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Magnetic domain-wall motion in a nanowire: Depinning and creep
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The domain-wall motion in a magnetic nanowire is examined theoretically in the regime where the domain-wall
driving force is weak and its competition against disorders is assisted by thermal agitations. Two types of driving
forces are considered; magnetic field and current. While the field induces the domain-wall motion through the
Zeeman energy, the current induces the domain-wall motion by generating the spin transfer torque, of which effects
in this regime remain controversial. The spin transfer torque has two mutually orthogonal vector components,
the adiabatic spin transfer torque and the nonadiabatic spin transfer torque. We investigate separate effects of the
two components on the domain-wall depinning rate in one-dimensional systems and on the domai-wall creep
velocity in two-dimensional systems, both below the Walker breakdown threshold. In addition to the leading-order
contribution coming from the field and/or the nonadiabatic spin transfer torque, we find that the adiabatic spin
transfer torque generates corrections, which can be of relevance for an unambiguous analysis of experimental
results. For instance, it is demonstrated that the neglect of the corrections in experimental analysis may lead
to an incorrect evaluation of the nonadiabaticity parameter. Effects of the Rashba spin-orbit coupling on the
domain-wall motion are also analyzed.
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I. INTRODUCTION

A magnetic domain-wall (DW) in a ferromagnetic nanowire
is an important subject in spintronics. A new type of logic
device is proposed1 based on the DW dynamics and a DW-
based memory is also proposed,2 which may have merits
such as nonvolatility, high speed, high density, and low power
consumption.

The dynamics of a DW varies considerably depending on
the relative strength of DW driving forces (such as a magnetic
field and a current) with respect to disorders, which tend to
suppress the DW motion. If the forces are sufficiently strong
or the disorders are sufficiently weak,3 the DW dynamics does
not deviate much from the ideal dynamics in the absence of
disorders. While some experiments4–7 are estimated to be in
this regime, many other experiments8–11 appear to be in the
regime where the disorders are important. It is thus desired
to understand the DW dynamics in the weak-driving-force
regime where the competition between the DW driving forces
and the disorders is significant.

The DW motion in the weak-driving-force regime is an
important example in the field of driven interfaces. The
study on driven interfaces has a long history12 and addresses
many physical systems such as surface growth of a crystal,13

vortex line motion in high-temperature superconductors,14 and
fluid propagation in porous media.15 Through a long series
of theoretical works,14,16,17 a simple picture has emerged;
the interface motion becomes collective and the collective
length scale Lcol,11 which characterizes the length scale of
collectively moving interface segments, diverges in the weak-
driving force limit. Due to the divergence of Lcol, the interface
has to overcome an increasingly larger energy barrier as the
driving force becomes weaker, with the energy barrier EB

as a function of the driving force f diverging as a power

law, EB ∝ f −μ (μ > 0). Interestingly the creep exponent
μ is universal in the sense that its value does not change
continuously with variations of system details and is affected
only by a small number of key features such as the system
dimensionality. Systems with the same exponent are said to be
in the same universality class.

This prediction has been unambiguously confirmed for
the field-driven DW motion in metallic ferromagnets,8 where
the DW velocity v is proportional to exp(−κH−μ/kBT ).
Here kB is the Boltzmann constant, T is the temperature, H is
the magnetic field strength, and κ is a constant. Note that this
behavior of v is a combined result of the power-law scaling
of the energy barrier EB = κH−μ and the Arrhenius law14

v ∝ exp(−EB/kBT ). The creep exponent μ is found to be
≈ 0.25, which agrees with the theoretically predicted value
1/4 in two-dimensional (2D) systems.17

A pioneering experiment9 revealed interesting twists.
For nanowires made of a ferromagnetic semiconductor
(Ga,Mn)As, the energy barrier for the field-driven DW motion
was found to scale as H−μ, where μ ≈ 1.2 instead of 1/4. This
difference was attributed to the different nature of disorders;
while disorder potential energy is short-range correlated in
metallic ferromagnets, it was argued that in ferromagnetic
semiconductors, disorder force is short-range correlated. Since
the disorder potential energy is obtained by integrating the
disorder force, it implies that the disorder potential energy
is then long-range correlated.17 For such cases, it is known17

that the nature of the correlation along the DW segments is
modified and the value of μ indeed changes.

Another interesting twist of the experiment9 is that, for
the current-driven DW motion, the effective energy barrier
was reported to scale as J−μ, where J is the current density
and μ ≈ 0.33 rather than 1/4 or 1.2. Thus two different
creep exponent values (1.2 and 0.33) were obtained from the
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same material, implying that the current-driven DW motion is
qualitatively different from the field-driven DW motion.

It is believed that the current induces the DW motion in a
nanowire by generating the spin transfer torque (STT). The
STT has two mutually orthogonal vector components, the
adiabatic STT and the nonadiabatic STT.18,19 The nonadibatic
STT has properties similar to the magnetic field while
the adiabatic STT has very different properties. Thus the
experimental result9 implies that the nonadiabatic STT cannot
be the main driving force of the DW motion. In fact the
exponent μ ≈ 0.33 has been interpreted9 as an indication
that the current-driven DW motion is mainly due to the
adiabatic STT.

This interpretation is at odds, though not contradictory,
with other results. In metallic ferromagnets, the onset of the
adiabatic-STT-driven DW motion is estimated20,21 to occur
at the current density of ∼109 A/cm2, which is unendurably
high for most experimental systems. Thus the DW motion
realized at lower current densities are usually attributed to the
nonadibatic STT.

This situation strongly motivates experimental22 and
theoretical23–25 studies of the current-driven DW motion
in metallic ferromagnets. This paper aims at theoretical
explorations of this issue based on the observation that the
DW anisotropy, characterizing the energy cost associated
with the change in the tilting-angle of the magnetization
inside a DW, is orders of magnitude larger in metallic
ferromagnets than in ferromagnetic semiconductors. Since the
DW anisotropy tends to suppress variations of the tilting-angle,
we assume that the DW creep motion in metallic ferromagnets
exhibits the below-the-Walker-breakdown-like behavior in the
sense that the amplitude of the tilting-angle variations during
the creep motion stays much smaller than 2π . For the field-
driven DW creep motion, this assumption is experimentally
supported since the experimental value ∼ 0.25 of the creep
exponent agrees with the prediction 1/4 of the theory,17 in
which the tilting-angle dynamics is completely suppressed.
For the current-driven DW creep motion, the assumption
requires an experimental confirmation. A recent experiment22

reports the purely current-driven DW creep motion in metallic
ferromagnets. For ferromagnetic semiconductors, in contrast,
it appears that the assumption may not be valid. For the
current-driven DW creep motion, it was argued9 that each
thermally assisted tunneling event overcomes the energy
barrier generated by the DW anisotropy, implying that each
tunneling event is accompanied by the tilting-angle change
by ∼π .

The paper is structured as follows. In Sec. II, we discuss the
DW depinning from a single potential well in one-dimensional
(1D) systems. Analysis of this relatively simple problem
clearly illustrates separate roles of the magnetic field, the
adiabatic STT, and the nonadiabatic STT on the thermally
assisted tunneling of a DW. It also allows one to identify
relevant factors affecting the tunneling, which therefore should
be included in the analysis. In this sense, Sec. II is pedagogical.
Nevertheless predictions in Sec. II can be tested in real
experiments since a DW exhibits the 1D dynamics when
Lcol becomes larger than both the thickness and width of
a nanowire.11 In particular, it is predicted that, when the
depinning rate is used as a tool to evaluate the nonadiabaticity

parameter,18,19 characterizing the strength of the nonadibatic
STT, it may lead to an incorrect values if disorders in a
nanowire have certain features. In Sec. III, the DW creep
motion in 2D systems is analyzed. Separate roles of the
magnetic field, the adiabatic STT, and the nonadiabatic STT on
the creep motion are clarified. In addition to the leading-order
contribution to the creep motion in the vanishing DW driving
force limit, next-leading-order contributions are also obtained.
Although the next leading-order contributions are irrelevant as
far as the theoretical determination of the creep exponent and
the universality class is concerned, they may nevertheless be
relevant in experimental determination of the creep exponent
since experiments are always performed at small but finite
driving force strength. At the end of both Secs. II and III, effects
of the Rashba spin-orbit coupling (RSOC) are discussed. The
emergence of the RSOC in ferromagnetic nanowires is recently
demonstrated.26 Section IV concludes this paper.

II. DW DEPINNING IN 1D DIMENSION

When both the thickness and the width of a magnetic
nanowire are sufficiently smaller than the collective length
Lcol, the system reduces to a one-dimensional (1D) problem
and the configuration of a DW can be described by two
variables, the DW position q and the tilting angle ψ . This
section examines the DW depinning from a potential well in
this 1D regime.

A. Effective energy

In the 1D regime, the response of the DW collective
coordinates (q,ψ) to an external magnetic field H and/or an
electric current of density J is described by the following
equations,

α
q̇

λ
− ψ̇ = γ0(H − βχJ ) − γ0

2MS


∂V

∂q
, (1)

q̇

λ
+ αψ̇ = −γ0χJ − γ0

2MS
λ

∂V

∂ψ
, (2)

where α is the Gilbert damping parameter, λ is the DW
width, γ0 is the gyromagnetic ratio, MS is the saturation
magnetization, 
 is the cross-sectional area of a nanowire,
V (q,ψ) is the DW potential energy, and the dimensionless
parameter β is the nonadiabaticity coefficient18,19 representing
the strength of the nonadiabatic STT. χ = h̄P/2λeMS (<0) is
a constant with the dimension H/J , P is the spin polarization
of the current, and h̄ is the Planck constant. In Eqs. (1) and
(2), the sign convention of J is chosen in such a way that
positive J drives the DW toward the positive q direction. On
the other hand, the sign convention of H should depend on the
types of the DW: In nanowires with in-plane anisotropy, for
instance, opposite signs should be adopted for the head-to-head
and tail-to-tail DWs. Below for simplicity, we consider one
particular sign only and assume that the positive H tends to
drive the DW toward the positive q direction.

The DW potential energy V (q,ψ) consists of the DW
anisotropy energy 2
λKd sin2 ψ and a disorder potential
energy, where Kd represents the strength of the DW anisotropy.
Here ψ is defined in a way that ψ = 0 for the tilting angle
preferred by the DW anisotropy. When the disorder potential
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energy depends only on q, Eqs. (1) and (2) become equivalent
to Eqs. (3) and (4) in Ref. 27. In general, however, the disorder
potential energy may also depend on ψ .

Such ψ dependence of V may arise in various ways. For
instance, the value of MS may fluctuate from position to
position. Recalling that Kd depends27 on MS , Kd can then
be decomposed into its spatial average part and the fluctuating
part δKd (q). The fluctuating part of the DW anisotropy energy
[∝ δKd (q) sin2 ψ] may be absorbed to V to generate its
ψ dependence. A similar dependence may arise from the
position-to-position fluctuation of 
. In these types of disorder,
the preferred tilting angle remains unaffected and only the
strength of the DW anisotropy fluctuates. Some types of
disorder may generate opposite effects. In a magnetic nanowire
with perpendicular magnetic anisotropy (PMA), the interface
between the magnetic layer and the neighboring layer plays
important roles for the anisotropy. When the interface is not
perfectly flat and becomes rough,28–31 the preferred anisotropy
direction fluctuates from position to position. In this case, the
preferred tilting angle fluctuates while the strength of the DW
anisotropy may not fluctuate.

Below we consider this general situation, in which the
disorder potential energy depends on both q and ψ . In Ref. 25,
the ψ dependence of the disorder potential energy is included
in its initial formulation but ignored when the depinning rate
is calculated. We demonstrate below that the ψ dependence of
V generates interesting consequences.

Based on the Lagrangian formulation, Eqs. (1) and (2) may
be considered as the Lagrange’s equations of the Lagrangian
L and the dissipation function F ,

L = MS


γ0
(qψ̇ − q̇ψ) − V (q,ψ)

+ 2MS
q(H − βχJ ) − 2MS
λψχJ, (3)

F = α
MS


γ0λ
(q̇2 + λ2ψ̇2). (4)

The Lagrangian in Eq. (3) is then transformed to the Hamilto-
nian, i.e., the effective energy function E,

E(q,ψ) = V (q,ψ) − 2MS
q(H − βχJ )

+ 2MS
λψχJ. (5)

Here we have used the term effective energy since E is
not a single-valued function32 in the sense that E(q,ψ) �=
E(q,ψ + 2π ), although (q,ψ) and (q,ψ + 2π ) represent the
same magnetic configuration. Thus some care should be
exercised when Eq. (5) is used to analyze the DW dynamics
above the Walker breakdown threshold, where ψ changes
more than 2π . Below the Walker breakdown threshold, on
the other hand, the dynamics of ψ is confined to a value
range narrower than 2π and E(q,ψ) can be regarded as a
single-valued function.

B. Effective energy barrier

Figure 1 shows schematically the energy profile, to which
the DW is subject. The DW has to overcome an energy
barrier to get depinned from a given potential well. When
the DW driving force (H or J ) is small, the height of the

FIG. 1. (Color online) Schematic plot of the energy landscape
E(q,ψ) as a function of q and ψ . (a) The activation path (black
solid arrow) of the thermally assisted transition for H �= 0 and J =
0 is shown schematically from one local minimum A [(qA,ψA) =
(qG0,ψG0)] to another local minimum C (qC,ψC) through the saddle
point B [(qB,ψB ) = (qS0,ψS0)]. For simplicity, ψG0 = ψS0 = ψC = 0
is assumed, and E(qG0,ψG0) > E(qC,ψC) is also assumed in this plot.
(b) When J is turned on, the activation path (black solid arrow) is
deformed to A’-B’-C’. Here the coordinates of A’ and B’ correspond
to (qG,ψG) and (qS,ψS) in the text, respectively. Note that the path is
now curved due to the adiabatic STT when ν−2

G �= ν−2
S .

energy barrier is sufficiently higher than the DW energy
measured from the bottom of the potential well and the DW
overcomes the large energy barrier by exploiting the thermal
agitation. Thus the depinning time from potential wells is
governed (within the exponential accuracy) by the energy
barrier via the Arrhenius law. When the depinning time is
much longer than the relaxation time inside the potential well,
the energy barrier is defined as the difference between the
saddle-point energy and the local ground-state energy. Two
remarks are in order. First, while the Arrhenius law is based
on the fluctuation-dissipation theorem,33–35 the theorem does
not generally hold when J is finite and the system is thus in
nonequilibrium situations. However, it has been demonstrated
that for small J 36 and below the Walker breakdown regime,37

thermal fluctuations still satisfy the theorem, justifying the use
of the Arrhenius law in this case. Second, even though the
depinning rate from a single potential well is governed by the
Arrehenius law, the DW velocity over a number of potential
wells may not follow the Arrehenius-type law38–40 since the
DW velocity may sensitively depend on the distribution of the
depinning rates from each potential well. In this paper, we limit
ourselves to the discussion on the depinning rate from a single
potential well. As mentioned in the last paragraph of Sec. I,
our results on the depinning rate are directly adaptable to the
experimental analysis of the DW depinning experiments,41,42

and this relatively simple analysis helps in better understanding
of our discussion on the DW creep velocity in 2D systems
(Sec. III).

The energy barrier EB depends on H and J , and we examine
this dependence. For H = J = 0, E(q,ψ) reduces to V (q,ψ).
Let (qG0,ψG0) and (qS0,ψS0) denote respectively the local
ground-state and saddle-point configurations of V (q,ψ). Note
that we introduce separate parameters ψG0 and ψS0. Although
ψS0 − ψG0 will be much smaller than 2π in the regime below
the Walker breakdown, the difference is nonzero in general
due to the ψ dependence of the disorder potential energy. To
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examine effects of small H and J , V (q,ψ) may be Taylor
expanded near these configurations:

V ≈ ω2
G(q − qG0)2 + ν2

G(ψ − ψG0)2, (6)

for (q,ψ) near (qG0,ψG0), and

V ≈ V0 − ω2
S(q − qS0)2 + ν2

S(ψ − ψS0)2, (7)

for (q,ψ) near (qS0,ψS0). Here ωG/S and νG/S are the potential
stiffness, and the potential depth V0 amounts to the energy
barrier height for H = J = 0. Note that ω2

G in Eq. (6) and
ω2

S in Eq. (7) appear with opposite signs due to the difference
between the local ground state and saddle point (Fig. 1). Note
also that we distinguish νG and νS in order to take account of
the ψ dependence of the disorder potential energy.

The driving forces H and J modify the local ground-state
and saddle-point configurations to, say, (qG,ψG) and (qS,ψS).
For small H and J , the modified configurations can be
determined from δE = 0 with the aid of Eqs. (6) and (7).
One obtains

qG = qG0 + MS
ω−2
G (H − βχJ ), (8)

ψG = ψG0 − MS
ν−2
G λχJ, (9)

qS = qS0 − MS
ω−2
S (H − βχJ ), (10)

ψS = ψS0 − MS
ν−2
S λχJ. (11)

The evaluation of the energy barrier EB = E(qS,ψS) −
E(qG,ψG) is now trivial. One finds

EB − V0 = −2δq0MS
(H − βχJ )

+ 2δψ0MS
(λχJ )

+M2
S
2ω−2

+ (H − βχJ )2

−M2
S
2ν−2

− (λχJ )2, (12)

where δq0 ≡ qS0 − qG0, δψ0 ≡ ψS0 − ψG0, ω−2
+ ≡ ω−2

S +
ω−2

G , and ν−2
− ≡ ν−2

S − ν−2
G . Equation (12) clearly shows the

effect of H and J on the energy barrier. Among the two
components of the STT produced by J , the nonadiabatic STT
(∝ βχJ ) in the first and third lines of Eq. (12) has exactly
the same effect as the magnetic field H while the second and
fourth lines of Eq. (12) indicate that the effect of the adiabatic
STT (∝ λχJ ) is qualitatively different from the field effect.

The depinning rate 1/τ from a potential well is then given
by

1

τ
= 1

τ0
exp

[
−EB(H,J )

kBT

]
, (13)

where 1/τ0 amounts to the attempt frequency and the H and
J dependences of EB are given in Eq. (12).

Recently Kim and Burrowes25 analyzed the effective energy
barrier for the purely current-driven DW creep motion in
1D dimension. Equation (38) in their work indicates that J

modifies the energy barrier EB through a linear term (∝ βJ ),
and a quadratic term (∝ β2J 2), both of which arise from
the nonadiabatic STT. Our result [first and third lines in
Eq. (12)] agrees with this result as far as these two terms
are concerned. However, our result predicts that there are
another linear term [∝ λχJ , the second line in Eq. (12)] and
quadratic term [∝ λ2χ2J 2, the fourth line in Eq. (12)], which
arise from the adiabatic STT. This difference between our

result and Ref. 25 stems from the nature of the disorders:
In Ref. 25, the calculation of EB assumed that the disorder
contribution to V (q,ψ) depends only on q and does not depend
on ψ , whereas we consider more realistic situations where the
disorder contribution depends not only on q but also on ψ .
This dependence on ψ appears in the second and last lines in
Eq. (12) through the factors δψ0 and ν−2

− .
DW depinning experiments41–45 are sometimes used as a

tool to determine the nonadiabaticity parameter β. When the
ψ dependence of the disorder potential energy is negligible
and thus δψ0 = ν−2

− = 0, one can verify from Eq. (12) that
EB depends on H and J through a single variable H − βχJ .
Thus by comparing the “efficiency” of H and J in the DW
depinning, one can determine β. In general, however, the
ψ dependence of the disorder potential energy may not be
negligible. In such situations and in the limit H,J → 0, the
H and J dependence of EB appears through a different
single variable H − βχJ − λχJδψ0/δq0; thus a careless
experimental evaluation may incorrectly identify

β ′ = β + λ
δψ0

δq0
(14)

as β. Thus the possible ψ dependence of the disorder
potential energy should be carefully examined for the correct
evaluation of β.

As discussed in Sec. II A, the ψ dependence of V may
be qualitatively different depending on details of disorders.
When ν−2

− �= 0 but δψ0 = 0, the second contribution in
Eq. (14) vanishes, simplifying the experimental evaluation of
β. When ν−2

− = 0 but δψ0 �= 0, on the other hand, the second
contribution in Eq. (14) may not be negligible. A possible
way to avoid the incorrect evaluation of β in this case is to
take an average of β ′ for multiple potential wells. Since the
sign of δψ0 is expected to fluctuate from potential wells to
potential wells, this averaging process may be able to remove
the second contribution of β ′ proportional to δψ0. By the way,
the sign fluctuations of δq0 can be suppressed in this averaging
process since the depinning to the right (δq0 > 0) and to the
left (δq0 < 0) are distinguishable in experiments.

Last we compare two contributions [third and fourth lines in
Eq. (12)], both of which generate the J -quadratic contributions
to EB . They have one important difference; the third line,
which arises from the nonadiabatic STT, always enhances EB

and thereby lowers the depinning rate while the fourth line,
which arises from the adiabatic STT, may either increase or
decrease EB since ν−2

− can be positive or negative depending
on the nature of disorders. Thus in the case that experiments
find the J -quadratic contribution enhances the depinning rate,
it implies that the adiabatic STT makes a larger contribution to
the J -quadratic dependence of EB than the nonadiabatic STT.

C. Effective magnetic field

The DW depinning for the purely field-driven case is
relatively well understood.8,17 Thus if one can “map” general
situations with both H and J to the purely field-driven case, it
may provide a useful way to describe experimental results in
general situations. The effective magnetic field is one way to
make this connection. We define the effective field H ∗(H,J )
of the DW depinning by the relation EB(H ∗,0) = EB(H,J ).
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H ∗(H,J ) can be experimentally extracted, for instance, from
contour plots22 of the DW depinning rate as a function of H

and J . From Eq. (12), one finds that H ∗ satisfies

H ∗2 − 2ω2
+δq0

MS

H ∗ = (H − βχJ )2 − 2ω2

+δq0

MS

(H − βχJ )

+ 2ω2
+δψ0

MS

(λχJ ) − ω2

+
ν2−

(λχJ )2. (15)

Solving Eq. (15) for H ∗ under the constraint H ∗(H = 0,J =
0) = 0 leads to

H ∗ = ω2
+δq0

MS

− ω2

+δq0

MS


{(
1 − δq0 − δq

δq0

)2

+ ν2
−[(δψ0)2 − (δψ)2]

ω2+(δq0)2

}1/2

, (16)

where δq = qS − qG, δψ = ψS − ψG. Here we have used the
relations MS
(H − βχJ ) = ω2

+(δq0 − δq) and MS
λχJ =
ν2

−(δψ0 − δψ) obtained from Eqs. (8)–(11). Since (δq0 −
δq)/δq0 
 1 and {ν2

−[(δψ0)2 − (δψ)2]}/[ω2
+(δq0)2] 
 1, one

can expand the curly braces in Eq. (16) to obtain

H ∗(H,J ) = H − β ′χJ + MS


2ν2−δq0
(λχJ )2

− MS


2ω2+δq0

δψ0

δq0
(λχJ )(H − β ′χJ ) + O(J 3).

(17)

In the case in which the ψ dependence of the disorder potential
energy is negligible, β ′ = β, ν−2

− = δψ0 = 0, and the effective
field H ∗ reduces to H − βχJ . Then the points in the (H,J )
plane with the same depinning rate will form straight lines
with the slope βχ .

However, in more general situations with the ψ dependence
of the disorder potential energy, deviations from this simple
result will occur. When ν−2

− �= 0 but δψ0 = 0, the contour
lines of the equi-depinning rate will not be straight but instead
form parabolas in the (H,J ) plane with the coefficient of the
J -quadratic term proportional to ν−2

− . Note that this quadratic
contribution to H ∗ is entirely due to the adiabatic STT, while
in the case of EB , both the adiabatic and nonadiabatic STTs
can generate the J -quadratic contributions [Eq. (12)]. In this
sense, H ∗ allows a clearer separation between the adiabatic and
nonadiabatic STT contributions. When ν−2

− = 0 but δψ0 �= 0,
the contour lines of the equi-depinning rate will form straight
lines with the modified slope, β ′χ . In this case, the value of β ′
will fluctuate from potential wells to potential wells.

The above analysis provides experimental procedures to
determine whether or not the ψ dependence of the disorder
potential energy is negligible in a given experiment: If the
contour lines of the equi-depinning rate are not straight lines,
ν−2

− is not zero. If the slope of the lines tangential to the contour
lines at the points (H,J = 0) fluctuates from potential wells
to potential wells, δψ0 is not zero.

D. Rashba spin-orbit coupling effects

The special theory of relativity requires the coupling
between the spin and orbital degrees of freedom.46 Thus the

(a) (b)

FIG. 2. (Color online) (a) An example with the broken inversion
symmetry. The ferromagnetic layer (FM) is sandwiched between
two different nonmagnetic layers (NM1 and NM2), so that the
inversion symmetry is broken along the ŷ direction. When the current
is injected along x̂ direction, the RSOC makes the magnetization
feel as if a magnetic field �HR is applied48 along the ẑ direction.
(b) Schematic plots of the magnetization configurations for the Bloch
wall (upper plot) and the Néel wall (lower plot) in nanowires with
perpendicular magnetic anisotropy. Solid arrows (colored in red)
represent local magnetic moments inside of a DW. For a Bloch
(Néel) wall, ψ represents the angle between the magnetization and
the positive ẑ (x̂) axis within the xz plane.

spin-orbit coupling (SOC) is ubiquitous. The strength of the
SOC, however, varies considerably from systems to systems.
It is well known47 that the SOC may be considerably enhanced
in systems with broken inversion symmetry. The SOC in this
case is called the Rashba SOC (RSOC). Magnetic systems are
not exceptional, and the RSOC develops in magnetic systems
with broken inversion symmetry, as exemplified in a recent
experiment.26

Since the RSOC affects conduction electron spins and they
in turn interact with the local magnetization through the s-
d exchange coupling, it also affects the local magnetization.
It was reported10 that a high DW velocity can be achieved
in magnetic films with broken inversion symmetry. In this
subsection, we discuss the RSOC effects on the DW depinning.

When the conduction electron spins are modified by the
RSOC, according to Ref. 48, the s-d exchange coupling
generates an additional magnetic field acting on the local
magnetization. Although this is not a real magnetic field, it
behaves just like a real magnetic field as far as its effect
on the local magnetization is concerned. When the inversion
symmetry is broken along the ŷ direction and the current is
injected in the x̂ direction [Fig. 2(a)], this magnetic field is48

�HRSOC = αRP

μBMS

J (x̂ × ŷ), (18)

where αR is the RSOC constant and μB is the Bohr
magneton.48 The direction of this field may or may not be
parallel to the real magnetic field applied to induce the DW
motion. When it is parallel, its effect is trivial since one
just needs to replace H by H + HRSOC in all the equations
presented above. When it is not parallel, it may induce the
current-induced tilting-angle jump at strong HRSOC, similar to
the chirality switching predicted for oblique magnetic field.49

For weak HRSOC, the tilting-angle jump is unlikely and a
separate analysis is required to understand its effect on the
depinning.

As a representative example of nonparallel situations, we
consider a nanowire with PMA41,43–45,50 along the ŷ direction.
Then the external magnetic field H (along the ŷ direction) for
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the DW motion and �HRSOC (along the ẑ direction) are mutually
orthogonal. In PMA nanowires, two types of DWs can exist
depending on the width w of the nanowire27 [Fig. 2(b)]: When
w is larger than a threshold value, a Bloch wall is energetically
preferred, and when w is smaller than the threshold value, a
Néel wall is preferred.

One of primary effects of �HRSOC is to modify the ψ

dependence of E(q,ψ) [Eq. (5)], since the energy of the system
is minimized when the magnetization direction at the center
of the DW is parallel to �HRSOC. Below we confine ourselves
to the analysis of this additional ψ dependence and ignore
other effects of �HRSOC. One example of the ignored effects
is the ψ dependence of the DW width λ. To be strict, λ

varies with ψ even when �HRSOC = 0,51 and nonzero �HRSOC

modifies the ψ dependence of λ. This effect is discussed in a
recent experiment.52 For �HRSOC = 0, it is commonly estimated
that the ψ dependence of λ does not affect the DW motion
significantly for small H 53 and/or J . We expect that, at least
for small �HRSOC, this effect is still not important. Below we
examine the small �HRSOC regime.

1. Bloch DW

For a Bloch DW, the magnetization at the center of the DW
points along the ẑ axis and we set ψ = 0 for this direction.
Then �HRSOC introduces an additional Zeeman energy ERSOC =
−2MS
λχJ α̃R cos ψ to the system. Here, the dimensionless
constant α̃R = (2πmλ/h̄2)αR measures the strength of the
RSOC. Then the total DW energy becomes

E(q,ψ) = V (q,ψ) − 2MS
q(H − βχJ )

+ 2MS
λχ (ψ − α̃R cos ψ)J. (19)

To calculate EB in the presence of α̃R , we need to calculate the
shifts of the saddle-point and ground-state configurations due
to H and J , as we did in Sec. II A. Since ERSOC is independent
of q, it affects only the shifts of ψS and ψG. From δE = 0,
ψ value of saddle (ground) point ψS(G) for finite α̃R should
satisfy

ψS(G) = ψS0(G0) − MS


ν2
S(G)

λχJ (1 + α̃R sin ψS(G)). (20)

Since ψS(G) − ψS0(G0) 
 1, sin ψS(G) = sin[ψS0(G0) + (ψS(G)

− ψS0(G0))] may be Taylor expanded. After some calculation,
one then finds that, up to O(α̃R), EB is given by

EB ≈ V0 − 2δq0MS
(H − βχJ )

+ 2[δψ0 − α̃R(cos ψS0 − cos ψG0)]MS
(λχJ )

+M2
S
2ω−2

+ (H − βχJ )2

− (MS
)2

[
1

ν2−
+ 2α̃R

(
sin ψS0

ν2
S

− sin ψG0

ν2
G

)

− (MS
λχJ )α̃R

(
cos ψS0

ν4
S

− cos ψG0

ν4
G

)]
(λχJ )2.

(21)

Note that the nonadiabatic STT contribution to EB is
not modified by the RSOC. The RSOC effect modifies the
adiabatic STT contribution to EB . As the adiabatic STT
contribution, the RSOC effect depends solely on the ψ

dependence of the disorder potential. When the ψ dependence
of the disorder potential energy is absent, ν−2

− = δψ0 = 0, one
finds

EB ≈ V0 − 2δq0MS
(H − βχJ ) + M2
S
2ω−2

+ (H − βχJ )2.

(22)

Note that the result does not depend on α̃R . When ν−2
− �= 0 but

δψ0 = 0 (also ψG0 = ψS0 = 0), one finds

EB ≈ V0 − 2δq0MS
(H − βχJ )

+M2
S
2ω−2

+ (H − βχJ )2

− (MS
)2ν−2
− (λχJ )2(1 − α̃RMS
ν−2

+ λχJ ), (23)

where ν−2
+ ≡ ν−2

S + ν−2
G . Note that the leading effect of the

RSOC is to introduce a correction term proportional to
α̃R(λχJ )3. On the other hand, when ν−2

− = 0 but δψ0 �= 0,
one finds

EB ≈ V0 − 2δq0MS
(H − βχJ )

+ 2[δψ0 − α̃R(cos ψS0 − cos ψG0)]MS
(λχJ )

+M2
S
2ω−2

+ (H − βχJ )2

− α̃R(MS
)2ν−2
G (λχJ )2[2 (sin ψS0 − sin ψG0)

−MS
ν−2
G λχJ (cos ψS0 − cos ψG0)]. (24)

Again the RSOC modifies the adiabatic STT effect. Note that
all terms containing α̃R are proportional to either sin ψG0 −
sin ψS0 or cos ψG0 − cos ψS0, both of which vanish upon
averaging over many potential wells.

2. Néel DW

For a Néel DW, the magnetization at the center of the
DW points along the x̂ axis and we set ψ = 0 for this
direction. Then the Zeeman energy ERSOC due to �HRSOC

becomes ERSOC = −2MS
λχJ α̃R sin ψ . Following the same
procedure as above, one obtains the energy barrier up toO(α̃R),

EB ≈ V0 − 2MS
δq(H − βχJ )

+ 2[δψ0 − α̃R(sin ψS0 − sin ψG0)]MS
(λχJ )

+M2
S
2ω−2

+ (H − βχJ )2

− (MS
)2

[
1

ν2−
− 2α̃R

(
cos ψS0

ν2
S

− cos ψG0

ν2
G

)

−(MS
λχJ )α̃R

(
sin ψS0

ν4
S

− sin ψG0

ν4
G

)]
(λχJ )2.

(25)

Similar to the Bloch DW, the RSOC effect on the Néel
DW appears through the adiabatic STT contribution to EB

and depends on the ψ dependence of the disorder potential
energy. When the ψ dependence of the disorder potential
energy is absent, ν−2 = δψ0 = 0, one finds that Eq. (25)
becomes equivalent to Eq. (22). Note again that the result
does not depend on α̃R . When ν−2 �= 0 but δψ0 = 0 (also
ψG0 = ψS0 = 0), one finds

EB ≈ V0 − 2MS
δq(H − βχJ )

+M2
S
2ω−2

+ (H − βχJ )2

− (MS
)2ν−2
− (1 − 2α̃R)(λχJ )2. (26)
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Note that the leading effect of the RSOC is to introduce a
correction term proportional to α̃R(λχJ )2. On the other hand,
when ν−2

− = 0 but δψ0 �= 0, one finds

EB ≈ V0 − 2MS
δq(H − βχJ )

+ 2[δψ0 − α̃R(sin ψS0 − sin ψG0)]MS
(λχJ )

+M2
S
2ω−2

+ (H − βχJ )2

+ α̃R(MS
)2ν−2
G (λχJ )2 [2(cos ψS0 − cos ψG0)

+MS
ν−2
G λχJ (sin ψS0 − sin ψG0)]. (27)

Again the RSOC modifies the adiabatic STT effect. Note that
all terms containing α̃R in Eq. (27) vanish upon averaging over
many potential wells.

III. DW CREEP IN 2D SYSTEMS

When the thickness or the width of a magnetic nanowire
is larger than the collective length Lcol, the system is not a
1D problem any more. Here we assume that the width is
sufficiently larger than Lcol and the thickness is sufficiently
smaller than Lcol, so that the system becomes a 2D problem.
In the 2D regime, the DW configuration can be described by
two functions, q(z) and ψ(z), where z denotes the coordinates
along the nanowire width direction. In this section, we examine
the DW creep in this 2D regime. We find that the ψ dependence
of the disorder potential energy again plays important roles,
similar to the 1D case. Previous studies23,24 of the DW
creep motion have ignored the ψ dependence of the disorder
potential energy.

A. Effective energy barrier

When the nanowire width w is larger than Lcol, an entire
DW line does not move simultaneously. Instead, a DW
motion consists of a segment-by-segment motion of DW
segments of finite lengths. In this situation, the thermally
activated DW motion involves DW segments of all possible
segment lengths, and the DW creep velocity is governed
by the bottleneck process with the largest energy barrier.8,17

Hence, the effective energy barrier E
creep
B (H,J ) for the DW

creep motion, which determines the DW velocity v(H,J ) ∝
exp[−E

creep
B (H,J )/kBT ], becomes the maximum value of

EB(L) with respect to L, where EB(L) represents the effective
energy barrier for a DW segment of length L.

Figure 3(a) depicts schematically the DW configuration in
the 2D system. According to Ref. 23, the effective energy
E[{q(z)},{ψ(z)}] of a given DW configuration [{q(z)},{ψ(z)}]
is given by

E =
∫

dz

λ

{
J̃

2h̄

[(
∂q

λ∂z

)2

+
(

∂ψ

∂z

)2
]

− K⊥
4h̄

cos 2ψ + Vdis

−MStf (H − βχJ )q + MStf ψλχJ

}
, (28)

where J̃ measures the DW elasticity and K⊥ denotes the
DW anisotropy.27 In Eq. (28), the first, second, and third
terms represent the DW elastic energy, the DW anisotropy

(a)

(b)

FIG. 3. (Color online) (a) Schematic plot of the coordinates
system. (b) Schematic illustration of a DW segment of length L,
which makes a thermally assisted transition from the original local
minimum configuration [{qm(z)},{ψm(z)}] to another local minimum
configuration [{qm,2(z)},{ψm,2(z)}] through the saddle configuration
[{qs(z)},{ψs(z)}]. The upper (lower) panel shows the change of {q(z)}
({ψ(z)}) during the transition. The areas of the gray regions in
the upper and lower panels correspond to uq (L)λL and uψ (L)λL,
respectively.

energy, and the disorder potential energy, respectively. The
last term in Eq. (28) denotes the effective energy due to
the adiabatic STT and the second-to-last term denotes the
combined effect of the Zeeman energy due to H and the
effective energy due to the nonadiabatic STT. One remark
is in order. As in the case of 1D DW depinning in Sec. II A,
the effective energy E in Eq. (28) is a multivalued function
since E[{q(z)},{ψ(z)}] �= E[{q(z)},{ψ(z) + 2π}] while two
configurations [{q(z)},{ψ(z)}] and [{q(z)},{ψ(z) + 2π}] are
physically identical. Nevertheless this multivaluedness prob-
lem does not cause any ambiguity in the determination of
EB(L) in Eq. (35) since ψ is strictly confined to values much
smaller than π/4 in our paper.

In general, Vdis will depend on both q and ψ , Vdis =
Vdis(q(z),ψ(z),z). Later we find that ψ dependence can
generate interesting contributions, just as it did in the 1D
systems. For definiteness of the illustration, we consider a
particular type of the ψ dependence of Vdis, arising from the
position-by-position fluctuation of K⊥. Then the fluctuating
part δK⊥ generates the contribution −(δK⊥/4h̄) cos 2ψ to
Vdis. This fluctuation can arise, for instance, from position-
by-position fluctuations of the saturation magnetization and
nanowire cross section. For simplicity of the analysis, we
ignore the fluctuating part δK⊥ for a while and consider it
in the later part of the analysis.

To evaluate E, it is useful to decompose it into two pieces
E[{q(z)},{ψ(z)}] = Eq[{q(z)}] + Eψ [{ψ(z)}], where

Eq =
∫

dz

λ

[
J̃

2h̄

(
∂q

λ∂z

)2

+ Vdis

−MStf (H − βχJ )q

]
, (29)
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Eψ =
∫

dz

λ

[
J̃

2h̄

(
∂ψ

∂z

)2

− K⊥
4h̄

cos 2ψ + MStf ψλχJ

]
.

(30)

As outlined above, to evaluate E
creep
B , we first need to

calculate the effective energy barrier EB (L) that a DW segment
of finite-length L experiences.17 Suppose a DW segment of
length L (0 < z < L) makes a thermally assisted transition
from one local minimum configuration [{qm(z)},{ψm(z)}] of
the effective energy E to another local minimum configuration
[{qm,2(z)},{ψm,2(z)}] through the saddle-point configuration
[{qs(z)},{ψs(z)}] [Fig. 3(b)]. These three configurations differ
in the range 0 < z < L but are essentially the same in the
ranges z < 0 and z > L since only the DW segment of length L

makes a thermally assisted transition. Then the energy barrier
becomes EB(L) = E[{qs(z)},{ψs(z)}] − E[{qm(z)},{ψm(z)}],
and it can be decomposed into two pieces, Eq[{qs(z)}] −
Eq[{qm(z)}] and Eψ [{ψs(z)}] − Eψ [{ψm(z)}].

1. q degree of freedom

First, we evaluate Eq[{qs(z)}] − Eq[{qm(z)}]. The last
term in Eq. (29) gives rise to the contribution
−MStf (H − βχJ )uq(L)L, where uq(L) = ∫ L

0
dz
λ

[qs(z) −
qm(z)]/L [Fig. 3(b)] measures the typical value of the
difference qs(z) − qm(z) in the region 0 < z < L. Since
qs(z) − qm(z) ≈ 0 for z < 0 and z > L, it is evident that
uq(L) is a growing function of L (Fig. 3). According to
the theory of interfaces in disordered media,54 where the
disorder and the elastic energy compete, uq(L) grows as a
power law uq(L) = uq0(L/LC)ζ , where uq0 is a characteristic
scaling constant, ζ is the wandering exponent, and LC is the
Larkin length.8,16,17 For DWs formed in metallic ferromagnetic
films, ζ = 2/3.8,11,16,17,55 To find the total contribution of all
three terms in Eq. (29) to Eq[{qs(z)}] − Eq[{qm(z)}], we note
that Eq[{q(z)}] has the same form as the DW free energy
for the purely field-driven DW motion. This problem has
been analyzed in Ref. 17, and we borrow the calculation
result of Ref. 17 to obtain the characteristic L dependence
of Eq[{qs(z)}] − Eq[{qm(z)}]:

Eq[{qs(z)}] − Eq[{qm(z)}]
∼= εel

{uq(L)}2

L
− MStf (H − βχJ )uq(L)L, (31)

where the DW energy density εel = J̃ /2h̄λ2. Here the first
term includes the combined contribution of the first two terms
in Eq. (29).

2. ψ degree of freedom

Next, we evaluate Eψ [{ψs(z)}] − Eψ [{ψm(z)}]. For a
purely field-driven DW motion, ψ degree of freedom does
not play any role for the DW creep motion if the system is in
the regime below the Walker breakdown (the same holds for
the DW depinning in 1D systems as well; see Sec. II). Then,
Eψ {ψs(z)}] − Eψ [{ψm(z)}] is essentially zero.8,11,16,17,55 Thus
the central task is to determine the effect of J on this difference.
An injection of J induces an excitation of ψ . Since the
DW anisotropy (−K⊥ cos 2ψ) favors ψ = 0, the growth of
ψ is strongly suppressed when K⊥ is large, which is the

conventional situation in metallic ferromagnetic systems (in
ferromagnetic semiconductors, K⊥ is usually much smaller
and this may not be the case). Then we can fairly assume that
|ψ | < π/4 during the DW motion. This assumption is valid
even when the spatial fluctuations of K⊥ exist, provided that
the magnitude of the K⊥ fluctuations is sufficiently smaller
than the spatial average of K⊥. Under this assumption, cos 2ψ

in Eq. (30) may be Taylor expanded to obtain

Eψ =
∫

dz

λ

[
J̃

2h̄

(
∂ψ

∂z

)2

+ K⊥(q,z)

2h̄
ψ2

+MStf ψλχJ

]
−

∫
dz

λ

K⊥(q,z)

4h̄
, (32)

where the position dependence of K⊥ is made manifest.
The last term of Eq. (32) can be absorbed to Vdis(q,z) in
Eq to define a new effective disorder potential V new

dis (q,z),
V new

dis (q,z) ≡ Vdis(q,z) − K⊥(q,z)/4h̄. As long as K⊥(q,z) has
the same statistical properties as Vdis(q,z), the L dependence
of Eq[{qs(z)}] − Eq[{qm(z)}] in Eq. (31) remains essentially
the same. Then we may forget about the last term of Eψ in Eq.
(32) and consider only the first three terms.

To obtain the L dependence of Eψ [{ψs(z)}] −
Eψ [{ψm(z)}], we first examine characteristics of the saddle and
minimum configurations. At these configurations, δEψ/δψ =
0. Thus ψs and ψm satisfy

− J̃

h̄

∂2ψ

∂z2
+ K⊥(q,z)

h̄
ψ + MStf λχJ = 0, (33)

where q in K⊥(q,z) denotes qm(z) and qs(z), respectively,
for ψ = ψm(z) and ψs(z). We analyze Eq. (33) under the
boundary condition, ψm(z) − ψs(z) ≈ 0 for z < 0 and z >

L. Equation (33) is solved first for J = 0. Note that Eq.
(33) has the same structure as the Schrödinger equation46

−(h̄2/2m)∂2�/∂z2 + [U (z) − E]� = 0 for a quantum me-
chanical particle of the mass m subject to the potential
energy U (z) with the total energy E. In this analogy,
K⊥(q(z),z)/h̄ corresponds to the difference U (z) − E. In
quantum mechanics, it is well known that when the total
energy E is smaller than the potential energy U (z), the solution
�(z) is a sum of two exponentially growing functions; one
growing as z becomes more positive and the other growing
as z becomes more negative. For both exponentially growing
functions, the rate of the exponential growth is roughly given
by

√
2m[U (z) − E]/h̄. This knowledge of the Schrödinger

equation is directly applicable to Eq. (33) since K⊥ stays
positive for all z. This analogy implies that a small change in
K⊥ within 0 < z < L causes an exponentially large change
in ψ at the boundaries z = 0 and L (a large-L limit is
important for the DW creep motion). Combined with the
boundary condition, and recalling that Eq. (33) is a linear
homogeneous equation, we then find that both ψs and ψm

should be essentially zero. All other solutions of Eq. (33)
cannot satisfy the boundary condition and moreover violate
the assumption |ψ | 
 π/4 due to their exponential growth.

Next, one considers nonzero J . Since Eq. (33) is then
a linear inhomogeneous differential equation, its general
solution is a sum of the general homogeneous solution
for J = 0 and a particular solution for J �= 0. Due to the
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exponential growth, the general homogeneous solution should
be set to zero again and we need to find one nonzero particular
solution, which is consistent with the boundary condition and
satisfies the assumption |ψ | 
 π/4. While the exact form of
the particular solution is difficult to obtain, it is evident from
the structure of the linear differential equation, Eq. (33), that
the particular solution ψ should be proportional to J . Thus,
ψs ∝ J and ψm ∝ J . As for the L dependence of ψs and
ψm, it is evident that they cannot grow as a power law of L

since they are strictly bounded below π/4. Thus we obtain
ψs ∝ L0J and ψm ∝ L0J . The proportionality factors of ψs

and ψm are different since K⊥(q,z) in Eq. (33) amounts to
K⊥[qs(z),z] and K⊥[qm(z),z], and they are generally different.
Then it is straightforward to verify that in the evaluation of
Eψ [{ψs(z)}] − Eψ [{ψm(z)}], each of the first three terms in
Eq. (32) generates the contribution proportional to LJ 2 for
ψ = ψs and ψ = ψm. Then the characteristic L dependence
of Eψ [{ψs(z)}] − Eψ [{ψm(z)}] may be expressed as

Eψ [{ψs(z)}] − Eψ [{ψm(z)}] ∼= MStf λχJuψ (L)L, (34)

where uψ (L) = ∫ L

0
dz
λ

[ψs(z) − ψm(z)]/L scales as L0 with
the proportionality constant scaling as J 1. Note that for
Eψ [{ψs(z)}] − Eψ [{ψm(z)}] to have a nonzero value, it is
crucial to take into account the q-dependent fluctuation of
K⊥. Without it, ψs = ψm and uψ (L) = 0 since both ψs and
ψm satisfy the exactly same equation [Eq. (33)]. In practice,
however, the spatial fluctuation of K⊥ generally exists and
gives nonvanishing Eψ [{ψs(z)}] − Eψ [{ψm(z)}].

One remark is in order. In Ref. 23, Eψ [{ψs(z)}] −
Eψ [{ψm(z)}] was evaluated to be proportional to JL, which
is different from our evaluation result, J 2L. This difference
stems from the fact that the thermally activated transition
process considered in Ref. 23 is qualitatively different from
the transition process considered in our paper: While |ψ | is
assumed to remain smaller than π/4 for the transition process
considered in our paper, it is assumed in Ref. 23 that ψ jumps
by ∼ π for each transition process. Such a transition with
the jump of ψ by ∼ π may be relevant for a DW motion in
ferromagnetic semiconductors, where the magnetic anisotropy
is much smaller.

B. Creep velocity

The DW velocity v(H,J ) in the creep regime is given by
v ∝ exp(−E

creep
B /kBT ), where E

creep
B for given H and J is the

maximum value of EB(L) with respect to L. By combining
Eqs. (31) and (34), we obtain the effective energy barrier
EB(L) for the DW segment of length L. Its L, J , and H

dependences can be summarized as

EB(L) = εel{uq(L)}2L−1 − MStf (H − βχJ )uq(L)L

+MStf λχJuψ (L)L, (35)

where uq(L) = uq0(L/LC)ζ and uψ (L) = uψ0L
0J . Substitut-

ing these relations into Eq. (35) leads to

EB(L) = εel

u2
q0

L
2ζ

C

L2ζ−1 − MStf (H − βχJ )
uq0

L
ζ

C

Lζ+1

+MStf λχJ 2uψ0L. (36)

For metallic ferromagnets8,11,16,17,55 with ζ = 2/3, Eq. (36)
becomes

EB(L) = AL1/3 − BL5/3 + CL, (37)

where A = εelu
2
q0L

−4/3
C , B = MStf (H − βχJ )uq0L

−2/3
C , and

C = MStf λχuψ0J
2. The maximum energy barrier E

creep
B is

then determined by E
creep
B = EB(Lcol), where the collective

length Lcol satisfies ∂EB/∂L|Lcol = 0. From Eq. (37), the
collective length11 Lcol is given by

Lcol =
(

−3C + √
9C2 + 20AB

2A

)−3/2

, (38)

and E
creep
B is written as

E
creep
B = 2

5
(2A)3/2 (−2C + √

9C2 + 20AB)

(−3C + √
9C2 + 20AB)3/2

. (39)

1. Effective magnetic field

The effective magnetic field H ∗(H,J ) for the DW creep
motion is defined by the relation v(H,J ) = v(H ∗,0) with the
constraint H ∗(H,0) = H . The effective magnetic field H ∗
provides a convenient way to express the result for v(H,J );
Recalling that the DW velocity for the purely field-driven DW
motion is given17 by v(H,0) = v0 exp(−κH−μ/kBT ), the DW
velocity for general H and J can be expressed as

v(H,J ) = v0 exp

{
−κ[H ∗(H,J )]−μ

kBT

}
, (40)

where κ is a constant independent of H and J . Thus the
evaluation of H ∗(H,J ) amounts to the evaluation of v(H,J ).
H ∗(H,J ) also determines contour lines of equal DW velocity
in the (H,J ) plane.

Since v(H,J ) is determined by E
creep
B (H,J ), H ∗(H,J ) can

be calculated from E
creep
B (H,J ) = E

creep
B (H ∗,0). We define

D = MStf uq0L
−2/3
C and ε = βχ . Then Eq. (39) can be

expressed as

E
creep
B = 2

5 (2A)3/2(20AD)−1/4[F (H,J )]−1/4, (41)

where

F (H,J ) = [−3ηJ 2/10 +
√

(3ηJ 2/10)2 + (H − εJ )]6

[−ηJ 2/5 +
√

(3ηJ 2/10)2 + (H − εJ )]4
,

(42)

and η = uψ0λLCχ (5MStf /εelu
3
q0)1/2. It can be easily verified

that F (H,J = 0) = H . Since the constants A and D are
independent of H and J , F (H,J ) itself is the effective field,
H ∗ = F (H,J ). One also finds that κ in Eq. (40) is given
by κ = (2/5)(2A)3/2(20AD)−1/4. In the limit H,J → 0, we
expand F (H,J ) to obtain

H ∗(H,J )=H −εJ −ηJ 2
√

H − εJ + 2
5 (ηJ 2)2+O(J 6).

(43)

Again, as the DW depinning in 1D systems (Sec. II C), the
nonadiabatic STT (εJ ) acts in the exactly same way as the
magnetic field (H ). The adiabatic STT contribution (ηJ 2),
however, introduces the nonlinearity to H ∗ and thus plays
a qualitatively different role from the magnetic field for the
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creep motion. If an experiment is performed for sufficiently
small H and J , so that the nonlinear contributions in Eq. (43)
are negligible, the creep motion will follow a simple scaling
behavior, v(H,J ) = v0 exp[−κ(H − εJ )−μ/kBT ] with μ =
1/4. However, if H and J are not sufficiently small, the
nonlinear contributions in Eq. (43) introduce deviations from
the simple scaling behavior and should be taken into account
in an experimental analysis.

C. Rashba spin-orbit coupling effects

The RSOC is generated when the inversion symmetry is
broken.47 When a current flows in a nanowire with broken
inversion symmetry, the magnetization feels as if there is
an additional magnetic field �HRSOC, whose magnitude is
proportional to J .48 We consider the case where the inversion
symmetry along the ŷ axis is broken and the current flows
along the x̂ direction (parallel to the DW motion direction).
Then �HRSOC is along the ẑ direction. When the RSOC is strong,
it may modify the nature of the DW motion qualitatively. But
when the RSOC is weak, its effect may be accounted for
perturbatively. Below we assume the RSOC to be weak. Then
its effect can be calculated in a way similar to the 1D case
discussed in Sec. II D. Again the RSOC effect varies depending
on the magnetic anisotropy and the DW structure. We confine
ourselves to nanowires with the PMA and consider two types
of DW structure: Bloch DW and Néel DW.

1. Bloch DW

The magnetization direction at the center of the Bloch DW
points along the ẑ direction. In the convention where ψ = 0
for the Bloch DW, an additional Zeeman energy ERSOC due to
the RSOC effect becomes

ERSOC = −2
∫

dz

λ
Mstf λχJ α̃R cos ψ, (44)

where the dimensionless RSOC coefficient α̃R =
(2πmλ/h̄2)αR . Depending on the sign of α̃R , the RSOC may
enhance or suppress possible deviations from ψ = 0.

Since ERSOC depends only on ψ , it may be included in Eψ .
Then Eq. (30) is modified to

Eψ =
∫

dz

λ

[
J̃

2h̄

(
∂ψ

∂z

)2

− K⊥
4h̄

cos 2ψ

+MStf λχJ (ψ − 2α̃R cos ψ)

]
. (45)

For |ψ | 
 π/4, it reduces to

Eψ =
∫

dz

λ

[
J̃

2h̄

(
∂ψ

∂z

)2

+ K⊥(q,z)

2h̄
ψ2

+MStf λχJ (ψ + α̃Rψ2)

]
(46)

+
∫

dz

λ

[
−K⊥(q,z)

4h̄
− 2MStf λχJ α̃R

]
.

The second integral of Eq. (46) can be absorbed to Vdis in Eq

in Eq. (29), and we may concentrate on the first integral of Eq.

(46). Note that the contribution from the RSOC (∝ J α̃Rψ2)
has the same structure as the DW anisotropy contribution
(∝ K⊥ψ2). Thus the main effect of the RSOC is to renormalize
K⊥ to ξK⊥, where ξ = 1 + 2h̄MStf λχJ α̃R/K⊥. Since ξ −
1 ∝ α̃RJ , it is safe to assume ξ − 1 
 1 in the creep regime
where J is small.

For α̃R = 0, it has been demonstrated [Eq. (34)]
that Eψ [{ψs(z)}] − Eψ [{ψm(z)}] ∼= MStf λχJuψ (L)L, where
uψ = uψ0J . For nonzero α̃R , the RSOC effect will appear
through the renormalization of uψ0. It is reasonable to expect
that the renormalized uψ0 depends on ξ − 1 in a nonsingular
way. Then we may Taylor expand uψ0 with ξ − 1 as a small
variable and express the renormalized uψ0 as uψ0[1 + γRJ +
O(J 2)]. Although the exact evaluation of γR is difficult, it is
evident that it should be proportional to α̃R .

In the presence of the RSOC, the energy barrier EB(L) in
Eq. (36) is modified to

EB(L) = εel

u2
q0

L
2ζ

C

L2ζ−1 − MStf (H − βχJ )
uq0

L
ζ

C

Lζ+1

+MStf λχJ 2uψ0(1 + γRJ )L. (47)

Since Eq. (47) has the same structure as Eq. (36) except that the
last term of Eq. (47) is multiplied by the extra factor (1 + γRJ ),
the energy barrier E

creep
B for the creep motion can be obtained

straightforwardly from Eq. (41). For metallic ferromagnets
with ζ = 2/3, the effective field for the Bloch DW in the
presence of the RSOC is given by the equation identical to
Eq. (41) except η is now replaced by η(1 + γRJ ). The leading
correction due to the RSOC(∝ γR) appears in terms of cubic
and higher orders of J , and thus we conclude that the RSOC
does not modify the DW creep motion qualitatively in the
small-J regime.

2. Néel DW

The magnetization direction at the center of the Néel
DW points along the nanowire direction (x̂ direction). In
the convention where ψ = 0 for this direction, an additional
Zeeman energy ERSOC due to the RSOC effect becomes

ERSOC = −2
∫

dz

λ
Mstf λχJ α̃R sin ψ. (48)

Note that this equation differs from Eq. (44) (sin ψ vs. cos ψ)
since ψ = 0 represents the different directions (ẑ vs. x̂) in two
cases. For |ψ | 
 π/4, Eψ in Eq. (30) is modified to

Ṽψ (ψ) ≈
∫

dz

λ

[
J̃

2h̄

(
∂ψ

∂z

)2

+ K⊥(q,z)

2h̄
ψ2 (49)

+MStf λχJ (1 − 2α̃R)ψ

]

−
∫

dz

λ

K⊥(q,z)

4h̄
.

Note that α̃R appears only in the second line, which accounts
for the adiabatic STT effect. It is then evident that the RSOC
renormalizes the adiabatic STT effect by the renormalization
factor (1 − 2α̃R).

With this knowledge, the energy barrier E
creep
B can be

obtained in a straightforward way. For metallic ferromagnets
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with ζ = 2/3, the effective field for the Néel DW is given
by the equation identical to Eq. (41) except replacing η by
η(1 − 2α̃R). Note that the correction by nonzero α̃R again
appears in rather high-order terms in J . Thus we conclude that
the RSOC does not modify the creep motion of the Néel DW
qualitatively.

IV. CONCLUSION

Magnetic DW motion in a nanowire was examined in
the weak-driving-force regime with particular attention paid
to metallic ferromagnets, where the DW anisotropy is very
large. Effects of the magnetic field, the adiabatic STT, and the
nonadiabatic STT on the DW motion were examined under the
assumption that the amplitude of the tilting-angle dynamics is
much smaller than 2π . To be more specific, we examined two
phenomena, the DW depinning from a single potential well in
1D systems and the DW creep motion through a disordered
potential profile in 2D systems.

The analysis on the 1D depinning becomes relevant when
both the width and the thickness of a nanowire are smaller
than the collective length Lcol. The nonadiabatic STT has
the same effect as the magnetic field, and together, they
generate the leading-order contribution to the depinning rate.
We found that the way that the adiabatic STT affects the DW
depinning depends on the nature of the disorders. In particular,
it was demonstrated that, in certain types of disorders, the
conventional ways to determine the nonadiabaticity parameter
β result in incorrect values. Possible ways to avoid the incorrect
evaluation have been proposed.

The analysis on the 2D creep motion becomes relevant
when the width of a nanowire is larger than Lcol while the
thickness remains smaller than Lcol. A thermally assisted DW
velocity is determined by the energy barrier E

creep
B between

two spatially adjacent local minimum configurations in the

DW energy profile. The contribution of the nonadiabatic STT
(∝ βJ ) to E

creep
B is the same as that of the magnetic field. The

role of the adiabatic STT, however, is qualitatively different
from those of the nonadiabatic STT and the magnetic field.
Efficiencies of driving forces (magnetic field and current) are
described in terms of the total effective magnetic field. Both
the magnetic field and the nonadiabatic STT generate linear
contributions to the total effective magnetic field, implying that
the purely field-driven and purely current-driven DW creep
motions belong to the same universality class. The adiabatic
STT, on the other hand, generates J -quadratic or higher-order
contributions to the total effective magnetic field, and thus its
contributions constitute the next-leading-order contributions.
Although these contributions are irrelevant in the vanishing
driving force limit, their effects may need to be taken into
account in practical scaling analysis since experiments are
always carried out at a small but finite driving force strength.

Effects of the RSOC on the DW depinning in 1D systems
and on the DW creep in 2D systems are also discussed. For a
Bloch wall in a nanowire with PMA, the RSOC effect appears
in terms of cubic and higher orders of J in the effective
energy barrier. For a Néel wall in a nanowire with PMA, the
RSOC affects the effective energy barrier in a way similar to
the adiabatic STT. Thus its contribution to the energy barrier
appears in quadratic and higher orders of J .
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