , in comparison
with �̃S .

differential conductance for several values of �S/�N as a
function of the positive or negative bias voltage V .

In the noninteracting case, the ratio of the bare couplings
directly determines the nature of the system. We can see
the dI/dV profiles characteristic in the N lead and SC lead
dominant coupling regimes in Figs. 7(a) and 7(b), respectively.
In the nonlinear regime, the differential conductance in the two
regimes has different characteristics.

In the N lead dominant coupling regime as seen in Fig. 7(a),
the differential conductance is suppressed in whole subgap
voltages with decreasing �S because of the suppression of the
Andreev reflection. In the �S → 0 limit, the sharp peaks appear
at the gap edges and the profile of dI/dV becomes similar to
the density of states in the SC lead, indicating that the system
in the limit approaches the one with a NS tunnel junction.69

On the other hand, in the SC lead dominant coupling regime
shown in Fig. 7(b), the peak of zero bias conductance is split
into two, which then move toward the opposite gap edges with
keeping the unitary-limit value of 4e2/h when �S increases.
In this case, the SC singlet state is dominant at the QD in
the equilibrium state, and the Andreev resonances emerge in
the LDOS at the QD as shown in Fig. 4(a). The positions of the
resonances are approximately given by ±�̃S . We compare the
voltage VC that gives a peak in dI/dV with �̃S in Fig. 7(c). It
is seen that eVC moves along the curve of �̃S for large �S/�N ,
which confirms that the subgap peak in dI/dV results from the
enhancement of the transport through the Andreev resonances.

A. Nonequilibrium transport for particle-hole
symmetric case: εd/U = −0.5

We now investigate the Coulomb interaction effects on the
differential conductance at a finite bias voltage. Since there
are many relevant parameters in the system, we will divide our
discussions into two cases. We first treat the simple case with
a condition of particle-hole symmetry, εd/U = −0.5. More
generic cases with arbitrary conditions for εd and U will

FIG. 8. (Color online) (a) Bias voltage dependence of the dif-
ferential conductance for several values of U : �S/�N = 1, εd/U =
−0.5, �/�N = 0.5, and kBT /�N = 0.01. (b) Plots of the peak A
position, VA, and the renormalized coupling, �̃N , which is calculated
for V = T = 0.

be discussed separately in the next section in comparison
with the experiments. Note that some parts of the results
in Figs. 8(a), 9(a), and 10 have been reported briefly in our
previous paper.47

1. Coulomb interaction effects for �S/�N = 1

Let us start with a system with the symmetric couplings for
tunneling, �S/�N = 1, which may help us to imagine what
is essential in the nonequilibrium transport in the interacting
QD. Figure 8(a) shows the differential conductance as a
function of the bias voltage for several values of the Coulomb
interaction, U . According to the analysis in the previous
section (see Fig. 6), with increasing U , the system enters
the N lead dominant coupling regime where the Kondo
singlet state becomes dominant. In this Kondo regime, several
peaks appear at subgap voltages. We refer to the two sharp
peaks near the zero bias voltages as Peak A and the two broad
peaks at higher voltages as Peak B in Fig. 8(a). Although the
heights of the peaks are suppressed, both of Peak A and Peak
B become prominent for large U . Note that the U dependence
of the position of Peak A is different from that of Peak B; Peak
A approaches the zero bias voltage with increasing U , whereas
Peak B slightly shifts toward the gap edge. This fact implies
that these two kinds of subgap peaks in dI/dV have different
origins. We will show below that Peak A originates from the
interplay between the Kondo effect and the Andreev reflection
at a finite bias, while Peak B comes from ABS at the QD.

Let us focus on Peak A. Figure 8(b) shows the comparison
of the position of Peak A, denoted as VA, and the renormalized
N lead coupling �̃N defined at V = T = 0. It is seen that the
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FIG. 9. (Color online) (a) Local density of states at the QD
for several values of V : �S/�N = 1, U/�N = 20, εd/U = −0.5,
�/�N = 0.5, and kBT /�N = 0.01. (b) Peak position of subgap
resonances in (a) as a function of V .

value of eVA approaches �̃N when the system enters the Kondo
regime with increasing U . Since �̃N is the characteristic energy
scale of the Kondo effect, which approximately gives the width
of the Kondo resonance, Peak A is related to the Kondo effect.
The emergence of the Kondo effect is seen in the bias voltage
dependence of the LDOS at the QD shown in Fig. 9. Although
the LDOS for U = 0 is not changed by the bias voltage, it
is affected via the self-energy for finite U . In particular, the
LDOS in the Kondo regime substantially changes its form
under a finite bias voltage. Figure 9(a) shows the LDOS at the
QD for U/�N = 20 and �S/�N = 1. For V = 0, there is a
sharp Kondo resonance at the Fermi energy. With increasing
V , the position of the Kondo resonance follows the chemical
potential of the N lead, μN = eV , suggesting that the Kondo
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FIG. 10. (Color online) Temperature dependence of the differ-
ential conductance for �S/�N = 1, U/�N = 20, εd/U = −0.5 and
�/�N = 0.5.

screening of the local moment is mainly caused by the normal
lead.

A noticeable change in the LDOS at finite bias voltage
[Fig. 9(a)] is the appearance of the additional resonance
which is located at the counter position of the ordinary
Kondo resonance; the ordinary Kondo resonance has a
shoulder structure for eV/� = 0.2, which is changed into
an additional resonance for eV/� = 0.4. This consideration
naturally suggests that the additional resonance is caused by
the Andreev reflection through the ordinary Kondo resonance
(referred to as Kondo-assisted Andreev reflection); an electron
which comes from the N lead Fermi surface reaches the
SC lead via the ordinary Kondo resonance, and then it is
converted as a hole via the Andreev reflection process. Since
the electron has finite energy measured from the SC lead
Fermi surface, eV , the reflected hole also has the same energy.
This interpretation clarifies why the position of the additional
resonance is located at the counter position of the Kondo
resonance. Note that the additional resonance discussed here
was previously realized by Sun et al.,39 but was not discussed in
detail, in particular, about its physical relevance to the transport
properties. We will address this issue with the use of the renor-
malized couplings, and demonstrate that it indeed provides
a source of the marked change in nonequilibrium transport
properties.

The positions of the Kondo and additional resonances, ω+
and ω− are shown in Fig. 9(b) as a function of the bias voltage.
For small V , ω+ and ω− follow the dotted lines which denote
the position of the chemical potential of N lead and its counter
position, ±μN . Hence the crossover of the LDOS from the
single peak to the double peaks occurs at eV � �̃N where the
distance between the two peaks is approximately given by their
width. By comparing the results of the LDOS with dI/dV , we
find that the crossover voltage in the LDOS approximately
corresponds to the one giving Peak A in the differential
conductance. Summarizing all these results, we conclude that
Peak A in dI/dV originates from the Kondo-assisted Andreev
reflection at a finite bias voltage.

To further confirm our interpretation for Peak A in dI/dV ,
we calculate the temperature dependence of dI/dV as shown
in Fig. 10. With increasing temperature, two peaks near zero
bias voltage, which are classified as Peak A, are smeared and
absorbed into the broad peaks of Peak B. The temperature
dependence of Peak A supports that it is due to the Kondo-
assisted Andreev reflection. The characteristic temperature
around which Peak A is smeared coincides approximately with
�̃N/�N � 0.086. We note that the equilibrium quantity of �̃N

characterizes both the position and the T dependence of Peak
A in the nonlinear differential conductance.

In contrast, we can see that Peak B in dI/dV is not directly
related to the Kondo effect according to its T dependence in
Fig. 10; although the two peaks labeled as Peak B decrease
their heights with increasing T , the broad peak structure
still exists even at T/�N = 0.25 (higher than the Kondo
temperature). We indeed find that Peak B is solely controlled
by the Andreev reflection, but not by the Kondo effect. Since
the origin and the physical implications of Peak B are naturally
seen in the asymmetric limit of �S/�N � 1, we will discuss
the physical properties systematically in asymmetric couplings
below.
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FIG. 11. (Color online) Differential conductance as a function of
bias voltage for several values of �S : U/�N = 20, εd/U = −0.5,
�/�N = 0.5, and kBT /�N = 0.01.

2. Coulomb interaction effects for �S/�N �= 1

Here, we address how the asymmetry of couplings
(�S/�N = 1) alters the nonequilibrium transport properties.
We start with the differential conductance dI/dV shown in
Fig. 11 for several values of �S in the case of strong interaction
U/�N = 20. Here, we only show the results either in positive
or negative V since dI/dV is symmetric with respect to
V = 0 for εd/U = −0.5. The profiles of dI/dV in the N
lead and SC lead dominant coupling regimes are shown in
Figs. 11(a) and 11(b), respectively. The crossover between the
different regimes occurs around �S/�N � 2 where dI/dV

has its maximum value 4e2/h at zero bias voltage.
In Fig. 11(b), the dI/dV curves show properties analogous

to those in the noninteracting SC lead dominant coupling
case shown in Fig. 7(b); the peak of dI/dV moves toward
the gap edge with increasing �S . The peak values, however,
depend on the Coulomb interaction and become smaller than
4e2/h for large U . The suppression of the peak is attributed
to the inelastic scattering owing to the Coulomb interaction.
However, in the limit of �S � �N , U , the SC correlation
dominates the QD and thus the Coulomb interaction effects are
reduced, leading to the suppression of the inelastic scattering.
For �S/�N = 7.5, therefore, the peak value increases again.
For later discussions, we refer to these peaks as Peak C. On
the other hand, the results of dI/dV in the N lead dominant
coupling regime [Fig. 11(a)] are a little bit complicated; the
peak at zero bias voltage splits with decreasing �S , forming
a double-peak structure both in the positive and negative half
of the subgap voltage regions. The origin of these two peaks
is the same as discussed above, so that we denote them as
Peak A and Peak B. With decreasing �S , the position of Peak
A hardly changes, while that of Peak B shifts toward the gap
edge. With further decreasing �S , both of Peak A and Peak
B reduce their heights. Therefore, for �S → 0, dI/dV in the
gap is completely suppressed as is the case for U = 0.

To elucidate the origin of the peak formation, we plot the
�S dependence of the positions of Peaks A, B, and C, which
are labeled as VA, VB , and VC , in Fig. 12(a). Here, we take U as
the energy unit. For comparison, the renormalized couplings
�̃N and �̃S are also plotted. For �S/U � (�)0.1, �̃N is larger

FIG. 12. (Color online) (a) Semilog plot of the peak positions of
dI/dV in the N-QD-S system, VA and VB , as a function of �S/U .
The other parameters are �N/U = 0.05, εd/U = −0.5, �/U =
0.025, and kBT /�N = 0.01, which are the same as in Fig. 11. For
comparison, the renormalized couplings in the N-QD-S system with
V = T = 0, �̃N , and �̃S , and the energy of ABS in the QD-S system
with T = 0, ωb, are also plotted. (b) Semilog plot of dI/dV at the
crossover point against V/�̃ for several choices of � and �S . The
other parameters are the same as in (a). The value of �̃ is 0.0551,
0.124, 0.157, 0.187, and 0.213 for each curve from top to bottom. In
the low voltage region with eV < �̃, dI/dV fall into a single curve.
Inset shows the same data of dI/dV as a function of eV/U .

(smaller) than �̃S , namely, the system is in the N lead (SC lead)
dominant coupling regime. It is seen that VA and VC approach
the values of �̃N and �̃S in the limit of �S → 0 and ∞,
respectively. The crossover between these two limits appears
around �S/U � 0.1, where the peak is located at V = 0 with
the unitary limit value 4e2/h. At the crossover point, the width
of the zero bias peak is simply scaled by �̃ = �̃N = �̃S as
shown in Fig. 12(b). It is seen that the differential conductance
calculated for several choices of � and �S quickly decreases
around |eV | = �̃.

The above properties in the conductance are clearly un-
derstood in terms of ABS. The open diamonds in Fig. 12(a)
denote the energy ωb of ABS at the QD for �N = T = 0, which
is obtained with the NRG calculations.66–68 As mentioned
in the previous section, the system shows a transition between
the magnetic doublet and SC singlet states for �N = T = 0.
The transition point is evaluated as �T P

S /U � 0.129 from the
condition ωb = 0. For �S � (�)�T P

S , the doublet (SC singlet)
becomes the ground state and ABS originating from the SC
singlet (doublet) appear in the LDOS at the QD (see also the
discussion in Fig. 6). For finite �N , the local moment of the
doublet ground state is screened by the electrons in the N lead.
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FIG. 13. (Color online) False color-scale representation of
|〈d↓d↑〉| as a function of V and �S for �N/U = 0.05, εd/U = −0.5,
�/�N = 0.5, and kBT /�N = 0.01. The filled circles, triangles, and
squares indicate the �S dependence of eVA/�, VB/� and VC/�.

Therefore, the transition change into the crossover between the
Kondo singlet and the SC singlet. It is clearly seen in Fig. 12(a)
that VB is indeed related to ABS since VB approximately
coincides with the energy of ABS. This is also the case for
Peak C, and the difference between them comes from whether
the ground state is the Kondo singlet (Peak B) or SC singlet
(Peak C). We therefore reveals the origin of Peaks B and C;
when the energy corresponding to ABS is externally supplied
by the applied bias voltage, the weight of the excited state at the
QD is increased, resulting in the enhancement of the Andreev
reflection. Although the nontrivial correspondence between
the peak position of dI/dV and the energy of ABS has already
been discovered by Deacon et al.29,30 via the experimental
studies, to our knowledge, this is the first numerical calculation
which systematically clarifies the correspondence in both
coupling regimes by taking into account the Kondo effect.

The difference between VB and VC can be more clearly seen
in the SC pairing correlation at the QD, |〈d↓d↑〉|. Figure 13
shows the false color-scale representation of |〈d↓d↑〉| as a
function of �S and V . The filled circles, triangles, and squares
on the representation indicate the �S dependence of eVA/�,
eVB/�, and eVC/� shown in Fig. 12. In the N lead dominant
coupling regime (e.g., in the case of �S/U = 0.05) the SC
correlation at the QD is weak at V = 0 since the Kondo
singlet is dominant. With increasing V , |〈d↓d↑〉| shows the
peak at the bias voltage where Peak B is located. This result
clearly indicates the enhancement of the weight of the SC
singlet state at the finite bias voltage. On the other hand, in the
SC lead dominant coupling regime (e.g., in the �S/U = 0.3
case) it is seen that |〈d↓d↑〉| is relatively large at V = 0, and
monotonically decreases with increasing V . In particular, a
rapid decrease of |〈d↓d↑〉| occurs around V = VC , implying
that the weight of the magnetic doublet state increases in the
system instead of the SC singlet state at V = VC . All these
features are consistent with the above interpretation of the
peaks in the conductance.

It is instructive to consider the LDOS for finite V to see
the nature of the bound states. Since the V dependence of the
LDOS in the N lead dominant coupling regime has already
been discussed in Fig. 9, here we focus on the SC lead
dominant coupling regime. Figure 14(a) shows the LDOS at
the QD for �S/U = 0.15. In this SC lead dominant coupling
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FIG. 14. (Color online) (a) Local density of states at the QD for
several values of V for �S/U = 0.15, �N/U = 0.05, εd/U = −0.5,
�/�N = 0.025, and kBT /�N = 0.01.

case, there are the Andreev resonances corresponding to the
excited doublet for �N = 0. The double peaks of the LDOS
in the equilibrium state are located at ω/� � ±�̃S � ±0.5.
For eV/� = 0.2, the resonances show little change as if the
Coulomb interaction is absent in the system. For eV/� > 0.4,
however, the bias voltage increases the distance between the
two resonances and smears them. To see the V dependence of
the resonances in detail, we plot the peak position of the reso-
nances as a function of V in Fig. 14(b). Here, ω+ and ω− denote
the positions of the peaks for positive and negative ω, respec-
tively. With increasing V , they move toward the opposite gap
edges. In particular, the peaks become sensitive to the change
of the bias voltage around eV/� � 0.3, which approximately
corresponds to the value of eVC/�. This feature indicates that
the peaks tend to follow the chemical potential of N lead and
its counter position, μN and −μN , which can be regarded
as a kind of pinning effect of the Andreev resonances. Note
that the profiles of ω+ and −ω− approximately coincide with
each other, implying that the resonances keep their symmetric
structure with respect to the Fermi level of SC lead. Besides,
in the N lead dominant coupling regime, the pinning of the
resonance becomes more prominent as discussed in Fig. 9.
The origin of the pinning is attributed to the Kondo effect, and
is understood as follows: In the SC lead dominant coupling
case, the electron correlation is practically negligible in the low
energy and low voltage region, except for the renormalization
effects since the SC singlet is dominant at the QD. With
increasing V , however, the weight of the magnetic doublet
state increases in the system near V � VC . Then the resulting
doublet state is screened by the electrons in the N lead owing
to the Kondo effect, leading to the pinning of the resonances.

To further investigate the pinning of the resonances in
the LDOS, we show the false color-scale representation of
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FIG. 15. (Color online) False color-scale representation of
dω+/dμN as functions of V and �S for �N/U = 0.05, εd/U = −0.5,
�/U = 0.025, and kBT /�N = 0.01. The filled circles, triangles, and
squares indicate eVA/�, VB/�, and VC/�.

dω+/dμN in Fig. 15. Since dω+/dμN becomes large if the
resonance of the LDOS in the positive ω region follows the
chemical potential of the N lead, its value gives an estimate of
how strong the Kondo correlation is. In the N lead dominant
coupling regime, �S/U � 0.1, the Kondo pinning effect is
suppressed with increasing V since the bias voltage destroys
the Kondo singlet state. In particular, dω+/dμN rapidly
decreases when the value of the bias voltage approaches
VB because the weight of the SC singlet is increased at the
voltage. In contrast, in the SC lead dominant coupling regime,
dω+/dμN increases with increasing V from zero and takes
a peak at a finite bias voltage where Peak C appears in
dI/dV . Therefore, it is intuitively understood that the Kondo
correlation is enhanced by the bias voltage around V = VC .
With further increase in V , the Kondo correlation is weakened
again by the applied bias voltage, which, in turn, leads to the
suppression of dω+/dμN . The different features in dω+/dμN

at V = VB and V = VC reflect the difference in the origin
of ABS. Therefore, all the results of dI/dV , |〈d↓d↑〉|, and
dω+/dμN are consistent with the scenario that the weight of
the excited states is enhanced when the strength of the bias
voltage coincides with the energy of the excited states.

3. Comparison with mean-field results

To confirm the enhancement of the Kondo correlations in a
different viewpoint, we investigate the system in the mean-field
(MF) approximation in U . Although the MF approximation
leads to an improper description of the magnetic-moment
formation at the QD, its emergence serves as an indication
of the strongly correlated region, as discussed in the Anderson
model.70–72

Figure 16 shows the local magnetization m = (〈n↑〉 −
〈n↓〉)/2 at the QD as a function of V and �S . In the case
of 0.25 � �S/U � 0.3, it is noteworthy that the magnetic
solution exists only at a finite bias voltage; the bias voltage
induces the local moment at the QD. With a further increase
in V , however, the magnetic solution disappears again. Such
a reentrant behavior is not found in the nonequilibrium N-
QD-N system for εd/U = −0.5 (Refs. 71 and 72). We would
like to emphasize that although the formation of magnetic
moment is an artifact of the MF theory, the reentrant behavior
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FIG. 16. (Color online) False color-scale representation of the
magnetization at the QD as functions of V and �S for �N/U = 0.05,
εd/U = −0.5, �/U = 0.025, and kBT /�N = 0.01.

indicates the enhancement of magnetic correlations at the
finite bias. The magnetic correlations, which are suppressed
by the superconducting correlations in the low bias region, are
revived at a finite bias voltage. This result is consistent with
the enhancement of the Kondo correlations deduced from the
MPT calculations.

Next, we compare dI/dV obtained from the MF and MPT
calculations. Figures 17(a) and 17(b) show the false-color-
scale representations of dI/dV as functions of eV/� and the
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FIG. 17. (Color online) (a) Mean-field approximation results of
the differential conductance: �N/U = 0.05, εd/U = −0.5, �/U =
0.025, and kBT /�N = 0.01. The diamonds denote the energy of
ABS, ωb/�, as a function of εd/U calculated from NRG. The black
line indicates the boundary of the magnetic solution. (b) MPT results
of the differential conductance. The parameters are same as those
in (a).
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logarithm of �S/U which are calculated with MF and MPT,
respectively. Apart from the kinks at the magnetic boundary
which is denoted by the black solid line, the MF approximation
gives a qualitatively similar profile of ABS in dI/dV to the
one obtained with MPT. The partially mimicked feature of
ABS obtained by the magnetic moment is also seen in the
classical spin model in Ref. 48. In comparison with the energy
of ABS obtained with NRG, however, it is seen that the peaks in
dI/dV obtained with MF give the incorrect position of ABS.

On the other hand, the ridge in dI/dV obtained with MPT
clearly coincides with the energy of ABS. Therefore, it is
confirmed that MPT gives a more accurate description of
the physical quantities than the MF theory. In addition, in
Fig. 17(b), the anomalous enhancement occurs around the
transition point of the ground state in the QD-S system,
which is caused by the Kondo-assisted Andreev reflection.
The quantum fluctuation effects are significant at a finite bias
voltage in the vicinity of the transition point. The Kondo-
assisted Andreev reflection, as well as the pinning effect of
the Andreev resonances discussed in the previous section, is
seen only at a finite bias voltage and smeared away from the
transition point.

B. Nonequeliburium transport for generic (εd , V ) cases:
Comparison with experiments

In the remainder of the section, we discuss the differential
conductance as functions of the energy level at the QD, εd ,
and the bias voltage, V . We show a wide variety of patterns of
the differential conductance which result from the competition
between the Coulomb interaction and the SC correlations at the
QD. Note that εd can be easily controlled by the gate voltage
in actual experiments. Therefore, we compare the analysis
done here with the recent experiments qualitatively in good
agreement.29,30

1. Transport via Andreev bound states

Let us first focus on the simple cases where the Kondo-
assisted Andreev transport is not so important, for which we
can highlight the crossover behavior in the transport due to the
Andreev resonances.

Figure 18 is the false color-scale plot of dI/dV as a function
of εd for several values of �S . We also show the εd dependence
of the energy of ABS, which is calculated for �N = T = 0
with using the NRG method.68 In Figs. 18(a) and 18(b), the
system is in the SC lead dominant coupling regime. It is
clearly seen that the value of the bias voltage where dI/dV

takes a peak value coincides approximately with the energy
of ABS. The peak ridges correspond to Peak C defined in
the previous section. For �S/U = 0.16, the system shows a
crossover around εd/U = −0.5 and the conductance has the
maximum value, 4e2/h [center of Fig. 18(c)]. Note that the
energy of ABS does not touch the zero axis since �S/U = 0.16
characterizing the crossover is slightly different from the exact
transition point.

With decreasing �S , the system enters the N lead dominant
coupling regime as shown in Fig. 18(d). First, we consider
the case of �N = T = 0 with the NRG calculations. In this
case, the magnetic doublet becomes the ground state around
εd/U = −0.5, and a transition to the SC singlet state occurs,
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FIG. 18. (Color online) False color-scale representation of the
differential conductance as functions of V and εd for �N/U = 0.1,
�/U = 0.05, and kBT /�N = 0.01: (a) �S/U = 0.5, (b) �S/U =
0.25, (c) �S/U = 0.16, (d) �S/U = 0.1, (e) �S/U = 0.05. The
diamonds in the figure denote the energies of ABS, ωb/�, as a
function of εd/U , which are obtained by the NRG calculations in
equilibrium states (V = 0 and �N = 0).

where the softening of ABS occurs around εd/U � −0.5 ±
0.32. For finite �N , the magnetic doublet is changed to the
Kondo singlet. The softening of ABS is smeared in dI/dV

obtained from MPT because �N is not small in comparison
with �S . The peaks around the symmetric point are especially
indistinct because there are two kind of peaks of dI/dV : Peak
A originating from the Kondo-assisted Andreev reflection and
Peak B corresponding to ABS. For �N � �S in Fig. 18(e),
these peaks almost disappear in the subgap voltage and there
are only peaks at the gap edges as in the noninteracting N lead
dominant coupling regime.

It is to be noted here that the pronounced gap-edge peaks
in the cases of �N � �S and �N � �S , and the prominent
peaks corresponding to ABS in the SC lead dominant regime
are qualitatively in agreement with the recent experimental
results.29,30 In the experiment,29,30 the softening of ABS in
the N lead dominant coupling regime is also observed in the
distinctive peaks in the dI/dV measurement. However, we do
not find such a distinctly separated peak in the case �N � �S.

We will discuss the visibility of the peaks separately below.
We also calculate the (εd , V ) dependence of |〈d↓d↑〉| as

shown in Fig. 19. For �S/U = 0.5, it is seen that |〈d↓d↑〉|
is large around the center of the figure and decreases with
increasing εd since the dominant SC-singlet state, which
consists of the superposition of doubly occupied and empty
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FIG. 19. (Color online) False color-scale representation of
|〈d↓d↑〉| as functions of V and εd for �N/U = 0.1, �/U = 0.05 and
kBT /�N = 0.01: (a) �S/U = 0.5, (b) �S/U = 0.25, (c) �S/U =
0.16, (d) �S/U = 0.1, (e) �S/U = 0.05. The diamonds in the figure
denote the energies of ABS, ωb/�, as a function of εd/U , which are
obtained by the NRG calculations in equilibrium states (V = 0 and
�N = 0).

states, is weakened in the empty or doubly occupied region.
For finite V , |〈d↓d↑〉| decreases rapidly around the voltage
corresponding to the energy of ABS of a doublet character. For
small �S , the peak of |〈d↓d↑〉| is divided into two which are
located around the voltage corresponding to the energy of ABS
of a SC singlet character. In spite that the electron and hole
components of ABS have the same energy, there is asymmetry
in dI/dV and |〈d↓d↑〉| as a function of V . For instance,
|〈d↓d↑〉| is strongly suppressed in the right top, in comparison
with the one in the right bottom in Fig. 19. Moreover, the
asymmetric feature becomes prominent with decreasing �S .
To explain how the asymmetry emerges, let us consider the
�S → 0 limit. Figure 20 shows the schematic phase diagram
of the N-QD system with strong U . The Kondo correlation
is dominant for εd/U = −0.5 and V = 0, and is weakened
with increasing |εd + 0.5|. Note that V just shifts the chemical
potential of the N lead which is measured from μS = 0, so
that only one of the two parameters, eV and εd , become
relevant; the system stays in the same state along μN = εd

line in the figure. For −0.5 + �/U < εd/U , therefore, the
Kondo correlation is enhanced if we fix εd and increase V .
This enhancement of the Kondo correlation would occur in the
N-QD-S system with small �S , giving rise to the asymmetric
patterns. Besides, the energies of ABS obtained with the NRG
calculations are not skewed because the particle and hole

FIG. 20. (Color online) Schematic phase diagram of the N-QD-S
system for �S = 0 and large U .

energies of the bound states are the same for any values of
εd (see also Fig. 2 of Ref. 29).

2. How to observe Kondo-assisted Andreev transport

The subgap peak structure in the differential conductance in
the N lead dominant coupling regime is a bit more complicated
than that in the SC lead dominant coupling regime because
both of the Kondo-assisted Andreev reflection and ABS could
affect the conductance profile as seen in Fig. 18. Therefore
how we can observe the conductance peaks in the N lead
dominant coupling regime depends sensitively on the ratio
of the bare coupling strengths. We find that if �̃N/�̃S > 1
and �N/�S < 1 the conductance peaks become prominent in
the subgap voltage. We show some results below in the case
satisfying this specific condition.

Figure 21 shows the differential conductance for several
values of (�, �) and εd/U = −0.5. Note that the system is in
the N lead dominant coupling regime for any choices of (�,
�) (see also the phase diagram of Fig. 6). The two peaks in the
vicinity of V = 0 are related to the Kondo-assisted Andreev
reflection and the other two at eV/� � ±0.5 originate from
ABS. These four peaks become sharper and more prominent
from the top to bottom lines. In particular, the Kondo-like peaks
approach the zero bias voltage since the peaks are located at
eV � ±�̃N and �̃N decreases from top to bottom. Therefore,
we conclude that for U � �S,� � �N , only a single peak

 0
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FIG. 21. (Color online) Differential conductance as a function of
V for several values of (�S , �): �N/U = 0.05, εd/U = −0.5, and
kBT /�N = 0.01.
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FIG. 22. (Color online) (a) Renormalized coupling strengths as
a function of εd for �N/U = 0.05, �S/U = 0.1, �/U = 0.075,
and T = V = 0. (b) Differential conductance as a function of
the bias voltage for several values of εd/U and kBT /�N = 0.01.
From bottom to top, εd/U = −0.5, −0.4, −0.3, −0.2, −0.1, 0,
0.1, 0.2, and 0.3. The other parameters are the same as in (a). (c)
False color-scale representation of the differential conductance as
a function of V and εd . The parameters are the same as in (b).
The diamonds in the figure denote the energies of ABS, ωb/�, as
a function of εd/U , which are obtained by the NRG calculations
in equilibrium states (V = 0 and �N = 0). The dashed lines
indicate the resonant conditions; μN = εd and μN = εd + U . (d) At
kBT /�N = 0.1 which is nearly equal to that of �̃N/�N , the central
Kondo-enhanced Andreev ridges are suppressed.

around V = 0, instead of the two peaks at finite bias voltages,
may be observed in real experiments. We note that the thin
red line does not extend to |eV | = � because within our MPT
approach we cannot find a physically sensible solution for
large V in the strongly correlated regime.

We next look at the εd dependence of the N-QD-S system
for �N/U = 0.05, �S/U = 0.1, and �/U = 0.075 (Fig. 22).
In this case, �̃N > �̃S is satisfied at the particle-hole symmetric
point (εd/U = −0.5) in addition to the condition of �N/�S <

1, which leads to the crossover in the dominant couplings may
occur away from the symmetric point as shown Fig. 22(a).
The crossover points approximately coincide with the doublet-
singlet transition points denoted by arrows obtained from the
NRG calculations for �N = 0.

In the εd/U = −0.5 case of Fig. 22(b), there are four peaks
which stem from the Kondo-assisted Andreev reflection and
ABS. In addition, there are dips at the gap edges in dI/dV ,
which are consistent with the experimental results [the odd
electron occupation region of Fig. 2(c) in Ref. 29]. We note
here that the subgap peaks originating from ABS and the dips

were also addressed in the theoretical results (Fig. 2 in Ref. 48)
where the Kondo effect is neglected. Regarding the central
two peaks related to the Kondo effect, one of the peaks in-
creases its height away from εd/U = −0.5, whereas the other
disappears.

We note that the curve of dI/dV ends at certain voltages
for εd/U = −0.4, 0.3, 0.2, and −0.1 since we cannot get the
convergent solution in the framework of MPT. Therefore, the
movement of the one of the two peaks owing to ABS is not
clear in this figure, unfortunately. Nevertheless, we can see
that the other peak moves to lower bias voltages and merges
into the single peak with the prominent peak related to the
Kondo effect. With further increasing εd , the merged peaks
move toward the gap edges. As a result, the change from dips
to peaks at the gap edges in dI/dV for the odd and even
occupation regions of the experiment (see Fig. 2 in Ref. 30) is
clearly reproduced in the MPT calculations.

A quantitative comparison of the peak positions with the
energy of ABS, ωb/�, is shown in Fig. 22(c). The softening of
ABS clearly emerges in the peak structure of the differential
conductance. The softening reflects the transition of the ground
states in the case that �N = 0. For −0.75 � εd/U � −0.25,
there are two Kondo-assisted Andreev ridges around V = 0.
The two ridges are separated around εd/U − 0.5. In the
case of εd/U � −0.75 or −0.25 � εd/U , the Kondo-type
ridges are not observed since the system is away from the
Kondo regime, and there appear only the gap-edge peaks
related to ABS. The dashed lines in the figure denote the
conditions where the level of the QD and the chemical
potential of the N lead satisfy the equations; μN = εd + U

and μN = εd . In spite of the fact that ABS have the symmetric
energy spectrum, the large asymmetry is found in dI/dV as
a function of V , except for εd/U = −0.5. The asymmetry
reflects the fact that the Kondo correlations appear differently
depending on the sign of the bias voltage, as discussed in
Fig. 20.

It is remarkable that the overall features of the differ-
ential conductance are consistent with those in the recent
experiment,30 including the observation of the fingerprints of
two kinds of peaks; Kondo-type peaks at eV/� � 0 and the
peaks due to ABS. There still seems to be a small discrepancy
between the theory and the experiment.30 In our theory, the
Kondo-type ridges are separated at the particle-hole symmetric
point, while a single Kondo ridge is observed, instead of the
two ridges, in the experiment. We believe that the single ridge
is a consequence of the special condition, U � �S,� � �N ,
used in the experiment. Since �̃N is very small in this case, it
may be difficult to distinguish the two Kondo-assisted Andreev
peaks at eV = ±�̃N even in the particle-hole symmetric case.
In the actual experiment with the special condition, therefore,
the two Kondo-type ridges might look like a continuous single
ridge as a function of εd .

Finally, some comments are in order for the temperature
dependence. In Fig. 22(d), we present dI/dV at a higher
temperature kBTK/�N = 0.1, which is comparable to �̃N .
The Kondo-type ridges are smeared with increasing tem-
perature, but the peaks due to ABS show little change.
Therefore, at higher temperatures, there would be only the
crossover behavior of the fingerprint of ABS in the dI/dV

measurements.
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V. SUMMARY

In this paper, we have theoretically investigated the
nonequilibrium electron transport through a quantum dot
coupled to the normal and SC leads with particular emphasis on
the interplay between the Kondo effect and the SC correlations.
For this purpose, we have developed the modified second
order perturbation theory in Keldysh-Nambu formalism under
nonequilibrium steady-state conditions. We have confirmed
that this method is indeed efficient for analyzing the nonequi-
librium electron transport in the present system.

It has been shown that the renormalized couplings between
the leads and the dot in the equilibrium states are the key
quantities that correctly describe nonequilibrium transport
properties. In particular, the enhancement of the Andreev
transport occurs via a Kondo resonance at a finite bias
voltage, giving rise to an anomalous peak structure in the
differential conductance, whose position is determined solely
by the above-mentioned renormalized parameters. This peak
formation is a remarkable example of phenomena that are
indeed caused by the interplay between the Kondo and SC
correlations. A pinning effect of the Andreev resonances to
the Fermi level of the normal lead and its counter level
also evidences the interplay of the above two types of
correlations. Moreover, it has been shown that the energy
levels of ABS give rise to an additional peak structure in the

differential conductance in the strongly correlated N-QD-S
system.

We have demonstrated that the above characteristic features
of nonequilibrium differential conductance obtained from our
calculation are qualitatively in agreement with those observed
in the recent experiments.29,30 Finally we note that there
still exists a small discrepancy between the theory and the
experiments; the Kondo-type ridges are separated in our
theory (Fig. 22), while a single Kondo ridge is observed
experimentally.30 We believe that the single ridge is a con-
sequence of a specific condition employed in the experiments,
U � �S,� � �N and that the clearly separated Kondo ridges
predicted in this paper will be observed if the proper conditions
for the system parameters are prepared experimentally.
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(2007).

24C. Buizert, A. Oiwa, K. Shibata, K. Hirakawa, and S. Tarucha, Phys.
Rev. Lett. 99, 136806 (2007).

25K. Grove-Rasmussen, H. I. Jørgensen, and P. E. Lindelof, New J.
Phys. 9, 124 (2007).

26A. Eichler, R. Deblock, M. Weiss, C. Karrasch, V. Meden,
C. Schönenberger, and H. Bouchiat, Phys. Rev. B 79, 161407
(2009).

27K. Grove-Rasmussen, H. I. Jørgensen, B. M. Andersen, J. Paaske,
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