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Memory effects in strongly interacting lattice gases: Self-intermediate scattering function studies
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We investigate in detail the self-intermediate scattering function (SISF) of a lattice fluid (interacting lattice
gas) with attractive nearest-neighbor interparticle interactions at a temperature slightly above the critical one
by means of Monte Carlo simulations. An analytical expression is suggested to reproduce the simulation data.
This expression is the generalization of the hydrodynamic limit with the wave vector, the time-dependent tracer
diffusion coefficient, and the lattice geometry factor, instead of the square of the wave vector. The tracer diffusion
coefficient is given by its zero wave-vector limit multiplied by the exponent of a function that contains only one
fitting parameter describing its wave-vector dependence. In order to represent the time dependence of the SISF
and to understand the time scales of the lattice fluid relaxation processes, we use two- and three-exponential
fitting functions. The relaxation times group in three well-separated regions around 10, 100, and 1000 Monte
Carlo steps and show weak concentration dependence. The analytical expression can also be used to calculate
the lattice fluid dynamical structure factor.
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I. INTRODUCTION

Lattice systems have played a very important role in
understanding phase-transition phenomena,1–3 and they are
frequently used as simplified (lattice gas) models for a number
of real objects: submonolayers on solid surfaces,4,5 ionic
crystals,6 intercalation compounds,7,8 electrons on traps,9 etc.
The most important applications deal with lattice-gas transport
processes, mostly diffusion processes.4,5,9–14 Linear response
considerations15,16 offer a straightforward way for inves-
tigating kinetic transport coefficients, and they have been
applied in the past for investigating lattice-gas diffusion
characteristics.10,14,17,18

On the other hand, the space- and time-dependent density-
density distribution functions, their spatial Fourier and time
Laplace transforms, the intermediate scattering functions
(ISF), and the dynamical structure factors (DSF), they all
contain valuable information about kinetic properties of the
matter in a wide range of spatial and time scales. Dynamical
structure factors and intermediate scattering functions of
different liquids and fluids as well as lattice-gas automata have
been intensively investigated in the past,19–25 while for lattice
gases the corresponding data are rather scarce (lattice fluids
is a more appropriate term because a wide range of particle
densities up to liquid values are considered).26–28

Moreover, up to now, lattice gases have been investigated
but only without lateral interactions. The influence of intrasite
particle dynamics (its hindered oscillatory motion near the
lattice site and the possibility to make long jumps depending
on the friction constant) on the DSF of a single particle on one-
and two-dimensional lattices has been investigated.29,30 The
evolution of the structure factor during the first-order phase
transition in the lattice system was used to extract diffusion
coefficients at nonequilibrium conditions.31 Several theories
for ISF have been developed32–35 that lead to very accurate
results for the long time and small wave-vector tracer diffusion
coefficient in the entire concentration range, however, their

consequences in the nonhydrodynamic regimes have not been
investigated.

At the same time, in many cases21,36–39 the diffusion
process in liquids is considered as a combination of smooth
particle motion together with its surrounding ones and of
sudden particle jumps between “free” volumes40 created by
the surrounding particles. Many expressions for the tracer
diffusion wave-vector dependence have been suggested to
estimate the contribution of particle jumps in the diffusion
process and to evaluate the jump parameters (e.g., the residence
time and jump distances). However, no thorough investigation
of the wave-vector dependence on the jumping mechanisms
exists up to now. Memory effects have not been investigated
as well.14,41

The self-intermediate scattering function (SISF) of non-
interacting lattice gases was investigated27 by Monte Carlo
simulation techniques in a wide coverage range in the interval
from 0.0998 up to 0.9805, and it was shown that memory
effects are quite significant. It was shown that the Bardeen-
Herring mechanism that explains interparticle correlations by
movement of the “special vacancy” (this vacancy is created by
a jumping particle that increases the probability for it to return
to its original position27) and gives possibility to reproduce
the long-time tracer diffusion can not explain satisfactorily
the wave vector and time dependence of the SISF. In fact,
no theoretical explanation for the simulation results has been
provided. This is in spite of the fact that rather large square
lattices (600 × 600 lattice sites) have been utilized, but the
investigation was restricted to only 20 to 200 Monte Carlo
steps (MCS), depending on particle concentration. As particles
during this time can only move to a few lattice spacings, we
can readily see that the lattice size has no crucial importance,
while as it will be shown below the long-time behavior of
interacting lattice fluids is of great importance. In simplified
kinetic theories,42 some improvements in the description of the
SISF of noninteracting lattice gases were achieved,28 however,
time scales of the memory effects were not discussed.
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We present here the results of Monte Carlo simulations
and the calculation of the SISF for the lattice fluid with
nearest-neighbor attractive interactions for long (up to 2000
MCS) times at two temperatures slightly above the critical
one (where interparticle interactions strongly manifest them-
selves). Emphasis is given to the self-intermediate scattering
function Fs(k,t) that is closely related to the tracer diffusion
in the lattice fluid. Approximate expressions for the wave
vector and time dependence of SISF are suggested, and the
time dependence of its parameters is investigated in detail.
The wave-vector dependence is described by only one fitting
parameter, and the suggested expression reproduces well the
simulation results for different orientations of the wave vector.
With these expressions the dynamical structure factor can be
calculated in a straightforward manner.

II. THEORETICAL BACKGROUND

The van Hove space- and time-dependent distribution
function can be represented by the expression:

G (r,t) = 1

n

〈
n∑

i,j=1

δ[r + ri(0) − rj (t)]

〉

= Gs (r,t) + Gd (r,t) , (1)

where δ(r) is Dirac’s δ function, r is a radius vector, t is
time, and the angular brackets mean averaging over canonical
ensemble of n particles. The sum runs over positions of all
system particles denoted by radius vectors ri and rj . For lattice
fluids, particles can occupy the lattice sites only. Two- and
many-particle occupation of a lattice site is forbidden. The self
part Gs (r,t) of the distribution function contains positions of
the same particle (i = j ) at two different times (0 and t), while
the distinct part Gd (r,t) contains the terms with i �= j .

In the hydrodynamic limit of long distances and times,
the self part of the distribution function obeys the diffusion
equation:

∂Gs (r,t)
∂t

= ∇ · [Ds · ∇Gs (r,t)] , (2)

where Ds is the self- (or tracer) diffusion tensor.
The self-intermediate scattering function (SISF) Fs (k,t)

is the Fourier transform of the self part of the distribution
function. Because for a lattice fluid the initial conditions are
taken in the form Gs(0,0) = 1 and Gs(r �= 0,0) = 0, and from
Eq. (2) it follows that

Fs (k,t) = exp(−k · Ds · kt) , (3)

where k is the wave vector. The tracer diffusion tensor Ds in
the hydrodynamic limit does not depend on the wave vector
and time. In this case, the SISF is a Gaussian in k space with
decreasing half-width inversely proportionally to square root
of time. For lattices of cubic symmetry, the tracer diffusion
tensor reduces to the tracer diffusion coefficient that can be
calculated through the self-intermediate scattering function

Ds = − ln [Fs (k,t)]

k2t
. (4)

However, the lattice fluid dynamics is governed by the
master equation and the solution (3) and expression (4) can not

be used in the region of large wave vectors and short times. For
a particle on the lattice of cubic symmetry when considering
its uncorrelated jumps to the nearest-neighbor sites37 as well
as for the lattice fluid when memory effects can be neglected,41

in Eq. (4), k2 has to be replaced by a function

η(k) =
z∑

j=1

1 − cos(k · rj )

a2
, (5)

where the sum runs over z nearest-neighbor sites on the lattice.
For a square lattice, it reduces to

η(k) = 2
2 − cos(kxa) − cos(kya)

a2

= 4

a2

[
sin2

(
kxa

2

)
+ sin2

(
kya

2

)]
, (6)

where a is the lattice spacing and x and y axes are directed
along the cell edges.

When the memory effects are taken into account, the master
equation requires considering next-nearest, next-next-nearest,
and so on neighbors, and it is not possible to separate the
lattice geometry contribution to the intermediate scattering
function in a simple term such as Eq. (6).27 Nevertheless,
we preserve this simple equation for separating the lattice
geometry contribution because at small k it satisfies the
hydrodynamic limit, and moreover, it is a periodic function of
the wave vector with a period equal to the first-Brillouin-zone
size.

All other contributions of the memory effects to Fs(k,t) are
included through the time and wave-vector dependence of the
tracer diffusion coefficient

Fs(k,t) = exp[−Ds(k,t)η(k)t] . (7)

Thus Eq. (4) can be rewritten as

Ds(k,t) = − ln [Fs(k,t)]

η(k)t
. (8)

Indeed, at small k, Eqs. (4) and (8) coincide with each other.
In accordance with Eqs. (3), (4) and (7), (8), the logarithm

of the SISF decreases inversely proportionally with time. In the
hydrodynamic regime (t → ∞,k → 0) when the tracer diffu-
sion coefficient is a constant, SISF decreases exponentially
with time

Fs(t) = exp

(
− t

τ

)
, (9)

with the relaxation time τ = τ (k) = [Dsk
2]−1 increasing

inversely proportionally with k2 when k → 0.
However, even for a single particle on a lattice, this depen-

dence is violated at short times due to the nonzero probability
for the particle to return to its original position.43 The time
dependence of the diffusion coefficient can reflect memory
effects of the diffusion process. At nonzero concentration,
memory effects significantly modify the diffusion-coefficient
time dependence. Moreover, in general, the diffusion coeffi-
cient as defined by Eq. (8) depends on the wave vector. In
the following, Eq. (8) is used for calculating the diffusion
coefficient as a function of t and k and for the analysis of the
memory effects.
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III. SIMULATION PROCEDURES

The initial configuration we used for the Monte Carlo
simulations was a square (L × L = 50 × 50) lattice with
periodic boundary conditions randomly occupied by particles
with a coverage (concentration) θ . In this case, the wave vector

k = 2π

La
(hi + mj) , h,m = 0,1,2, . . . ,

L

2
, h + m �= 0,

(10)

is introduced. Here, i and j are the unit vectors in the x and y

direction, respectively.
We then applied attractive nearest-neighbor interactions

between the particles using the following algorithm: the
probability p of a randomly chosen particle to jump to a
nearest-neighbor empty site depends on the number of nearest
neighbors z and on temperature T of the system by the
following expression:

p = exp(−zJ/kBT ), (11)

where J is the interaction parameter, which is linked to the
critical temperature by the relation J/(kBTc) ∼= 1.76, and kB

is the Boltzmann constant.
MCS is then defined by n = θ × L × L trials to move

a randomly chosen particle. We let the system evolve until
it reaches an equilibrium state (104 MCS) before starting
to compute at each MCS the value of the self-intermediate
scattering function Fs(k,t) for a time range of 2000 MCS.
In fact, we considered the equilibrium state as the initial
state for our calculations (t0 = 0). Afterward, by tracking the
position (xt ,yt ) of every particle at every time step, Fs(k,t)
was easily computed for all the wave vectors kx = 2πh/La

and ky = 2πm/La:

Fs(k,t) = 1

n

n∑
i

cos

{
2π

L
[h(xi,t − xi,0) + m(yi,t − yi,0)]

}
,

(12)

where h and m are two integers varying independently from
0 to L/2 (for symmetry reasons the negative values were not
considered) and the particle coordinates are given in units of a.
The results obtained are the average of 20 000 independent
runs.

Simulations were performed for two temperatures slightly
above the critical value (T = 1.05Tc and T = 1.2Tc) and for
the concentration range θ from 0.3 to 0.7 with a step 0.05. The
lattice spacing a was taken equal to 1.

IV. RESULTS AND DISCUSSION

The simulation results for the SISF are shown in Fig. 1(a).
The width of the function in k space decreases with time
as given by Eqs. (3) and (7), as is always observed in
experiments and simulations for liquids and lattice fluids.
Figure 1(b) demonstrates that the tracer diffusion coefficient
sharply decreases with k in the region of small k, and then
decreases more slowly when k is approaching the boundary of
the first Brillouin zone. The tangents are horizontal at k = 0
and k = km, where km = π/a is the maximal wave-vector
value (we first consider the results for k directed along a cell

edge). Thus it is reasonable to approximate the simulation data
by the expression

Ds(k,t) = Ds0(t) exp[−B2(k,t)], (13)

where B(0,t) = 0 and the first derivative of B(k,t) over the
wave vector at the boundary of the first Brillouin zone is equal
to zero as well.

To gain understanding on how to approximate the diffu-
sion coefficient simulation data, we calculated the function
B(k,t) = √

ln [Ds0/Ds(k,t)]. Typical results are given in
Fig. 1(c). The function is exponentially increasing to its
saturation value. However, to guarantee zero value of its first
derivative at the boundary of the first Brillouin zone, we have
introduced the first-order term in k, and the final expressions
now have the forms

B(k,t) = b(ξ )Bm(t), Bm(t) = B(ξm,t),
(14)

ξ = h/κ(t), ξm = 25/κ(t),

b(ξ ) = b0[1 − exp(−ξ ) − ξ exp(−ξm)],
(15)

b0 = 1/[1 − (1 + ξm) exp(−ξm)],

where ξ is a dimensionless variable, h is considered as an
integer varying between 0 and 25, and the characteristic
distance κ in the inverse space is taken in units of (2π/La).
Also, b(k,t) = b(ξ ) is a function of ξ that depends on time
through the parameter κ only, b(0) = 0, and b(ξm) = 1. This
function represents well the wave-vector dependence of the
function B(k,t) [see Fig. 1(c)].

The pre-exponential factor in Eq. (13) is a limiting value

Ds0(t) = lim
k→0

Ds(k,t). (16)

Since the values for k = 0 are inaccessible in Monte Carlo
simulations, the results for k = ±1 and ±2 were approximated
by parabolas and the values of Ds0 were calculated in this way.

Thus all simulation data can be approximated by three
time-dependent parameters, namely, Ds0(t), Bm(t), and κ(t),
where κ(t) is the only fitting parameter representing the
k-space dependence. All these functions can in turn be
approximated by a two- or three-exponential fitting, providing
good understanding of the time scales of the memory effects.

The existence of memory effects and asymptotic exponen-
tial time dependence of the intermediate scattering function
was demonstrated for lattice gases with repulsive nearest-
neighbor interactions.44 However, the short-time memory
effects have not been investigated in detail. Our results are
quite adequately represented by the expressions:

Ds0(t) = D∞ + D1 exp (−t/τ1) + D2 exp (−t/τ2) , (17)

κ(t) = κ∞ + κ1 exp (−t/τκ1) + κ2 exp (−t/τκ2)

+ κ3 exp (−t/τκ3) , (18)

Bm(t) = B∞ + B1 exp (−t/τb1)

+B2 exp (−t/τb2) + B3 exp (−t/τb3) . (19)

It is worth noting here that the relaxation times do
not depend on the absolute value of the wave vector. The
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(b)

(c)

FIG. 1. (Color online) (a) The SISF, (b) the tracer diffusion coefficient, and (c) function B vs the wave vector directed along a cell edge
for three different times. θ = 0.5, T = 1.2Tc (full symbols), and T = 1.05Tc (empty symbols). Time t is given in MCS. Solid lines are drawn
according to Eqs. (7) and (13)–(19) only for the data of T = 1.2Tc and not for T = 1.05Tc (for clarity in the figures).

FIG. 2. The tracer diffusion coefficient at k = 0 vs time. θ = 0.5,
T = 1.2Tc (full symbols), and T = 1.05Tc (empty symbols). Solid
lines for the two temperatures are drawn according to Eq. (17).

wave-vector dependence of the relaxation process is mainly
manifested through the scaling parameter κ . One can see from
Fig. 1 that Eqs. (7) and (13)–(19) agree quite well with the
simulation results even at long times, as long as 2000 MCS.

The time dependence of Ds0 is shown in Fig. 2. It is
well represented by the two-exponential decay function (17).
The pre-exponential factors and the relaxation times for
different concentrations are presented in Figs. 3(a) and 3(b),
respectively. The parameters of the scaling factor κ in the
wave-vector space and function Bm are shown in Figs. 4(a),4(b)
and 5(a),5(b) correspondingly.

All relaxation times fall into three well-separated intervals:
5 to 18, 50 to 120, and 500 to 1000 MCS. If we look at each of
the three parameters individually, the separation of relaxation
times is even more pronounced with time values separated
by approximately one order of magnitude. The concentration
dependence of the relaxation times for all three parameters is
rather weak.

The pre-exponential factors of the long wavelength limit
of the tracer diffusion coefficient strongly decrease with
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(a) (b)

FIG. 3. (Color online) (a) The pre-exponential coefficients and (b) the relaxation times for the tracer diffusion coefficient as given by
Eq. (17) at k = 0 vs lattice concentration. T = 1.2Tc (full symbols) and T = 1.05Tc (empty symbols).

concentration [see Fig. 3(a)] unlike the relaxation times,
which remain approximately constant or slightly decrease
[see Fig. 3(b)]. The pre-exponential factors of the scaling
factor κ strongly increase with concentration [see Fig. 4(a)]
while its relaxation times slightly decrease [see Fig. 4(b)].
Concerning function Bm, the pre-exponential factors decrease
significantly [see Fig. 5(a)] while the relaxation times do not
vary with concentration [see Fig. 5(b)]. The contribution of
the relaxation processes in the regions of tens and hundreds
of MCS are approximately equal, while the scaling factor
κ strongly relaxes on the time scale of 5 MCS. Such a
behavior of the relaxation times is rather unexpected because
at larger concentration, particle jumps become less frequent
and more time is necessary for particle-distribution evolution.
However, this dependence of SISF relaxation on particle jump

frequencies [which is inversely proportional to Ds(k,t) and
follows from Eqs. (7) and (9)] is not related to memory
effects, and therefore, we have used the analysis of the
diffusion coefficient itself. One can also explain this effect
by considering the movement of the special vacancy,27 which
reduces the long-time particle mobility without contributing
to the memory effects.

For symmetry reasons, it is sufficient to consider 1/8 part
of the first Brillouin zone between its diagonal and x axes for
other orientations of the wave vector. Then all expressions (12)
through (18) can be used replacing k with kx , the projection of
k on x. The anisotropy of the SISF is manifested through the
dependence of the pre-exponential factors and the relaxation
times in Eqs. (16) through (18) on ky or the angle between k
and x axes. The anisotropy for the relaxation times is not very

(a) (b)

FIG. 4. (Color online) (a) The pre-exponential coefficients and (b) the relaxation times for the characteristic distance κ in the inverse space
as given by Eq. (18) vs lattice concentration for the wave vector directed along a cell edge. T = 1.2Tc (full symbols) and T = 1.05Tc (empty
symbols).
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(a) (b)

FIG. 5. (Color online) (a) The pre-exponential coefficients and (b) the relaxation times for Bm as given by Eq. (19) vs lattice concentration
for the wave vector directed along a cell edge. T = 1.2Tc (full symbols) and T = 1.05Tc (empty symbols).

strong and amounts to a few tenths of the values for k oriented
along a cell edge. An example is given in Fig. 6, where the
parameters of the scaling factor κ are shown for the diagonal
orientation of the wave vector.

The depth of relaxation can be estimated as the ratio
of the difference between the initial and final (at t → ∞)
parameter values to its final value. The results are represented
in Fig. 7. At T = 1.2Tc, the depth of relaxation of the tracer
diffusion coefficient at k = 0 changes almost linearly with
concentration from approximately 0.3 to 0.9 for k oriented
along a cell edge, and from approximately 0.45 to 0.9 for
diagonal orientation. The strongest relaxation is observed
for the scaling parameter κ . With concentration increase, it
increases approximately from 19 to 54, and from 5.7 to 7.7
for wave-vector orientations along the cell edge and diagonal,

correspondingly. Thus the depth of relaxation of the scaling
parameter is strongly anisotropic in the wave-vector space. At
T = 1.05Tc, this increase is not so strong and for the cell-edge
wave-vector orientation it changes from approximately 12 to
20. The depth of Bm relaxation is modest and is approximately
0.6 and 0.5, independently of concentration and temperature,
for wave-vector orientations along the cell edge and diagonal,
respectively.

Thus the anisotropy of the memory effects is clearly seen
especially for the scaling parameter κ . However, as the scaling
parameter initially sharply decreases with time from its large
values (κ1 considerably exceeds all the other pre-exponential
factors) the anisotropy of its depth of relaxation is probably
overestimated. Its short-time behavior has to be additionally
investigated in more detail. Also, it is necessary to note that

(a) (b)

FIG. 6. (Color online) (a) The pre-exponential coefficients and (b) the relaxation times for the characteristic distance κ in the inverse space
as given by Eq. (17) vs lattice concentration for the wave vector directed along a cell diagonal. T = 1.2Tc.
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(a)

(b)

FIG. 7. (Color online) The depth of relaxation for the parameters
Ds0, Bm, and κ vs lattice concentration for (a) the wave vector
directed along a cell axis and for (b) the wave vector directed along
a cell diagonal. T = 1.2Tc (full symbols) and T = 1.05Tc (empty
symbols).

the size of the lattice considered (L = 50) is not large enough
to adequately represent the hydrodynamic limit k → 0. The
tracer diffusion coefficient at k = 0 must be independent
of the wave-vector orientation. Its small anisotropy in our
simulations is the result of not large enough lattice size.

Comparing the results for two temperatures (T = 1.2Tc and
T = 1.05Tc), we see that the difference between them is not
very pronounced except for the tracer diffusion coefficient in
the long-wavelength limit. Due to lower Ds0 values for the
case of T = 1.05Tc, the SISF decreases less abruptly with k
than for T = 1.2Tc. The dependence of the various parameters
(pre-exponential factors and relaxation times) of Ds0, Bm,
and κ on concentration follow similar behavior for both
temperatures. For the lower temperature, the pre-exponential
factors of Ds0 are shifted to smaller values (by some 30%),
while the relaxation times to larger ones (appreciatively 15%

increase). For Bm, the pre-exponential factors are shifted to
larger values while the relaxation times remain the same.
Concerning κ , the pre-exponential factors are shifted to smaller
values and their increase with coverage is less abrupt, while the
relaxation times are shifted to a somewhat larger values and this
behavior correlates well with their concentration dependence.
The depth of relaxation of the tracer diffusion coefficient at
k = 0 seems to change linearly for T = 1.2Tc but this is not
the case for T = 1.05Tc.

At the same time, for a noninteracting lattice gas that can be
considered as a limiting high-temperature case the relaxation
times are considerably shorter and do not exceed 20 MCS27 for
the concentration range of θ = 0.3–0.7. However, the authors
of that work analyzed the logarithm of SISF (not the diffusion
coefficient as done in the present work). This means that the
direct proportionality of the logarithm of SISF to time as it
is indicated by Eqs. (7) and (9) has not been separated in the
analysis and their results cannot be directly compared with
ours.

Considering the results represented by Eqs. (7)–(9) and
(13)–(19) and Figs. 1–8, we have to note that the time
dependence of SISF is very complicated. The main hydro-
dynamic trend that is given in Eq. (9) does not capture the
memory effects caused by the complicated hopping dynamics
of particles. These effects reveal themselves through the
wave-vector-dependent tracer diffusion coefficient. There are
two major relaxation times describing the zero wave-vector
diffusion-coefficient evolution in accordance with Eq. (17).
The other relaxation times are superimposed on these two
relaxation scales in accordance with Eq. (13). They describe
complicated evolution of the diffusion coefficient in the
inverse k space. In fact, this evolution cannot be described by
exponentially decaying functions because Eq. (13) contains
the exponent of squared function B, the time dependence
of which is given by a succession of relaxation functions in
Eq. (19) and even more complicated time dependence through
the inverse-space scaling factor κ in Eqs. (14) and (15).

FIG. 8. (Color online) Comparison of the hydrodynamic value of
the tracer diffusion coefficient (at k = 0 and t → ∞) obtained after
2000 MCS with the results of Monte Carlo simulations through the
particle mean-square displacement obtained after 10 000 MCS. T =
1.2Tc.
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In Fig. 8, the hydrodynamic value of the tracer diffusion
coefficient (at k = 0 and t → ∞) is compared with the results
of Monte Carlo simulations through the particle mean-square
displacement as given by the expression

〈(
r)2〉 = 4Dtr0t, (20)

where the time is given in MCS and the mean-square
displacement in squared lattice spacing.

The difference between its values for the wave-vector
orientations along the cell edge and diagonal is the result of
not large enough lattice size, and partly due to inadequate
statistics at low coverage. The values calculated from Eq. (20)
are systematically slightly below the values obtained from
the analysis of the ISSF. The reason for this discrepancy is
that the particle mean-square displacements were considered
during runs of 10 000 MCS after 10 000 MCS for the system
equilibrization, while the SISF data were obtained from 2000
MCS runs after the same period of equilibrization. The three-
exponential fitting of the latter results reduces the difference
only slightly, while it shows rather long additional relaxation
time around 1180 MCS for θ = 0.5 and 1070 for θ = 0.6.
However, if the runs for the mean-square displacements are
restricted to 2000 MCS, the difference between the results
does not exceed 3% at large coverage. Thus to get more precise
results for SISF, it is necessary to produce runs of 10 000 MCS.

V. CONCLUSION

The simulation results for the self-intermediate scattering
function (SISF) for a system of interacting particles in a
two-dimensional surface are given by a simple analytical
expression with only one fitting parameter for representing
its wave-vector dependence. This expression can be used for
simple calculation of the self part of the dynamical structure
factor because its direct evaluation through Monte Carlo
simulation is computer-time demanding.

The SISF expression brings valuable information about
relaxation processes in lattice fluids. The expression consists of
generalization of the tracer diffusion coefficient that depends
on the wave vector and time. In turn, the latter is represented
as the zero wave-vector time-dependent tracer diffusion
coefficient Ds0(t) times the exponent of function −B2(k,t)
that contains the SISF wave vector and time dependence as
well. The wave-vector dependence of function B is represented
by its value Bm at the boundary of the first Brillouin
zone times a function of k that contains only one fitting
parameter κ .

The time dependence of Ds0(t), Bm(t), and κ(t) gives valu-
able information about the relaxation processes. The relaxation
times are introduced in a way that they do not depend on
absolute value of the wave vector. At T = 1.2Tc, the relaxation
of the zero wave-vector tracer diffusion coefficient is described
by two relaxation times around 75 and 750 MCS that are almost
independent of the concentration. The partial contributions
of these relaxation processes are approximately equal in the
entire concentration range 0.3–0.7 considered. Bm shows three
relaxation times around 17, 110, and 900 MCS, again without
pronounced concentration dependence. The three relaxation
times of κ slightly decrease in ranges of 6 to 5, 60 to 50, and
670 to 560 MCS with concentration increase from 0.3 to 0.7.
At the lower temperature of 1.05Tc, all the parameters show
similar concentration dependence while their numerical values
are slightly different. The largest differences are observed for
the zero wave-vector tracer diffusion coefficient that decreases
by approximately 30% while its relaxation times increase by
15%.

Anisotropy of SISF is reflected by the lattice geometry
function η(k) and the wave-vector orientation dependence
of the parameters, especially the scaling parameter κ . The
hydrodynamic limit of Ds0(t) correlates well with the results
of Monte Carlo simulation of the particle mean-square
displacements.
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