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Modeling magnetic nanoparticle dipole-dipole interactions inside living cells
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Biomedical applications based on superparamagnetic nanoparticles injected in vivo may be affected by the
cellular uptake of these nanoparticles. Living cells indeed capture and internalize nanoparticles, concentrating
them into intracellular vesicles called lysosomes. As a consequence, nanoparticles interact magnetically with
each other, modifying their magnetic properties. The effects of cellular uptake can be observed on the temperature
dependence of zero-field cooled (ZFC) magnetization, which is known to be sensitive to magnetic interactions.
In this paper, a theoretical model is proposed to account for weak magnetic interactions between nanoparticles
aggregated into spherical compartments. This model suggests a new interpretation of the maximum of the ZFC
curve, uncorrelated with the nanoparticle relaxation time but with the extent of interaction effects. It focuses on the
local field felt by each nanoparticle, which is the sum of the applied magnetic field and the field created by all the
other nanoparticles. For the considered organization of nanoparticles, only the field created by touching neighbors
has to be taken into account, setting up the local nanoparticle volume fraction as the unique parameter of the
model. This parameter relates the global magnetization measurements to the local distribution of nanoparticles
in cells and tissues or in other complex media with aggregated organization.

DOI: 10.1103/PhysRevB.84.075480 PACS number(s): 75.75.Jn, 87.85.Tu, 87.55.de

I. INTRODUCTION

Biomedical science develops an increasing number of
applications based on the magnetic properties of superpara-
magnetic nanoparticles (NPs). These applications, such as
using superparamagnetic NPs as MRI contrast agents1,2 or
as nanoheaters in magnetic hyperthermia,3–5 involve injecting
NPs into the body. Yet, it has been shown that for a
majority of cases, NPs do not stay free in the body. They
are captured and internalized by living cells, especially
macrophages, sequestering them in intracellular compartments
called lysosomes,6 which are specialized organelles in charge
of digesting nonusable substances. Remarkably, in the course
of cell internalization, the nanoparticles change their local
distribution from dilute NPs in the blood flow to highly
concentrated organization inside lysosomes with typical size
of 0.2–2 μm. The same intracellular confinement occurs for
cells cultured in vitro and exposed to magnetic NPs diluted
in their extracellular medium. Such a local sequestration of
NPs is revealed by transmission electron microscopy (TEM)
observations at the nanoscale. While the distribution of NPs
is biologically orchestrated at the subcellular level, it may
have fundamental consequences on their magnetic behavior.
A precise knowledge of NP organization in cells is thus
mandatory to optimize their magnetic properties with respect
to the considered medical application. Recently we raised
the issue that dipolar interparticle interactions may affect the
magnetic behavior of NPs sequestered in a lysosome.7 We
indeed observed that the temperature-dependent magnetiza-
tion was modified by cell internalization of NPs, revealing
collective magnetic effects. The maximum of zero-field cooled
(ZFC) magnetization was shifted toward higher temperature
and its amplitude was decreased for cell-internalized NPs as
compared to isolated NPs in colloidal suspension. Interestingly
similar phenomena were observed in other complex systems
with a mesoscopic organization of NPs.8–10

The general approach of this paper is to provide a theoretical
framework to describe the magnetic behavior of NPs confined

in spherical compartments. A first objective is to link up
the magnetic properties of NPs to their local distribution. If
the local organization of NPs can be deduced from global
magnetization measurements, it could be of primary interest
to assess the mesoscopic distribution of NPs in biological
samples. Secondly, our approach is the first attempt to
delineate the modification of magnetic properties due to cell
internalization process. For this purpose and for the sake
of simplicity, our analysis is restricted to the interpretation
of the ZFC magnetization behavior (at low field), which is
sensitive to the whole distribution of relaxation times in the
NP assembly with a well-known sensitivity to interparticle
magnetic interactions.

Previous experimental and theoretical studies investigated
the role of dipole-dipole magnetic interactions on the dy-
namical behavior of NPs.8–20 Concerning weak interactions,
conflicting models have been proposed. In the Dormann-
Bessais-Fiorani (DBF) approach,11,13 interactions result in
an increase of the energy barrier of individual NPs which,
as a consequence, increases their magnetic relaxation time.
However, the Mørup-Tronc model (MT) using a mean-field
approximation, predicts the opposite trend12,13 with a decrease
of relaxation times. Let us notice that these two models analyze
the magnetization relaxation time but do not consider the
evolution of the magnetization value itself. On the other hand,
a third model, known as the interacting superparamagnetic
model (ISP), describes the effects of interaction on the mag-
netization value by adding a phenomenological temperature
T ∗ to the real one.10,14 This temperature T ∗ is supposed to
mimic the disorder of the NP magnetic moments caused by
the random dipolar magnetic field they experiment. It must
be noted that these models and the majority of experimental
and numerical studies consider concentrated ferrofluids or
powders. By contrast, in the present paper, we propose a
model to interpret ZFC experiments on compartmentalized
NPs which can be regarded as finite aggregates at a submicron
scale.
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FIG. 1. TEM experiments on the two biological systems. NPs are
in dark. (a) TEM on AMNP internalized in macrophages cultured
in vitro. Magnetic NPs are localized in intracellular vesicles called
lysosomes. The inset shows a zoom on a particular lysosome.
(b) TEM on P904 NPs internalized in a mouse liver, 3 days after
injection. Magnetic NPs are localized in lysosomes, too, which are
bigger and more concentrated than in (a). The inset shows a zoom on
a particular lysosome.

We analyze the effects of weak interactions on both the
relaxation time and the magnetization itself. Similarities and
differences with previous models are underlined. In particular,
our approach suggests a new interpretation of the maximum
of the ZFC curve, which is not directly correlated with the
NP relaxation time. In addition, we show that this simple
experiment, when analyzed within the framework of the
present model, can give an assessment of the local distribution
of NPs in cells and organs or in other complex systems with
aggregated organization.

The present paper is organized as follows. After presenting
the experimental results on biological samples (II), we remind
the standard theory of ZFC magnetization for noninteracting
NPs and apply it to NPs in diluted colloidal suspensions
(III). Then we propose an expression for the distribution of
local fields experienced by NPs aggregated in a spherical
compartment. The consequence of these local fields on the
temperature dependence of ZFC magnetization is finally
derived (IV) and discussed with respect to other models and
experimental results (V).

II. EXPERIMENTS

ZFC magnetization measurements were made on two
biological systems representative of most in vitro and
in vivo localizations of iron oxide NPs. On the one hand,
the in vitro model system consisted of macrophages derived
from the activation of human monocytes. These cells were
incubated with different concentrations of anionic citrate-
coated maghemite NPs (referred to as AMNP) in order to
tune the amount of cell-internalized NPs.21 The internal-
ization pathway of these NPs has been described earlier
and their cellular uptake has been quantified by single-cell
magnetophoresis.6,22 TEM pictures of macrophages reveal the
intracellular localization of NPs and their confinement into
submicron lysosomes23 [Fig. 1]. On the other hand, similar
magnetic NPs (used as MRI contrast agents and referred to
as P904) were administrated to mice by intravenous injection.
As liver and spleen concentrate large populations of resident
macrophages,24 NPs mainly accumulate in these organs.25

They are specifically uptaken by macrophages and sequestered
within their intracellular lysosomes at remarkably high density
as exemplified in Fig. 1(b).

Magnetization measurements were performed on cell sus-
pension or dried organ using a SQUID magnetometer (MPMS
XL Quantum Design). The global NP volume fraction φ

in biological samples was small enough (φ ∼ 10−4 − 10−5)
to neglect any demagnetizing effect linked to their global
magnetization. As a comparison, the same measurements
were done on the corresponding noninteracting NPs diluted
in glycerol (φ ∼ 10−3 − 10−4). Samples were cooled down to
5 K without any applied field (ZFC), next applying a magnetic
field of 50 Gauss and heating slowly up to room temperature,
while measuring the magnetization of the sample as a function
of temperature. The experimental magnetization Mexp was
normalized by the maximum magnetization for each sample
Mmax = φMs which represents the magnetization when all
NPs in a unit volume have their magnetic moments aligned in
the field direction. Here, Ms is the saturation magnetization of
the bulk material at 300 K (we ignore the slight temperature
dependence of Ms).

(a) (b)

FIG. 2. Reduced magnetization Mexp/Mmax in ZFC experiments on (a) AMNP in dilute ferrofluid and internalized in macrophages (the
content in AMNP increases from 5 to 60 pg of AMNP per cell); (b) P904 in dilute ferrofluid and internalized in a mouse liver, 3 days after
injection.
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ZFC magnetization observed in biological systems show
clear differences with the corresponding dilute ferrofluid
consisting of noninteracting NPs [Figs. 2(a) and 2(b)]:

(1) The magnetization measured in the ZFC experiment is
lower for NPs in biological systems than for free NPs and this
difference decreases with temperature.

(2) The temperature corresponding to the maximum of the
ZFC curve, referred to as the blocking temperature TB , is
higher for NPs in biological systems than in dilute ferrofluids,

(3) More precisely [see Fig. 2(a)], the higher the concentra-
tion of internalized nanoparticles, the lower the magnetization
and the higher TB .

It is important to note that NPs are not significantly
degraded or transformed by the cells at the time of the
experiments (maximum of 3 days postinjection). It has been
shown that the metabolization process actually takes a longer
time.25,26 We also verified that the NP size distribution
is identical in the dilute suspension and inside the cells.
Therefore the modifications of ZFC magnetization compared
to noninteracting NPs appear directly linked up to the degree
of intracellular confinement of NPs. Consistently with TEM
observations, the effects are accentuated in ex vivo liver
compared to in vitro macrophages. The larger the intracellular
clustering (which also increased with the cell NP load), the
higher the effects on ZFC magnetization. More extensive
experiments reported elsewhere7 show similar modifications
depending on cellular sequestration of NPs in different organs.
We also verified that NPs enclosed in submicron polymer beads
display the same behavior. Similar effects were reported before
in other systems with interacting NPs.8–10 The theory we
propose in this paper aims at accounting for these observations.
Before presenting it, we first recall in the next section the
standard ZFC theory for noninteracting NPs.27,28

III. THE STANDARD ZFC THEORY

Let us consider a sample of polydisperse dilute super-
paramagnetic NPs: Due to the dilution, magnetic interactions
between them can be neglected. These NPs are fixed in a solid
solvent so that they cannot rotate. The distribution P (dm) of the
particle magnetic diameters dm is described by the log-normal
function:

P (dm) = 1√
2πσmdm

e

[
− ln2(dm/d0)

2σ2
m

]
, (1)

with d0 the characteristic magnetic diameter and σm the
polydispersity index (a log-normal function is commonly
used to describe the size distribution of NPs synthesized by
coprecipitation). Note that the real diameter dr of an NP is
considered slightly larger than the magnetic one to take the
“nonmagnetic layer” at the surface of the NP and its potential
coating into account: dr = dm + 2δ, with δ the thickness of
the “nonmagnetic layer” plus the coating (δ is typically 1 nm;
we suppose it independent of dm). It will be useful thereafter
to define dmean as the mean real diameter and μmean as the
magnetic moment of an NP with real diameter dmean:

dmean = 〈dm + 2δ〉 = d0e2σ 2
m + 2δ. (2)

The particles are supposed to have an uniaxial anisotropy.
Let us consider a particular NP with magnetic volume Vm,

magnetic moment �μ = MsVm�e, anisotropy constant K , and
easy axis along �n, where �e and �n are both unit vectors. In an
external magnetic field

−→
B0 = B0 �uz, the energy U of this NP is

given by29,30

U = −μB0�e. �uz − KVm(�e.�n)2. (3)

In a real sample, the easy-axis �n is distributed isotropically.
Nevertheless, let us momentarily take it along the field
direction: �n = �uz. The consequence of this approximation is
evocated below. Denoting θ the angle between �e and �n = �uz

(see Fig. 3), energy U becomes

U = −μB0 cos θ − KVm cos2 θ. (4)

Then, if B0 is smaller than 2K/Ms , that is, if the energy U as
a function of θ still has two local minima, and if kBT 	 KVm,
it is possible to use Brown’s calculation for the Néel time
τN (dm,T ,B0). The latter represents the relaxation time of the
thermally induced transition between the two minima of U ,
and is given by31

1

τN

= γ 2η2K

1 + (γ ηMs)2

√
α

π
(1 − ε2)2e−α(1+ε2)

× [cosh (2αε) − ε sinh (2αε)] , (5)

with ε = μB0/2KVm, α = KVm/kBT , kB the Boltzmann
constant, T the temperature, γ the electron gyromagnetic ratio,
and η defined by Brown as a dissipative constant. According to
Dormann,29 the latter can be approximated by η ≈ 1/(γMs).

The standard theory for ZFC experiments considers that
an NP can be in two different states. If τN is larger than
the duration τexp of an experimental measurement, then the
magnetic moment is considered blocked (B) in the NP, because
the probability for it to fluctuate from one equilibrium position
to the other one during time τexp is very small. On the
other hand, if τN is smaller than τexp, the NP is considered
superparamagnetic (SP) and its static magnetic behavior is
approximated by a Langevin function L. The mean value of
the z component of �μ, that is, what is measured during a ZFC
experiment, is then given by

〈μz〉(dm,T ,B0) = μL(ξ0) = μ(coth ξ0 − 1/ξ0), (6)

with ξ0(dm,T ,B0) = μ(dm)B0/kBT .

FIG. 3. Magnetic NP with a magnetic moment �μ and an easy-axis
�n along the field direction �uz.
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(a) (b)

FIG. 4. (Color online) Comparison between the ZFC standard theory and the experiments on dilute ferrofluids. (a) ZFC experiment on
AMNP in dilute ferrofluid and corresponding theoretical curve; (b) ZFC experiment on P904 in dilute ferrofluid and corresponding theoretical
curve.

In a ZFC experiment, one actually measures Mz(T ), the
total magnetization of a sample along the applied field
direction �uz: the z components of all magnetic moments
should be added and renormalized by the sample volume.
The sample was frozen in absence of any field. Then, the
magnetic moments of the NPs in the (B) state are isotropically
distributed. As a consequence, the latter do not contribute
to Mz. Only the magnetic moments of the NPs in the (SP)
state at the considered temperature contribute to Mz, adding
〈μz〉(dm,T ,B0) for each of them:

Mz(T ,B0) = N

∫
sp(T ,B0)

ddmP (dm)〈μz〉(dm,T ,B0), (7)

with N the mean number of NPs per unit volume. As explained
above, the integration is made only over the NPs in the (SP)
state at the considered temperature T and field B0, that is,
over dm values smaller than a critical diameter depending on
T and B0. Since the number of these NPs in the (SP) state
increases with temperature, Mz starts to increase accordingly.
But the contribution to Mz of a given NP in the (SP) state,
〈μz〉(dm,T ,B0), decreases with temperature according to the
Langevin function (6). So, when most of the NPs have transited
to the (SP) state, Mz(T ) starts to decrease. Note that the
temperature corresponding to the maximum of Mz(T ) (already
referred to as the blocking temperature TB) depends on B0.

In Figs. 4(a) and 4(b), theoretical as well as experimental
curves are plotted for the two dilute ferrofluids. No fitting
parameters are used. Ms is taken as the saturation magne-
tization (Ms = 412 kA.m−1) of bulk maghemite, K values
are experimentally determined from hysteresis loops at low
temperature (5 K) using the Stoner-Wohlfarth model32 (data
not shown), and d0 and σm are deduced from the polydisperse
Langevin fits of magnetization curves at room temperature
(data not shown). The parameters values are summarized in
Table I.

Two comments may be made about the approximations
used:

(1) The two dynamical behaviors, blocked (B) or superpara-
magnetic (SP), respectively, correspond to the two limit cases
τN � τexp and τN 	 τexp. The approximation that the NPs
are either in the (B) state or in the (SP) state (and never in an

intermediate one) is justified by the fact that τN varies abruptly
with the size of the NP (as the exponential of the volume), so
that there are very few NPs in an intermediate state. We can
therefore introduce the proportions Psp and Pb of NPs in the
(SP) and (B) state, respectively:

Psp(T ,B0) =
∫

sp(T ,B0)
ddmP (dm),

(8)
Pb(T ,B0) = 1 − Psp(T ,B0).

(2) As indicated above, the assumption that the easy-axis
�n is in the direction of the field allows us to use the Brown
expression (5) for τN . For those NPs with an easy axis in
another direction, it can be argued that τN is shorter. This
suggests that the standard theory underestimates the (SP)
population. Note that it would be possible to take into account
the isotropic easy-axis distribution in the τN expression as
presented in Refs. 12, 13, 33 and 34. here. Nevertheless, it
would complicate the model without modifying the physics.
Actually, the standard ZFC theory is often presented using
an approximation rougher than (5) for the τN expression:
τN ≈ τ0e

α , with τ0 a constant parameter of the order of 10−9.
We have preferred expression (5) to keep the field dependence
of τN .

Despite the approximations made, the standard theory for
ZFC experiments on superparamagnetic NPs satisfactorily
describe the experimental results for the two dilute ferrofluids.
However, this theory evidently fails for the two biological
systems as shown by Figs. 2(a) and 2(b). In the present paper,
we make and discuss the assumption that this failure is due to
the magnetic interactions that prevail between the NPs as soon
as the latter are internalized in lysosomes.

TABLE I. Sample parameters used for the theoretical calculation.

Sample d0(nm) σm K(J m−3) Ms(kA m−1) δ(nm)

AMNP 6.5 0.33 2.06 × 104 412 1
P904 7.2 0.24 2.47 × 104 412 1
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FIG. 5. (Color online) Model of spherical lysosome with a
magnetization Mlys under an applied magnetic field B0. The Lorentz
cavity around a particular (SP) NP (in dark) is displayed and the
surface currents I and i on the surface of the lysosome and of the
cavity, respectively, are also represented.

IV. AN ALTERNATIVE THEORY DESIGNED FOR NPS
AGGREGATED IN A SPHERICAL COMPARTMENT

A. Modeling of the lysosome

We model the considered lysosomes as spherical compart-
ments nonhomogeneously filled with aggregated NPs (Fig. 5).
Let notice that most NPs are touching some neighbors, contrary
to an homogeneous concentrated ferrofluid where each NP is
separated from its neighbors by some nonzero mean distance.
Magnetic interactions between lysosomes are neglected (we
consider that the majority of them are separated from each
other by more than a mean lysosome diameter).

B. Local magnetic field

As in the standard theory, NPs are considered to be either
in the (B) or in the (SP) state, depending on their Néel time τN .
The latter time τN still depends not only on the temperature
T, but also on the intensity of the local magnetic field

−→
Bloc =

Bloc
−→uloc (−→uloc unit vector) felt by each given NP. Note that the

expression (5) of τN we are using still has a meaning as long as
the energy U conserves two local minima (i.e., as long as Bloc

is not too high). That is the reason why the model is limited
to weak interactions. The restriction induced by this condition
will be discussed in Sec. V.

The magnetic moments of the NPs in the (B) state, exactly
as in the standard theory, do not contribute to Mz (the
number of such NPs in the lysosomes being large enough to
average their collective contribution to zero). At the mean-field
approximation, NPs in the (SP) state behave according to the
Langevin function, but now in the local magnetic field

−→
Bloc they

undergo, and no longer in the mere applied magnetic field
−→
B0,

which can be written [compare with (6)] as

〈μz〉(dm,T ,
−→
Bloc) = μL(ξloc)−→uloc. �uz, (9)

with ξloc(dm,T ,Bloc) = μ(dm)Bloc/kBT . Observe that
−→
Bloc,

contrary to
−→
B0, depends on the particular (SP) NP under

consideration.
In order to determine

−→
Bloc, the Lorentz method is available.

It leads one to introduce a local spherical Lorentz cavity, with
center at the considered (SP) NP. The local field

−→
Bloc is then

defined as the field created at the center of the Lorentz cavity

by all magnetic field sources except this considered (SP) NP.
Field

−→
Bloc can be expressed as a sum of four terms:

(1)
−→
B0 the applied magnetic field,

(2)
−→
BI the field created by the surface current I (see Fig. 5)

of the lysosome:
−→
BI = μ0

2
3
−−→
Mlys,

(3)
−→
Bi the field created by the surface current i (see Fig. 5)

of the Lorentz cavity:
−→
Bi = −μ0

2
3
−−→
Mlys,

(4)
−→
Bn the field created at the center of the Lorentz cavity

by the neighbors (n) located inside this Lorentz cavity, when−→
B0 is applied.

−→
Bn is itself the sum of two contributions: one

(
−→
Bb) from the neighbors being in the (B) state and one (

−→
Bsp)

from the neighbors being in the (SP) state:
−→
Bn = −→

Bb + −→
Bsp.

Note that, contrary to what turns out when the contributions of
all the NPs of the whole lysosome in the (B) state are summed
up (as explained above),

−→
Bb is now nonzero: There are too few

neighbors in the (B) state to average
−→
Bb to zero.

Because of the spherical symmetry of the lysosome,
−→
BI =

−−→
Bi (i.e., the resulting effect of magnetic interactions in the

lysosome is consequently only due to the neighbors inside the
Lorentz cavity):

−→
Bloc = −→

B0 + −→
Bn.

When
−→
B0 is not applied, the neighbors inside the Lorentz

cavity create a field
−→
B0

n which is still the sum of two

contributions
−→
B0

b and
−→
B0

sp from the neighbors in the (B) and

the (SP) state, respectively. Let
−→
B0

loc = −→
B0 + −→

B0
n = B0

loc
−→u 0

loc

(−→u 0
loc unit vector) be the local magnetic field felt by the NP at

the center of the Lorentz cavity when
−→
B0 is not applied.

(1) Since μB0/KVm is of the order of 10−2, the NPs in the
(B) state are not affected by

−→
B0. Thus, they create the same field

in the presence or absence of
−→
B0:

−→
Bb = −→

B0
b ( �= 0 as explained

above).
(2) However, the NPs in the (SP) state (and therefore the

field
−→
Bsp they create) are affected by

−→
B0. Let us consequently

set
−→
Bsp = −→

B0
sp + −→

δB with
−→
δB = δB−→uδB (−→uδB unit vector).

Using these definitions and the above remarks (1) and (2),
we have

−→
Bloc = −→

B0 + −→
Bb + −→

Bsp

= −→
B0 + −→

B0
n + −→

δB

= −→
B0

loc + −→
δB. (10)

Assuming that
−→
B0

n and
−→
δB are uncorrelated, with probability

densities P (
−→
B0

n) and P (
−→
δB), respectively, the total magnetiza-

tion Mz(T ,B0) of the sample can be expressed as [compare
with (7)]

Mz(T ,B0) = N

∫
d3B0

nP (
−→
B0

n)
∫

d3δBP (
−→
δB)

∫
sp(T ,Bloc)

× ddmP (dm)〈μz〉(dm,T ,
−→
B0

n,
−→
δB). (11)

Note that 〈μz〉 depends on
−→
Bloc [see (9)]; then, it can be ex-

pressed either as a function of
−→
B0

n and
−→
δB [〈μz〉(dm,T ,

−→
B0

n,
−→
δB)

like in the above Eq. (11)] or as a function of
−→
B0

loc and
−→
δB
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[〈μz〉(dm,T ,
−→
B0

loc,
−→
δB) like in Eq. (13) below], for the sake of

calculation convenience.

C. Approximations on δB and P(δB)

The mean-field intensity created around a magnetic moment
μ at a distance r is given by

Bm(μ,r) = μ0

4π

√
2μ

r3
. (12)

According to (12), the mean-field intensity created at a distance
r = dmean around a typical nanoparticle considered in this
paper is of the order of 300 Gauss. As a consequence, the
applied field

−→
B0 (50 Gauss) should have just a small influence

on
−→
Bsp. So we can assume that δB 	 B0

loc.

According to (9), we can expand 〈μz〉(dm,T ,
−→
B0

loc,
−→
δB) at the

(included) first order in δB/B0
loc:

〈μz〉
(
dm,T ,

−→
B0

loc,
−→
δB

) 
 μ

[
L

(
ξ 0

loc

)−→u 0
loc.

−→uz + −→
δB.

×
(

∂

∂
−→
Bloc

(L(ξloc)−→u loc.
−→uz )

)
−→
δB=0

]
,

(13)

with ξ 0
loc(dm,T ,B0

loc) = μ(dm)B0
loc/kBT .

Because of the random position of the NPs in the (SP) state
inside the Lorentz cavity, the probability density P (

−→
δB) of

−→
δB

is assumed isotropic: P (
−→
δB) = P (δB). Then, the integration

over the angular components of
−→
δB in (11) cancels the

contribution of the first-order term in the right-hand side of
(13). The only term that contributes to Mz is therefore the
zero-order term.

On the other hand, because
−→
B0

n is the field created by
the neighbors when

−→
B0 is not applied, there is no privileged

direction and the probability density P (
−→
B0

n) is isotropic too
(as assumed in the MT model12,13). Then Eq. (11) becomes

(B0
n,θ0,φ0) standing for the spherical coordinates of

−→
B0

n :

Mz(T ,B0) = N

∫ ∞

0
dB0

n

(
B0

n

)2
P

(−→
B0

n

) ∫ π

0
dθ02π sin θ0

∫
sp(T ,B0

n )

× ddmP (dm)μ(dm)L
(
ξ 0

loc

)B0
n cos θ0 + B0

B0
loc

, (14)

with

B0
loc = ((

B0
n

)2 + 2B0
nB0 cos θ0 + B2

0

) 1
2 . (15)

D. Determination of an approximate expression for P
(

B0
n

)

We should now determine P (
−→
B0

n). All neighbors localized in

the Lorentz cavity contribute in principle to
−→
B0

n . Nevertheless,
we can assume that the closer they are to the center of

the Lorentz cavity, the more they contribute to
−→
B0

n for the
following reason. The field created by an infinity of magnetic
(or electric) dipoles uniformly located on the surface of a
sphere and having either the same direction or a random one,
is equal to zero at the center of the sphere. In our case, if we

consider populations of neighbors at a given distance from
the center of the Lorentz cavity, the shorter this distance is,
the smaller the corresponding population is and the farther
we are from this theoretical case where all dipoles cancel
each other’s contribution to the field. Moreover, the closest
neighbors create, at the center of the Lorentz cavity, a field
much more inhomogeneous than the other neighbors (because
of the r−3 dependence of a dipolar field) which has no chance
at all to be compensated.

In this study, we will thus take only the “touching”
neighbors (in direct contact) into account, considering that they

are responsible for the largest part of
−→
B0

n . An improvement of
our model would be to take more neighbors into account, but
we do not think that it would much change the physics of the
problem.

At a given temperature T , let Nb(T ) and Nsp(T ) be the
mean number of touching neighbors in the (B) and the (SP)
state, respectively, db(T ) and dsp(T ) be the mean real (i.e.,
including the nonmagnetic layer) diameters of these NPs in
the (B) and the (SP) states, respectively, and Pb(T ) and Psp(T )
be the probabilities of being in the (B) and in the (SP) state,
respectively, (Pb(T ) and Psp(T ) as displayed by (16) below
represent a simple generalization of (8). Let ρ be the mean
neighbor volume fraction (note that ρ is a very local volume
fraction concerning only these touching neighbors).

Then, Nb(T ) and Nsp(T ) can easily be calculated as follows.
(1) The volume in which the (B) or (SP) neighbors are

included is determined [e.g., the (SP) neighbors are included
in a volume equal to (3dsp)3π/6 − d3

spπ/6 = 26d3
spπ/6].

(2) Next, the latter volume is multiplied by ρ to get the total
volume occupied by the NPs.

(3) We then divide by the mean NP volume d3
meanπ/6 to get

the corresponding number of neighbors.
(4) At last, multiplying by the proportion Psp or Pb of NPs

in the (SP) or the (B) state, respectively, we obtain Nsp(T ) and
Nb(T ).

Nsp(T ) = 26ρ

d3
mean

d3
spPsp(T ),

Psp(T ) =
∫

d3B0
nP

(−→
B0

n

) ∫
sp(T ,B0

n )
P (dm)ddm,

(16)
Nb(T ) = ρ

d3
mean

(
(2db + dsp)3 − d3

sp

)
Pb(T ),

Pb(T ) = 1 − Psp(T ).

In order to determine an approximate expression for P (
−→
B0

n),−→
B0

n is again considered as the sum of
−→
B0

b and
−→
B0

sp where
−→
B0

b

and
−→
B0

sp are now, according to our assumption, the fields
created by the mere touching neighbors in the (B) and the

(SP) state, respectively. Our calculation of P (
−→
B0

n) involves the
following three steps (detailed below): First, the probability

densities P (B0
bi) and P (B0

spi) of the i component of
−→
B0

b and
−→
B0

sp, respectively, are calculated (with i being x, y, or z); then,

the probability density P (B0
ni) of the i component of

−→
B0

n is

deduced; and finally P (
−→
B0

n) is evaluated. Let us detail this
three-step calculation.
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Step 1. We provisionally focus on P (B0
bi) for the sake of

simplicity. Let us consider that each neighbor in the (B) state
contributes to B0

bi by simply adding or subtracting a constant
Bb = Bm(μb,rb)/

√
3 [see (12)] with rb the mean center-to-

center distance: rb = (dsp + db)/2 and μb the mean magnetic
moment of the NPs in the (B) state:

μb =
∫

d3B0
nP

(−→
B0

n

)∫
b(T ,B0

n ) ddmP (dm)μ(dm)∫
b(T ,B0

n ) ddmP (dm)
. (17)

More precisely, let n+ be the number of (B) neighbors which
contribute to B0

bi by addingBb, n− the number of (B) neighbors
which contribute to B0

bi by subtracting Bb, and m = n+ − n−
the difference between these numbers. Thus, B0

bi = mBb. The
probability density P (B0

bi) is then equivalent to the probability
density of m, P (m).

Another approximation is required to evaluate P (m). As
exposed above, if there were enough touching neighbors in
the (B) state (they then should have an infinitely small size
and constitute a shell), the field created by these (B) touching
neighbors at the center of the Lorentz sphere would be exactly

zero. In fact, the nonzero field
−→
B0

b results from a “poor”
statistics: The number of neighbors in the (B) state is too

small to average it to zero. Consequently,
−→
B0

b can be treated as a
statistical fluctuation which goes to zero when there are enough
neighbors in the (B) state. Let N be the minimum number of

(B) neighbors such that the sum of their contributions to
−→
B0

b

can reasonably be considered equal to 0. We can now add the
following condition: if Nb = N then m = 0.

With this condition, P (m) is given by

P (m) = Nb!(
Nb−m

2

)
!
(

Nb+m

2

)
!

(N − Nb)!

N !

(N
2

)
!(N

2 − Nb−m

2

)
!

×
(N

2

)
!(N

2 − Nb+m

2

)
!
. (18)

The Stirling formula on the Taylor development of ln[P (m)]
at the second order in m leads to express P (m) as a normal
distribution with a standard deviation σ given by σ 2 =
Nb(N − Nb)/N . Consequently, an approximate expression of
P (B0

bi) is found:

P (B0
bi) = 1√

2πσb

e−(B0
bi )

2/2σ 2
b with σ 2

b = BbNb(N − Nb)

N .

(19)

The first step of the calculation can be carried all the same
with the (SP) touching neighbors, in order to determine the
probability density P (B0

spi). The arguments are mostly the
same. We just have to substitute index “sp” for “b”. The only
differences concern the mean center-to-center distance rsp =
dsp and the mean magnetic moment μsp of the NPs in the (SP)
state which is slightly different from μb to take the thermal
fluctuations into account:

μsp =
∫

d3B0
nP

(−→
B0

n

)∫
sp(T ,B) ddmP (dm)μ(dm)L

(
ξ 0

loc

)
∫
sp(T ,B) ddmP (dm)

. (20)

We then get expressions of P (B0
spi) and σ 2

sp analogous to

(19). As a conclusion,
−→
B0

sp (just like
−→
B0

b ) can be regarded as a

statistical fluctuation that goes to zero when there are enough
neighbors in the (SP) state.

Step 2. Because B0
ni = B0

bi + B0
spi , the probability density

of B0
ni can be derived from P (B0

bi) and P (B0
spi):

P (B0
ni)=

∫ +∞

−∞
dB0

bi

∫ +∞

−∞
dB0

spiP
(
B0

bi

)
P

(
B0

spi

)
δ
(
B0

ni −B0
bi −B0

spi

)

= 1√
2π

(
σ 2

b + σ 2
sp

)e−(B0
ni )

2/2(σ 2
b +σ 2

sp), (21)

according to (19) and to its equivalent for (SP) neighbors.

Step 3. At last, the probability density P (
−→
B0

n) can be
calculated.

P (
−→
B0

n) = P
(
B0

nx

)
P

(
B0

ny

)
P

(
B0

nz

)

= 1(
2π

(
σ 2

b + σ 2
sp

)) 3
2

e−(B0
n )2/2(σ 2

b +σ 2
sp). (22)

It is noteworthy that we justify here an approached Gaussian

distribution for
−→
B0

n which is assumed in the MT model.12,13

Now, all functions appearing in the expression (14) of Mz(T )
are defined. The three integrations on dm, B0

n , and θ0 can be
performed numerically. The reader not interested in the way the
numerical resolution is carried out can jump to the next section.

E. Numerical resolution

The above theory deserves a further comment. According

to (16), (17), and (20), P (
−→
B0

n) is needed to calculate Nb(T ),
Nsp(T ), μb(T ), and μsp(T ). But according to (19) and (22),
Nb(T ), Nsp(T ), μb(T ), and μsp(T ) are also needed to calculate

P (
−→
B0

n). This entangled problem can be solved perturbatively.
For the lowest temperature, T0 = 3K , all neighbors are sup-
posed to be in the (B) state (at the zero order of our perturbative
resolution): Nb(T0) = 26ρ, Nsp(T0) = 0, μb(T0) = μmean [as
indicated after Eq. (2), μmean is the magnetic moment of an

NP with real diameter dmean) and μsp(T0) = 0. Then, P (
−→
B0

n)

can be calculated. This zero-order P (
−→
B0

n) is then used to
calculate more accurately Nb(T0), Nsp(T0), μb(T0), and μsp(T0)
at the first order. These new values give in turn a more

accurate P (
−→
B0

n) (at the first order) which is used in (14) to
evaluate Mz(T0). Then, for the next temperature, T0 + �T ,
the same approach is used with Nb(T0), Nsp(T0), μb(T0), and
μsp(T0) at the first order playing the role of Nb(T0 + �T ),
Nsp(T0 + �T ), μb(T0 + �T ), and μsp(T0 + �T ) at the zero
order. This method is iterated for all temperatures Ti . Using
the values calculated at Ti at the first order to evaluate them at
Ti+1 at the zero order is justified if �T = Ti+1 − Ti is small
enough toconsider that very few NPs change their state from
(B) to (SP) between Ti and Ti+1. In the following theoretical
results, �T is taken equal to 1 K.

V. RESULTS AND DISCUSSION

A. Experimental observations are predicted by the model

Figure 6(a) displays ZFC theoretical curves with ρ in-
creasing from 0 (noninteracting NPs) to 0.2. We observe that
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(a) (b)

(c) (d)

FIG. 6. The model predicts the experimental observations. (a) ZFC theoretical curves for different ρ values using the P904 parameters,
(b) theoretical blocking temperature TB as a function of ρ for AMNP and P904, (c) theoretical normalized magnetization M(TB ) at blocking
temperature as a function of ρ for AMNP and P904, (d) ZFC theoretical curves for ρ = 0.1 and different N values; the curves do not depend
on N .

the trends found in the in vitro and in vivo experiments are
reproduced by the theoretical model.

First, the larger ρ, the more shifted the blocking temperature
TB . This behavior is represented in Fig. 6(b) where the
theoretical TB is plotted as a function of ρ for the P904 and
AMNP samples. The increase of TB is almost linear with ρ.

Second, the magnetization is found lower for interacting
NPs (ρ �= 0) than for noninteracting ones. As in experiments,
this effect increases with ρ but decreases at high temperature.
Figure 6(c) displays the theoretical magnetization at TB ,
M(TB), renormalized per Mmax, as a function of ρ for both
P904 NPs and AMNP.

In the above-exposed theory, N and ρ are two unknown
parameters. But actually, as long as N is much larger than the
total number of touching neighbors, its value does not really
matter. To illustrate this point, ZFC theoretical curves for three
N values (N = 30, N = 100, N = 1000) are displayed in
Fig. 6(d) in which we set ρ = 0.1 and use the parameters of
the P904 sample: The three curves are hardly distinguishable.
The local NP volume fraction ρ is thus the unique relevant
unknown parameter in this model. We conclude that, according
to the model, the ZFC response of our interacting system
is only sensitive to the very local NP distribution rather
than to the global NP density or to the lysosome size, for
instance. Experiments made on samples containing different
sizes of spherical submicron polymer assembly of NPs and yet

resulting in a very similar effect confirm this independency in
the global aggregate size (data not shown). The experimental ρ
value can be deduced comparing the experimental results and
the model predictions. We can then access to a parameter which
characterizes in situ the intracellular organization of NPs by
means of a simple macroscopic experiment. A study focusing
on the biological interest of such information is presented
elsewhere.7

Let us add that, in the model exposed here, the ρ value
and then the total number of touching neighbors is fixed: It
is considered the same for all NPs. Yet, in real biological
systems, this number is obviously distributed following an
unknown probability density. Consequently we only access to
an average value.

B. Study of the local magnetic field and its consequences

It is of interest to study the real local field felt by the NPs
and its evolution with ρ and with temperature. To do so, let us

investigate the behavior of the mean intensity Bmean of
−→
B0

loc =
−→
B0 + −→

B0
n . Considering δB 	 B0

loc,
−→
B0

loc is indeed almost the
real field felt by the NPs and Bmean gives an idea of its intensity:

Bmean(T ,B0) =
∫

d3B0
nP

(−→
B0

n

)
B0

loc, (23)
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(a) (b)

FIG. 7. Theoretical study of the local magnetic field and its consequences on the (B)-(SP) transition using the P904 parameters.
(a) Bmean(B0 = 50 Gauss) as a function of the temperature for different ρ values; (b) probability of being in the (SP) state as a function
of temperature.

with B0
loc given by (15). In Fig. 7(a) we have plotted

Bmean(B0 = 50 Gauss) as a function of temperature for three
values of ρ and with the P904 parameters. It appears that
Bmean is always larger than B0 and tends toward B0 at high
temperature. At very low temperatures, all neighbors are in
the (B) state, and they contribute to Bloc with their total
magnetic moment μ [according to (17)]. When the temperature
increases, NPs quickly change their state from (B) to (SP). As a
consequence, the contribution of the (SP) neighbors arises and
increases while the contribution of the (B) neighbors decays.
This transition sparks off the little peak that appears at low
temperature when ρ increases. Nanoparticles in the (SP) state
contribute to Bloc not with their total magnetic moment μ but
with a magnetic moment μL(ξ 0

loc) to take thermal fluctuations
into account [according to (20)]. Yet, μL(ξ 0

loc) decreases with
temperature. The interaction effect is thus weaker at high
temperatures and Bmean tends toward B0.

Let us add that, in the theory developed here, Bloc has to
be always smaller than 2K/Ms (around 1100 Gauss) for the
τN expression (5) to be usable, as specified in the standard
theory section. This limitation imposes an upper limit on
the local volume fraction ρ (between 0.2 and 0.3 with the
parameters used here). For larger ρ values, the theory cannot
be applied; we should then consider the “strong interaction”
framework.18,35

We have remarked that Bmean is always larger than B0 (i.e.,
the majority of NPs feel a magnetic field

−→
Bloc whose intensity

is larger than B0). The Néel time τN , which depends on the
intensity of the local magnetic field

−→
Bloc, is then affected.

Actually, τN decreases as Bloc increases according to the MT
model.12,13 Thus, the higher Bloc, the lower the temperature
transition between the (B) and the (SP) state. In this sense,
NPs internalized in lysosomes should transit from (B) to
(SP) at a lower temperature than NPs in dilute ferrofluids.
This is illustrated in Fig. 7(b) where the probability for an
NP to be in the (SP) state is displayed as a function of
temperature for ρ = 0 and ρ = 0.1. Such decrease of the
temperature transition should induce a decrease of TB and,
yet, we observe experimentally and theoretically the opposite
trend. To understand this effect we separate in the next section
the contribution of each size of NP to the total magnetization.

C. Study of different populations of NPs with specific sizes

Let us consider the magnetization of a specific population
of NPs with a fixed diameter. They are still considered
surrounded by polydisperse nanoparticles interacting with
them. Figure 8 displays the magnetization of two of these
specific populations (with magnetic diameters dm = dmean =
7.5 nm and dm = 10 nm) renormalized per their maximum
magnetization.

It can be observed that, for the two considered populations,
the magnetization is lower with interaction than without
interaction. This effect comes from the fact that

−→
Bloc can

be oriented in all directions, so it imposes on (SP) NPs to
align their magnetic moments in different directions [see (9)]
reducing their contribution along the applied field

−→
B0. Note

that in the ISP model, this phenomenon is taken into account
adding a phenomenological temperature T ∗ to increase the
magnetic moment disorder as reminded in Sec. I.

The surprising shift of TB in the presence of interaction
can be explained focusing on the magnetic behavior of the

FIG. 8. Theoretical normalized magnetization of two different
NP populations (dm = dmean = 7.5 nm and dm = 10 nm) with fixed
magnetic diameter in both cases without (ρ = 0) and with (ρ =
0.1) interaction. They are considered in a lysosome, surrounded
by polydisperse nanoparticles interacting with them but only their
contribution to the total magnetization is plotted.
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population with dm = 10 nm in Fig. 8. The presence of a
maximum for a temperature much higher than the temperature
of the (B)-(SP) transition on the curve with interaction is the
source of the high TB value. This maximum can be appre-
hended in the following way. When the temperature increases,
the (SP) contribution to Bloc decreases (as underlined above),
and consequently the interaction effect decreases [see also the
decrease of Bmean in Fig. 7(a)]. The magnetization gets closer
to its value without interaction, and thus it can increase to
reach this value if the difference between the magnetizations
with and without interaction is high enough. This increase
produces a maximum which has nothing to do with the
(B)-(SP) transition: It is only the consequence of the inter-
action effect decrease with temperature, contrary to the usual
interpretation which considers the TB increase as a signature
of a slowing down of the magnetic moment dynamics.11,17–20

The above analysis represents then a new interpretation of
the maximum of the ZFC curve (poorly correlated with the NP
relaxation time) which could presumably be generalized to AC
measurements, too.

Let us note that there is not a maximum at high temperature
for all populations of NPs with interactions. For example,
the population with dm = dmean = 7.5 nm in Fig. 8 does not
present such a maximum. The presence of a maximum at
high temperature is based indeed on the decrease of the (SP)
contribution to Bloc. If a population with a too small size is
considered, the (B) contribution to Bloc dominates the (SP)
contribution up to a temperature for which the difference
between the magnetization with and without interaction
is too small to produce an increase of the magnetization
with interaction. In this case, no maximum is likely to be
found.

A last observation can be made about Fig. 8. It appears that
the increase of magnetization at low temperature is less abrupt
with interaction than without interaction. In the latter case
(i.e., without interaction), the magnetization of the population
is zero until (B) NPs become (SP). Then all NPs contribute
the same way according to (6). They all become (SP) at
the same temperature because they all have the same Néel
time. In the former case (i.e., with interaction), there is a
distribution of Néel times for each temperature because of the
distribution of

−→
Bloc. NPs become (SP) at different temperatures,

depending on the local field they feel. Moreover, they become
(SP) mostly at a lower temperature than in the case without
interaction because this local field is generally larger than
B0 as explained above. This is why the increase of the
magnetization at low temperature is less abrupt with inter-

action than without interaction and why it occurs for a lower
temperature.

VI. CONCLUSION

The theoretical “weak interaction” model exposed here de-
scribes a very specific experimental system and this specificity
allows some simplifications. For example, the fact that the
total volume fraction φ is small and the lysosome is assumed
spherical allows us to neglect all interaction sources except
neighbors inside the Lorentz cavity. For a larger φ value or/and
another system geometry, global interaction effects should be
taken into account (as the demagnetizing field). Nevertheless,
concerning the specific biological case of magnetic NPs
internalized in lysosomes, the system described here seems
quite general: In different types of cells or in different organs,
the same simplifications should be possible.

According to this model the local field felt by intralysoso-
mal NPs is approximately described by a well-characterized
isotropic Gaussian distribution. Moreover, the unique relevant
parameter influencing the magnetic response of our interacting
systems is the very local NP distribution inside lysosomes. This
valuable information would be then accessible by means of a
simple macroscopic ZFC experiment.

The exposed model also suggests a new interpretation of the
maximum of the ZFC curve not depending on the NP relaxation
time as widely assumed but on the decrease of interaction
effects with temperature.

Finally, the presented work only focuses on ZFC experi-
ment and its interpretation. Nevertheless, the way the local
field is analyzed is quite general and can presumably be
used as a start to study how biomedical applications using
magnetic NPs at room temperature are modified after the
cellular internalization of NPs.
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