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Edge effects in graphene nanostructures: From multiple reflection expansion to density of states
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We study the influence of different edge types on the electronic density of states of graphene nanostructures.
To this end we develop an exact expansion for the single-particle Green’s function of ballistic graphene structures
in terms of multiple reflections from the system boundary, which allows for a natural treatment of edge effects.
We first apply this formalism to calculate the average density of states of graphene billiards. While the leading
term in the corresponding Weyl expansion is proportional to the billiard area, we find that the contribution
that usually scales with the total length of the system boundary differs significantly from what one finds in
semiconductor-based, Schrödinger-type billiards: The latter term vanishes for armchair and infinite-mass edges
and is proportional to the zigzag edge length, highlighting the prominent role of zigzag edges in graphene. We then
compute analytical expressions for the density of states oscillations and energy levels within a trajectory-based
semiclassical approach. We derive a Dirac version of Gutzwiller’s trace formula for classically chaotic graphene
billiards and further obtain semiclassical trace formulas for the density of states oscillations in regular graphene
cavities. We find that edge-dependent interference of pseudospins in graphene crucially affects the quantum
spectrum.
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I. INTRODUCTION

A. Graphene-based nanostructures

Triggered by the experimental discovery of massless Dirac
quasiparticles,1,2 graphene has become one of the most
intensively studied materials of the last decade (for reviews
on physical properties, see Refs. 3–7).

Subsequently, graphene-based nanostructures have been
the focus of immense experimental activity, including
graphene nanoribbons,8–11 quantum dots,12–14 Aharonov-
Bohm rings,15,16 and antidot arrays,17,18 raising the issue
of confining massless Dirac electrons. On the theoretical
side, several studies have also focused on graphene nanos-
tructures: Graphene nanoribbons have been studied first
using a lattice model.19,20 The wave functions and energy
spectra of graphene nanoribbons have been derived by Brey
and Fertig21 for armchair- and zigzag-type edges and by
Tworzydło and coworkers22 for the case of infinite-mass
edges. The spectral and transport properties of Dirac electrons
confined in graphene quantum dots have been investigated
analytically23–25 and by numerical means.26–29 Also, the
energy spectrum and conductance of Aharonov-Bohm rings
have been the focus of several publications,30–32 as well as
superlattice effects in graphene antidot lattices33,34 and the
density of states of nanoribbon-superconductor junctions.35

One upshot of these studies is the understanding that
the confinement of charge carriers in graphene affects the
coherent electron and hole dynamics considerably. In con-
ventional two-dimensional electron systems (2DES), such as
low-dimensional semiconductor structures, the charge carriers
can be confined, e.g., by the application of top or side gate
voltages, and the quasiparticle transport does not depend on the
minute details of the resulting effective potential. In contrast,
in graphene, electrostatic potentials do not necessarily confine
charge carriers as the Dirac spectrum does not have a gap.5

Thus the confined electrons or holes in graphene nanostruc-
tures or flakes are expected to scatter from the very ends of
the terminated graphene lattice, and the internal degrees of
freedom (such as spin or pseudospin) of the quasiparticles
before and after the scattering are considerably affected by
the atomic-level details of the edges. This mixing of internal
(pseudo)spin with orbital degrees of freedom of charge carriers
at the boundary leads to richer boundary conditions than for
the conventional 2DES.36–38 These boundary conditions in
turn affect the spectral and transport properties. However,
experimental control and manipulation of edges at an atomistic
level is far from being achieved. Thus a full theoretical de-
scription is desirable. However, the edge disorder differs from
usual (weak) bulk disorder in that weak-coupling perturbation
theories cannot treat edges. Therefore this paper is dedicated
to developing a formalism that includes the effects of edges
nonperturbatively and to subsequently applying this formalism
to study edge effects on the spectral density of states of
graphene nanostructures.

B. Scope of this work

Cutting a finite piece of graphene out of the bulk will
generally lead to disordered boundaries with local properties
depending on the respective orientation of an edge segment
with respect to the crystallographic axes. The accurate calcu-
lation of the eigenenergies of these finite-graphene systems
usually requires numerical quantum-mechanical approaches.
However, it appears difficult to systematically resolve edge
phenomena from other quantum effects or to unravel generic
features of graphene nanostructures using numerical simula-
tions. Here we follow a complementary strategy: We adapt
the multiple reflection expansion,39,40 i.e., a representation of
the Green’s function in terms of the number of reflections
from the system boundaries, to the case of graphene. We
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thus incorporate edge effects (due to armchair, zigzag, and
infinite-mass types and combinations of such edge segments)
in a direct and transparent way. We next derive a semiclassical
approximation for the Green’s function, assuming the Fermi
wavelength is much smaller than the typical system size L, i.e.,
L � 1/kE . On the other hand, the Dirac equation that we use
is valid for Fermi wavelengths that are large compared to the
lattice constant a ≈ 2.46 Å, i.e., if 1/kE � a. For mesoscopic
systems with L � a, the semiclassical approximation can thus
be well fulfilled in the linear dispersion regime, in which
quasiparticle dynamics is governed by the effective Dirac
equation. The resulting Green’s function then can be used to
calculate the density of states (DOS) or the conductance and
their correlators.

In this work we consider the density of states. We focus on
gross structures and spectral densities arising from moderate
smearing of the level density and on the calculation of
DOS oscillations and individual levels separately. To this
end we decompose the DOS into an average part and
the remaining oscillatory contribution. The average spectral
density, approximated by the so-called Weyl expansion39,41,42

valid in the semiclassical limit, is a fundamental quantity
of a cavity. It incorporates various geometrical and quantum
features, including edge effects. For Schrödinger billiards with
spin-orbit interaction, the smooth part of the energy spectrum
has been studied in Ref. 43. The oscillatory part of the DOS is
computed by invoking a semiclassical approximation, leading
to so-called semiclassical trace formulas, i.e., sums over
coherent amplitudes associated with classical periodic orbits.
For graphene cavities with shapes giving rise to regular or
chaotic classical dynamics we derive trace formulas analogous
to those known (Berry-Tabor44 and Gutzwiller42 formulas,
respectively) for the corresponding Schrödinger billiards, i.e.,
billiard systems based on the Schrödinger equation with
Dirichlet boundary conditions. For two representative regular
shapes, we compute the DOS oscillations and the semiclassical
energy levels explicitly. The effects of both the underlying
effective Dirac equation (for graphene close to the Dirac point)
and reflections at different kinds of edges are incorporated
by a pseudospin propagator associated with each orbit,
multiplying the usual semiclassical amplitude. Semiclassical
trace formulas involving the electron spin dynamics have been
earlier considered for the massive Dirac equation by Bolte and
Keppeler45 and for bulk graphene by Carmier and Ullmo.46

Related trace formulas appear also in trajectory-based treat-
ments of electronic systems with spin-orbit interaction.47–50

We note that semiclassical methods have also been used to
study graphene in magnetic fields.51–53

Following the concepts outlined above we address edge
effects on the electronic spectra of closed graphene cavities
and quantum transport through open graphene systems in
two consecutive papers. In the present paper we first derive
the single-particle Green’s function and its semiclassical
approximation for graphene cavities and calculate the density
of states. In a future presentation54 we will consider quantities
based on products of single-particle Green’s functions. They
include the transport quantities, such as the conductance,
as well as the spectral two-point correlator and its dual the
spectral form factor as a tool to study spectral statistics. The
semiclassical treatment of observables based on products of

Green’s functions requires additional techniques, which builds
the conceptual basis of the second paper.54

The present paper is organized as follows: After introduc-
ing below the effective Hamiltonian and (matrix) boundary
conditions for the different edge types, we derive in Sec. II the
multiple reflection expansion (MRE) for the Green’s function
of a ballistic graphene structure. With this expansion as a
starting point we then compute in Sec. III the first two
terms in the Weyl expansion for the smooth part of the DOS
of graphene billiards, particularly focusing on contributions
from the boundary. We compare our analytical theory with
numerical quantum simulations for various graphene billiards
with different edge structures. In Sec. IV we turn to the
oscillatory part of the DOS. To this end we first obtain
a general semiclassical approximation to the MRE for the
graphene Green’s function in terms of sums over classical
trajectories in Sec. IV A. Subsequently, we focus on the
DOS oscillations in graphene billiards with regular classical
dynamics in Sec. IV B. We give semiclassical trace formulas
for two exemplary geometries, namely, disks and rectangles,
and discuss the effects of the graphene edges. Finally, we
extend Gutzwiller’s trace formula for the oscillatory part of the
DOS to graphene cavities with chaotic classical dynamics in
Sec. IV C. We conclude in Sec. V and gather further technical
material in the Appendixes.

C. Hamiltonian and boundary conditions

Neglecting the conventional spin degree of freedom, the ef-
fective Hamiltonian that describes electron and hole dynamics
in graphene close to half filling is55

H̃ = vF τz ⊗ σxpx + vF τ0 ⊗ σypy, (1)

where vF is graphene’s Fermi velocity. Here {σi} denote Pauli
matrices in sublattice pseudospin space, and Pauli matrices
in valley-spin space are represented by {τi}, while σ0 and τ0

are unit matrices acting on the corresponding spin space. In
the following, we usually omit the latter. The Hamiltonian
(1) acts on spinors [ψA,ψB,ψ ′

A,ψ ′
B], where A and B stand

for the sublattice index and the primed and unprimed entries
correspond to the two valleys. We find it convenient to
transform Eq. (1) to the valley isotropic form37 using the
unitary transformation

U = 1

2
(τ0 + τz) ⊗ σ0 + i

2
(τ0 − τz) σy. (2)

The transformed Hamiltonian is

H = U†H̃U = vF τ0 ⊗ σ ·p (3)

and acts on spinors [ψA,ψB, − ψ ′
B,ψA].

We consider a graphene flake in which electron and hole
dynamics is confined to an area V . The boundary condition
on the spinors at a point α on the boundary ∂V is expressed
as Pαψ |α = 0, where Pα is a 4 × 4 projection matrix.36,37

Throughout this paper we reserve bold Greek letters for
boundary points and bold Roman letters for points in the bulk
of the flake. For the most common boundaries, i.e., zigzag (zz),
armchair (ac), and infinite mass (im), the boundary matrices
are given by38

Pα = 1
2 (1 − ν ·τ ⊗ η·σ ) , (4)
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TABLE I. The vectors ν and η for zigzag (zz), armchair (ac), and
infinite-mass (im) boundaries.

zz ac im

ν ẑ − sin(2Kxα)x̂ ẑ
+ cos(2Kxα) ŷ

η ± ẑ ± t̂α ± t̂α

where the vectors ν and η are summarized in Table I. K =
4π/3a is the distance of the Dirac points from the � point
of the reciprocal space, xα = α · x̂, and t̂α is the direction
of the tangent to ∂V at α. For zigzag edges the sign in η is
determined by the sublattice of which the zigzag edge consists.
For an A edge the upper sign is valid, and for a B edge the
lower sign is valid. That means the orientation of the edge
effectively determines η. For armchair edges, the upper sign
is valid when the order of the atoms within each dimer is A-B
along the direction of t̂α , and the lower sign is valid for B-A
ordering. For infinite-mass edges, the sign depends only on the
sign of the infinite mass. The upper sign is valid for the mass
going to +∞ outside of V , and the lower is valid for the mass
going to −∞.

We note that for a model that includes next-nearest-
neighbor (NNN) hopping, the boundary conditions need to
be modified to include differential operations on the spinor.
Nevertheless, as we shall show in Appendix B, it is possible
to modify our formalism to account for NNN hopping
approximately by keeping only nearest-neighbor hoppings
but modifying the boundary conditions introducing an edge
potential.

D. Single-particle density of states

The single-particle DOS for a closed system is defined as56

ρ(kE) =
∑

n

δ (kE − kn) . (5)

Here n labels the eigenenergies En = h̄vF kn, and we define
E = h̄vF kE . In our derivation below we use the relation
between the DOS and the retarded Green’s function of a
system,

ρ(kE) = − 1

π
Im
∫
V
dxTr [G(x,x)] , (6)

where the Green’s function G fulfills

(E + iη − H )G(x,x′) = h̄vF δ(x − x′), (7)

with the Hamiltonian H acting on the first argument of G.
For a mesoscopic graphene flake the mean level spacing �k,
which is given by the inverse area of the system, is typically
of the order 10−4 1/a or smaller. This means that ρ is, in
principle, a rapidly oscillating function of kE . However, one
can decompose ρ into a smooth part ρ̄ and an oscillating part
ρosc in a well-defined way:42,57

ρ = ρ̄ + ρosc. (8)

In this work, we address both contributions to ρ and focus on
the particularities that arise due to the spinor character and the
linear dispersion of quasiparticles in graphene. The smooth

part ρ̄ represents the density of states in the limit of strong
level broadening. Technically, level broadening is achieved by
adding a finite imaginary part to the Fermi energy or, in other
words, considering a real self-energy. This corresponds to an
exponential damping of the Green’s function, and therefore
only trajectories of short length, in the limiting case of “zero
length,” contribute. In Sec. III we treat ρ̄ in detail. On the other
hand, ρosc is connected to (periodic) orbits of finite length, and
in Sec. IV we use a semiclassical approach to describe this
part of the density of states.

In the following, we derive an exact expression for the
Green’s function entering Eq. (6) and later also its asymptotic
form in the semiclassical limit, which is valid for large system
sizes.

II. THE MULTIPLE REFLECTION EXPANSION
FOR GRAPHENE

In this section, we derive a formula for the exact Green’s
function of a graphene cavity. The Green’s function can
then be used to obtain, e.g., the spectral density of states
or the conductance. In addition to Eq. (7), G also obeys the
boundary conditions PαG(α,x′) = 0 for any given point α on
the boundary.

We now parametrize the full Green’s function as a sum of
the free retarded Green’s function G0 of extended graphene
and a boundary correction that is produced by a yet unknown
Dirac-charge layer μ:

G(x,x′) = G0(x,x′) −
∫

∂V
dσβG0(x,β)iσnβ

μ(β,x′). (9)

Here σv ≡ σ ·v for an arbitrary vector v, and nβ stands for the
normal unit vector at the boundary point β pointing into the
interior of the system. The free Green’s function is obtained
by solving Eq. (7) with boundary conditions G0(x,x′) → 0 as
|x − x′| → ∞. It is given by

G0(x,x′) = h̄vF 〈x|(E − H )−1|x′〉
= − i

4
(kE − i∇x ·σ )H+

0 (kE|x − x′|), (10)

where H+
0 denotes the zeroth-order Hankel function of the

first kind. The free Dirac Green’s function can be expressed in
terms of the free Schrödinger Green’s function g0 as

G0(x,x′) = (kE − i∇x ·σ )g0(x,x′). (11)

The Schrödinger Green’s function g0 is a solution to(
k2
E + iη − p̂2/h̄2)g0(x,x′) = δ(x − x′). (12)

The parametrization in Eq. (9) is singular in the limit x →
α:39,40

lim
x→α

G(x,x′) = G0(α,x′) − 1

2
μ(α,x′)

−
∫

∂V
dσβG0(α,β)iσnβ

μ(β,x′). (13)

The source of this singular behavior is the logarithmic diver-
gence of H+

0 (ξ ) as ξ → 0. For a detailed derivation of Eq. (13)

075468-3



WURM, RICHTER, AND ADAGIDELI PHYSICAL REVIEW B 84, 075468 (2011)

see Appendix A. Multiplying (13) with Pα and invoking the
boundary conditions, we obtain an inhomogeneous integral
equation for the charge layer μ. As a first step we assume that
Pαμ = μ, so that we get

μ(α,x′) = 2PαG0(α,x′)

−2
∫

∂V
dσβPαG0(α,β)iσnβ

μ(β,x′). (14)

Since P 2
α = Pα , the unique solution of Eq. (14), obtained by

iteration, automatically fulfills Pαμ = μ and thus is already
a solution of the original integral equation for μ. Substituting
this solution into Eq. (9), we obtain the following expansion
for the exact Green’s function of a graphene flake with generic
edges:

G(x,x′) = G0(x,x′) +
∞∑

N=1

GN (x,x′), (15)

where

GN (x,x′) = (−2)N
∫

∂V
dσαN

· · · dσα2dσα1G0(x,αN )iσnαN

×PαN
· · · G0(α2,α1)iσnα1

Pα1G0(α1,x′). (16)

Each term in this expansion can be viewed as a sequence of free
propagations connected at reflections at the boundary (see Fig.
1. We thus obtain the multiple reflection expansion. In Eq. (16)
every reflection is represented by a boundary-dependent
projection Pα and by σnα

, a reflection of the pseudospin across
the normal axis given by nα . The integrals along the boundary
can be interpreted as a “summation” over all quantum paths
leading from x′ to x. In Fig. 1, we show schematically a typical
term in the MRE using the example of a quantum path that
includes three reflections at the boundary. To summarize at this
stage, with Eqs. (15) and (16) we obtained a formalism that
naturally relates the edge effects to any quantity that involves
single-particle Green’s functions.

x

x

FIG. 1. Schematic representation of a quantum path contributing
to the Green’s function G(x,x ′). The black lines with arrows represent
free propagations described by G0, while each black disk represents
a vertex of the form iσnα Pα .

III. THE SMOOTHED DENSITY OF STATES OF
GRAPHENE BILLIARDS

A. Weyl expansion

In the following we are going to derive the leading-order
contributions to the smoothed density of states ρ̄. In usual
Schrödinger billiards of linear system size L, as they are
realized, e.g., in 2DES in GaAs heterostructures, ρ̄ can
be expanded in powers of kEL with leading order (kEL)1,
a constant term (kEL)0, and higher-order terms (kEL)−1,
(kEL)−2, and so forth as

ρ̄ = ρ̄0 + ρ̄1 + ρ̄2 + ρ̄3 + · · · . (17)

In the large kEL limit, ρ̄ is dominated by the first term, which
does not depend on the shape of the system but only on its
total area. This theorem goes back to Hermann Weyl,41 and
therefore the series is known as the Weyl expansion for the
density of states. Each of the terms in Eq. (17) can be obtained
from the MRE (16): ρ̄0 originates from the zero-reflection
term (simply G0) and therefore scales with the total area A

of the system. The term ρ̄1 is due to boundary contributions,
obtained within the so-called plane approximation (cf. Fig. 2),
leading to a scaling with the length of the boundary. The
term ρ̄2 stems from curvature and corner corrections to the
plane approximation and so forth. In this work we focus on
leading contributions ρ̄0 and ρ̄1. The smooth contributions are
of qualitatively different origin than the oscillating part of the
DOS, treated in Sec. IV. While the latter correspond to orbits
for which the phases occurring in Eq. (6) are stationary, the
smooth DOS is due to trajectories approaching “zero length”
for which the amplitudes diverge. We find that the linear term
in the Weyl expansion for graphene ρ̄0 is similar to the usual
2DES case, but the term ρ̄1 behaves strikingly different.

B. Bulk term

We begin with the zero-reflection term G0(x,x) in
graphene. From Eq. (10) we can directly read off

Tr[G0(x,x′)] = −ikEH+
0 (kE|x − x′|). (18)

FIG. 2. For the calculation of the one-reflection term in the
expansion for ρ̄, we work in the plane approximation: For a given
point α on the boundary ∂V , we approximate the boundary locally by
the tangent at α and introduce a local coordinate system with x and
y along the tangential and normal directions, respectively.
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Although G0 diverges as x′ → x, its imaginary part is finite.58

We get

ImTr [G0(x,x)] = −|kE|. (19)

Since there is no x dependence left, the spatial integral in
Eq. (6) gives just A = |V|, the area of the billiard, and we have

ρ̄0(kE) = A

π
|kE|. (20)

As for Schrödinger billiards, the bulk term (20) is proportional
to the total area of the system. The energy dependence of ρ̄0

is, however, different since kE scales linearly with energy in
graphene but has a square-root dependence in the Schrödinger
case.

C. Boundary term

1. Plane approximation

As we show below, the boundary term ρ̄1 depends on kE

as well as on the boundary length of the system, in a manner
distinctly different from that of Schrödinger billiards. In order
to evaluate ρ̄1, we assume that the energy has a finite imaginary
part ξ . This smooths the DOS and makes G0 an exponentially
decaying function of the distance between x and x′. We start
from Eq. (9), omit the free propagation term that led to ρ̄0, and
obtain for the remaining contribution to the smooth DOS

δρ̄ = 1

π
Im
∑

i

∫
∂Vi

dσα

∫
V
dxTr

[
G0(x,α)iσnα

μi(α,x)
]
. (21)

Here we replaced the boundary integration by a sum of
integrations over boundary pieces ∂Vi , where the boundary
condition is constant for each i. Further μi(α,x) is defined via
Eq. (14) with α ∈ ∂Vi . Since G0 is short ranged, the dominant
contribution to the boundary integral in Eq. (21) comes from
configurations where x is near the boundary point α, and the
integral in Eq. (14) is dominated by contributions where β is
near α. Thus we approximate the surface near α by a plane
(cf. Fig. 2). The corrections to this approximation are of order
1/kER, with the local radius of curvature R ∼ L, thus of
higher order in the Weyl expansion.39 We now take advantage
of the homogeneity of the approximate surface at α and use
Fourier transformation along the direction of the tangent to the
∂Vi at α, to get for δρ̄ ≈ ρ̄1

ρ̄1 = 1

π
Im
∑

i

|∂Vi |
∫ ∞

0
dyi

∫ ∞

−∞

dk

2π
Tr [δGi(k,yi)] , (22)

with

δGi(k,yi) = G0(k,yi)iσnα
μi(k,yi). (23)

Here yi is the ordinate of the local coordinate system at α (see
Fig. 2), and

μi(k,yi) = 2�i(k)PαG0(k, − yi), (24)

�i(k) = [1+2PαG0(k,0)iσy]−1, (25)

with the Fourier transform defined as

f (x,y) =
∫ ∞

−∞

dk

2π
eikxf (k,y). (26)

We pushed the upper limits of the yi integration to infinity,
which is valid when exp[−Im(kE)L]  1. To obtain Eq. (22),
we further assumed that α is away from the corners, where
the boundary condition changes. The corrections due to such
points are of order 1/kEL smaller than the boundary term.

The free Green’s function in mixed representation is given
by

G0(k,yi) = −e−a(k)|yi |

2a(k)
[kσx + isgn(yi)a(k)σy + kE], (27)

with

a(k) =
√

k2 − k2
E, Re[a(k)] > 0. (28)

Next, we focus on contributions to the boundary term from
various types of edges.

2. Zigzag edge

For a zigzag edge (without NNN hopping; see Table I)

Pα = (1 ∓ τz ⊗ σz)/2. (29)

Then �i is diagonal in valley space, and we can invert the
valley sub-blocks separately, giving

�i(k) = −a(k) ± kτz

k2
E

[a(k) − (kσz − ikEσy)(1 − Pα)]. (30)

We insert �i(k), Eq. (30), into Eq. (24) and take into account
that Pα is a projection matrix, i.e., P 2

α = Pα , to obtain for the
Dirac charge density

μi(k,yi) = −2
a(k)

k2
E

[a(k) ± kτz] PαG0(k, − yi). (31)

Substituting this expression into Eq. (23), we obtain

δGi(k,yi) = −2
a(k)

k2
E

[a(k)±kτz]G0(k,yi)iσyPαG0(k,−yi).

(32)

Then the trace is given by (note that yi > 0)

Tr[δGi(k,yi)] = − 2k2

a(k)kE

e−2a(k)yi . (33)

Evaluating the yi integral, we get (note that the real part of
a(k) is positive)

Im
∫ ∞

0
dyi

∫
dk

2π
Tr [δGi(k,yi)] = kmaxδξ (kE), (34)

where

δξ (kE) = 1

π

ξ

ξ 2 + k2
E

, (35)

and we have introduced a cutoff momentum kmax ∼ 1/a. Such
a cutoff is justified since in real graphene the available k space
is not infinite owing to the lattice structure. We cannot calculate
the precise numerical value for kmax within our effective model.
Using tight-binding calculations we estimate kmax = π/3a.59

The result (34) means that without NNN hopping, zigzag edges
lead to a DOS contribution that is strongly peaked at zero
energy. The origin of this contribution is, indeed, the existence
of zigzag edge states at zero energy.19,20,29,60,61 To understand
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this connection we consider the prefactors in Eqs. (31) and
(32) in the limit of kE → 0; then we have

a(k)

k2
E

[a(k) ± kτz] ≈ k2

k2
E

[1 ± sgn(k)τz]. (36)

For the upper sign, this expression is divergent in one valley
for negative k (τ = +1) and in the other valley for positive
k (τ = −1) as kE approaches zero. For the lower sign it
is just vice versa. Thus we identify the zero-energy states
that are localized at the zigzag graphene edge. In a single
valley this causes a strong asymmetry in the spectrum and
breaks the (effective) time-reversal symmetry. Below we show
that the zigzag edge states are the only contribution to the DOS
that scales with the boundary length of the graphene flake.
Armchair- and infinite-mass-type edges do not contribute to
the surface term. However, for the zigzag edge states, the effect
of NNN hopping is significant.29,59,62 For a more realistic
description of the their effects on the DOS, it is therefore
necessary to consider NNN hopping for the boundary term
at zigzag edges. In Appendix B we show that the boundary
condition for zigzag edges is effectively modified due to NNN
hopping, resulting in a boundary matrix

Pα = 1
2 (1 ∓ τz ⊗ σz − it ′σy ± t ′τz ⊗ σx). (37)

Here t ′  1 is the ratio of the NNN hopping integral and
the nearest-neighbor hopping integral in the tight-binding
formalism. The effect of this boundary condition is to modify
Eq. (31) to

μ(k,y ′) = 2a(k)
a(k) − t ′kE ± kτz

[a(k) − t ′kE]2 − k2
PαG0(k, − y ′). (38)

Note that the Eqs. (37) and (38) turn into expressions (29)
and (31) for t ′ = 0. Following the same line of calculation, we
find

Tr [δGi(k,yi)] = 2k2

a(k)

t ′2 − 1

(1 − t ′2)kE + 2t ′a(k)
e−2a(k)yi , (39)

and the corresponding contribution to the DOS is to linear
order in t ′

Im
∫ ∞

0
dyi

∫ ∞

−∞

dk

2π
Tr [δGi(k,yi)] ≈ 1 − ξ (kE)

2t ′
. (40)

Here

ξ (kE) = 1

π
arctan(kE/ξ ) + 1

2
(41)

is a smooth approximation to the Heaviside step function.
According to Eq. (40), the kE dependence of the zigzag

contribution to the DOS is qualitatively altered by the inclusion
of NNN hopping. It is strongly asymmetric due to the broken
electron-hole symmetry.63 Also the peak at zero kE = 0 has
disappeared because the edge states are not degenerate any
longer but exhibit a linear dispersion k

edge
E = k/2t ′ as derived

in Appendix B. Note that in tight-binding, there is still a van
Hove singularity in the DOS, but it is at a distance to the K/K ′
points and therefore is not captured by the effective theory.

3. Armchair edge

We now proceed with armchair-type edges. According to
Table I, the boundary projection matrix is given by

Pα = 1
2 (1 − σx ⊗ τy). (42)

Then we obtain

�i(k) = 1 + i

a(k)
(kEσy + ikσz)(1 − Pα), (43)

and the surface Dirac-charge density reads

μi(k,yi) = 2PαG0(k, − yi), (44)

leading to [cf. Eq. (23)]

δGi(k,yi) = 2G0(k,yi)iσyPαG0(k, − yi)

= −G0(k,yi)σzG0(k, − yi) ⊗ τy. (45)

Surprisingly, since τy is off diagonal, the trace of δGi is
zero, and the boundary contribution to ρ̄ in the armchair case
vanishes.

4. Infinite-mass edge

The calculation for the infinite-mass edge is similar, and for
the surface Dirac charge density we find, as for the armchair
case,

μi(k,yi) = 2PαG0(k, − yi), (46)

which leads to

δGi(k,yi) = ±G0(k,yi)σzG0(k, − yi) ⊗ τz. (47)

Similar to the armchair edge, this expression is traceless
because Tr(τz) = 0. However, we point out that even within
individual valleys the boundary contribution to the DOS
vanishes. This follows from the fact that∫ ∞

0
dyiTr [G0(k,yi)σzG0(k, − yi)] ∼ k

a2(k)
(48)

is an odd function of k, and thus the corresponding integral
vanishes. This last fact has been already noticed by Berry and
Mondragon64 for massless neutrinos in relativistic billiards
with infinite-mass walls.

D. Comparison with numerical results for various
graphene billiards

In summary, our result for the smooth DOS of a generic
graphene billiard, neglecting the effect of next-nearest neigh-
bors, is

ρ̄(kE) ≈ A

π
|kE| + |∂Vzz|kmax

π
δξ (kE), (49)

with |∂Vzz| being the total length of zigzag edges in the billiard.
In Fig. 3 we compare our analytical result (49) with

results from numerical simulations for the graphene billiards
shown as insets. For the numerical calculations we obtain the
average DOS by computing eigenvalues of a corresponding
tight-binding Hamiltonian29,65 and subsequent smoothing. All
the billiards are chosen to have approximately the same area.
This is reflected in the common slope of ρ̄ for larger kE ,
confirming the leading-order term in the Weyl series. The
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FIG. 3. (Color online) Smooth part of the density of states
for several graphene billiards with approximately the same area
A ≈ (140a)2, calculated numerically using a tight-binding code with
only nearest-neighbor coupling (solid lines). The numerical curves
are obtained by first calculating exact eigenenergies and successive
smoothing by replacing each energy level by a Lorentzian with a
half width at half maximum of 0.015t . The dashed lines are the
predictions of our theory, Eq. (49). From top to bottom: black,
|∂Vzz|/|∂V| = 1 (zigzag triangle); blue, |∂Vzz|/|∂V| ≈ 1/1.6 (Sinai
shape); red, |∂Vzz|/|∂V| ≈ 1/1.9 (rectangle); green, |∂Vzz|/|∂V| = 0
(armchair triangle).

different shapes and orientations give rise to different fractions
of the zigzag boundary |∂Vzz|/|∂V|. While the boundaries of
the equilateral triangles consist completely of either zigzag
(black) or armchair (green) edges, both edge types are present
in the rectangle (red) and in the nonintegrable (modified) Sinai
billiard (blue). We find very good agreement with our analytic
prediction. We note that the dashed lines for the triangles
and the rectangle do not involve any fitting; rather, we have
used the estimation kmax = π/3a from tight-binding theory.
For the Sinai billiard our theory allows us to determine the
total effective zigzag length |∂Vzz| = 516a.

On the other hand, with NNN hopping we get from Eq. (40)

ρ̄(kE) ≈ A

π
|kE| + |∂Vzz|1 − ξ (kE)

2πt ′
. (50)

In Fig. 4 we compare again this analytical result (dashed
lines) with corresponding tight-binding calculations (solid
lines). Also, here we find good agreement with our analytic
prediction for the surface term. Further toward the hole regime,
i.e., to more negative energies, the tight-binding model has
a van Hove singularity due to the edge-state band edge at
kE = −0.1t/h̄vF ≈ −0.1151/a, as depicted in the inset of
Fig. 4 (solid line). This peak is missing in our calculation
since in the effective Dirac theory the edge-state dispersion is
constantly linear for finite t ′ (cf. Appendix B). Note that also,
here, no additional fitting is involved (for the Sinai billiard we
use |∂Vzz| = 516a obtained from the fit in Fig. 3.

From our discussion in this section it becomes clear that,
in principle, the structure of a graphene flake’s boundary, i.e.,
the ratio between zigzag- and armchair-type edges, can be
estimated from the behavior of the smoothed density of states
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FIG. 4. (Color online) Smooth part of the density of states
for the same systems as in Fig. 3 but with a relative next-nearest-
neighbor hopping strength t ′ = 0.1. Solid lines show the numerical
tight-binding results, and dashed lines show the predictions from
Eq. (50). For the smoothing we used Lorentzians with a half width
at half maximum of 0.01t . We used the same color coding as for
Fig. 3. The inset shows that the tight-binding model exhibits a van
Hove singularity at kE = −0.1t/h̄vF ≈ −0.1151/a. As a result, the
smoothed DOS shows a peak at the corresponding position (solid
line).

at low energies. Hereby the formula (49) predicts the spectral
weight of the edge states

∫∞
−∞ dkEρ̄1(kE) = |∂Vzz|/3a, which

is model independent since the number of edge states is con-
served. Note that Libisch et al. have numerically investigated27

the averaged DOS of graphene billiards and found a ρ̄(kE)
profile similar to that in Fig. 3. Related studies on edge states
in graphene quantum dots have been performed in Ref. 29.

IV. DENSITY-OF-STATES OSCILLATIONS

A. The multiple reflection expansion in the semiclassical limit

So far we have focused on the smooth part of the
density of states. In this section we study the oscillating
part ρosc. Our main result is an extension of Gutzwiller’s
trace formula42 to graphene systems with chaotic and regular
classical dynamics. We derive the trace formulas by evaluating
Eq. (6) asymptotically in the semiclassical limit kEL � 1.
In other words, we evaluate the boundary integrals in the
MRE (16) using the method of stationary phase. In the limit
kEL � 1, the Hankel functions become rapidly oscillating
exponential functions of the boundary points. All other terms in
GN vary slowly along ∂V . Thus we evaluate them at the critical
boundary points where the total phase of the exponentials is
stationary. There is another leading-order contribution to the
boundary integrals that is of different origin, namely, when the
set of boundary points α = (αN, . . . ,α1) leads to a singularity
in the prefactors.40,66 Due to the divergence of G0(α,β) as
|α − β| → 0, quantum paths involving reflections at closely
lying boundary points can give rise to such singularities. We
show below that short-range critical points occur only at zigzag
edges. We treat these short-range singularities at zigzag edges
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by resumming the MRE, leading to a renormalized reflection
operator.

1. Resummation of short-range processes

The general method is outlined in Ref. 40. Here we apply
it to graphene. First, we isolate the short-range singularities:
We define the action of an operator Î on a function f ,

Îf (α) :=
∫

∂V

dσβI(α,β)f (β). (51)

In our case

I(α,β) = 2PαG0(α,β)iσnβ
. (52)

We now recast Eq. (14) as

μ(α,x′) = 2PαG0(α,x′) − Îμ(α,x′). (53)

Furthermore, we decompose I into a short-range part Is and
a long range part Il:

Is(α,β) = I(α,β) [1 − w(α − β)] ,
(54)

Il(α,β) = I(α,β)w(α − β).

Here w(α − β) is a smooth function that is zero whenever α is
close to β and goes to 1 otherwise, so that integrating over β

isolates the critical point β = α. This separation is, however,
a formal one in that the specific form of w does not change the
final result (see Ref. 67 for details). Then Eq. (53) leads to

(1 + Îs)μ(α,x′) = 2PαG0(α,x′) − Îlμ(α,x′) (55)

or, with �̂ = (1̂ + Îs)−1,

μ(α,x′) = 2�̂PαG0(α,x′) − �̂Îlμ(α,x′). (56)

Now the renormalized kernel Îl is free of short-range singu-
larities. Alternatively, in integral representation,

μ(α,x′) = 2
∫

∂V

dσβ�(α,β)PβG0(β,x′)

−
∫

∂V

dσβ

∫
∂V

dσβ ′�(α,β)Il(β,β ′)μ(β ′,x′).

(57)

We note that the relevant structure of both terms in this
expression is the same since Il contains the isolating function
w, and thus β ′ can be considered to lie far away from β just
as x′ in the first term. In this way we have formally collected
all the short-range contributions in �, and we are left with
calculating

2
∫

∂V

dσβ�(α,β)PβG0(β,x′). (58)

We evaluate Eq. (58) again in the plane approximation and
replace the boundary in the vicinity of α by a straight line
in the direction of the tangent at α. In our local coordinate
system with x and y denoting coordinates in the tangential
and normal directions, we approximate a point β close to
α by β = (xβ,yβ ) ≈ (β,0) and write x′ = (x ′,y ′) for a point
x′ far away from α (cf. Fig. 5. Then the system is locally

FIG. 5. Notation in the local coordinate system spanned by
the tangent and the normal to the boundary at α. Corrections to
the approximation β ≈ (β,0) are of subleading order in kEL; see
Sec. III C 1.

homogeneous along the straight boundary, and we have

�(α,β) = �(α − β), (59)

G0(β,x′) = G0(β − x ′, − y ′). (60)

In order to partial Fourier transform expression (58), we use
the convolution theorem to obtain (Pα = Pβ is constant along
the straight boundary)∫ ∞

−∞
dβ�(α − β)PαG0(β − x ′,−y ′)

=
∫ ∞

−∞
dkeik(α−x ′)�(k)PαG0(k, − y ′). (61)

In fact, we have calculated �(k) already earlier [cf. Eqs. (30)
and (43)], leading to

�(k)Pα = Rα(k)Pα, (62)

with the renormalizing factor

Rα(k) =
{

− a(k)
k2
E

[a(k) ± kτz] for zz edges,

1 for ac and im edges.
(63)

We now define the renormalized free Green’s function through
its Fourier transform as

G̃0(α,x′) =
∫ ∞

−∞

dk

2π
eik(α−x ′)Rα(k)G0(k, − y ′). (64)

Finally, we cast Eq. (58) for the charge layer μ in position
space into the form

μ(α,x′) = 2PαG̃0(α,x′) − 2
∫

∂V
dσβPαG̃0(α,β)w(α − β)

× iσnβ
μ(β,x′). (65)

The virtue of this equation is that it is free of short-range
singularities.

2. Renormalized Green’s function in the semiclassical limit

With the definition

θ (k) = arctan

⎛
⎝ k√

k2
E − k2

⎞
⎠ (66)
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we obtain from Eq. (63)

Rα(k) =
{

cos[θ (k)]e±iθ(k)τz for zz edges,

1 for ac and im edges.
(67)

We compute G̃0(α,x′) in Eq. (65) by performing the Fourier
integral in Eq. (71) [with Rα from Eq. (67)] within stationary
phase approximation in the limit kEL → ∞. We obtain the
stationary phase point k0 from

d

dk

[
k(α − x ′) −

√
k2
E − k2|y ′|

]
k0

= 0, (68)

yielding, in view of Eq. (66),

tan[θ (k0)] = α − x ′

|y ′| . (69)

The stationary phase point k0 is such that the angle θ (k0)
is equal to the angle that the vector x′ − α includes with the
normal at α, i.e., the classical angle of incidence. The stationary
phase integration yields

G̃0(α,x′) ≈ Rα(k0)Gsc
0 (α,x′). (70)

Here Gsc
0 is the free Green’s function in the semiclassical limit:

Gsc
0 (α,β) = − i

4

√
2kE

π |α − β|e
ikE |α−β|−iπ/4(1 + σα,β), (71)

where we use the short notation σα,β = σ · (α − β)/|α − β|
in Eq. (71). We note that expression (71) is closely related
to the semiclassical Green’s function for the free Schrödinger
equation gsc

0 , namely,

Gsc
0 (α,β) = kEgsc

0 (α,β)(1 + σα,β). (72)

The matrix term reflects the chirality of the charge carriers in
graphene: the sublattice pseudospin is tied to the propagation
direction, and the projection (1 + σα,β) takes care of this.
Equation (70) together with Eq. (65) completes our discussion
of the short-range divergencies and allows us to proceed with
the long-range contributions to the Green’s function in the
semiclassical limit.

3. Semiclassical Green’s function for graphene cavities

In this section we evaluate the boundary integrals in
the renormalized MRE in stationary phase approximation.
We consider the N -reflection term [cf. Eq. (16)] of the
renormalized MRE,

GN (x,x′) ≈ (−2)N
N∏

i=1

∫
∂V

dσαi
K̃N (α)kEgsc

0 (x,αN )

· · · ikEgsc
0 (α2,α1)ikEgsc

0 (α1,x′), (73)

with α = (α1, . . . ,αi , . . . ,αN ). In Eq. (73) we introduced
the pseudospin propagator K̃N (α) that contains the graphene
specific physics:

K̃N (α) = (1 + σx,αN

) N−1∏
i=1

σnαi
Rαi

Pαi

(
1 + σαi+1,αi

)
× σnα1

Pα1

(
1 + σα1,x′

)
W (α), (74)

with the separation function

W (α) =
N−1∏
i=1

w(αi+1 − αi). (75)

Note that the renormalization matrices Rαi
account for possible

short-range singularities.
Comparing Eq. (73) with the MRE for the Helmoltz

equation with Dirichlet boundary conditions39 shows that the
scalar parts are very similar. The difference is that, instead of
factors ikEgsc

0 (αi+1,αi), the MRE in Ref. 39 has normal deriva-
tives acting on the first argument αi+1. In the semiclassical
limit this leads to additional factors ikE cos(θi+1), where θi+1

denotes the angle between the vector αi+1 − αi and the normal
vector to the boundary at αi+1. We need not carry out the
boundary integrals explicitly but can immediately deduce

Gsc
N (x,x′) = kEKNgsc

N (x,x′), (76)

where

KN = K̃N (α)∏N
i=1 cos(θi)

(77)

contains the pseudospin propagator as defined in Eq. (74),
but α is now the vector of the classical reflection points.
The gsc

N (x,x′) are well known; see, e.g., Refs. 42 and 68.
The stationary phase condition selects all sets of N stationary
boundary points minimizing the phase acquired and hence
specifies classical trajectories of the system. We thus obtain
our final expression for Gsc(x,x′) in terms of a sum over
classical trajectories γ that connect the points x′ and x:

Gsc(x,x′) = h̄vF

2

∑
γ (x,x′)

|Dγ |√
2πh̄3

eikELγ +iμγ π/2Kγ . (78)

Here Lγ , μγ , and Nγ are the length, the number of conjugate
points, and the number of reflections at the boundary for the
classical orbit γ , respectively. Kγ = KNγ

is the corresponding
pseudospin propagator, and

Dγ = 1

vF

∣∣∣∣
(

∂x⊥
∂p′⊥

)∣∣∣∣
−1/2

γ

(79)

measures the stability of the path γ starting at x′ with
momentum p′ and ending at x with momentum p. The
⊥ denotes that the derivative involves only the projections
perpendicular to the trajectory, which are scalars in two
dimensions.

Expression (78) represents one main result of the present
paper: The semiclassical charge dynamics for electrons and
holes in a ballistic graphene flake is very similar to the case
of electrons in Schrödinger billiards with Dirichlet boundary
conditions. The graphene-specific physics is incorporated in
the pseudospin dynamics described by Kγ .

For a trajectory containing only one single reflection we
have

K̃ (1)
γ = (1 + σxα)σnα

RαPα(1 + σαx′ ). (80)
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Using the classical relations between the vectors x − α and
α − x′ yields

K (1)
γ = ±iν · τ

⊗
{

e±iθτzσtα (1 + σαx′ ) for zz,

eiθσzσz(1 + σαx′ ) for ac and im,
(81)

with ν according to Table I. With this result, we can obtain the
pseudospin propagator for an arbitrary number of reflections
by iteration.

B. Trace formulas and semiclassical shell effects for classically
integrable graphene billiards

In this section we give two representative examples for trace
formulas describing the oscillating part of the density of states
in graphene billiards that have classically integrable dynamics:
circular and rectangular billiards with different types of
graphene edges. We derive the corresponding semiclassical
trace formula for the class of classically chaotic graphene
cavities in Sec. IV C.

Orbits in regular systems are organized in families on
classical invariant tori. An example of such a (periodic) orbit
family is sketched for the circular billiard in Fig. 6. The
members of a family possess the same classical properties
entering Eq. (78), such as action, length, stability, number
of reflections, and number of conjugate points. In order to
compute the oscillatory part of the DOS from the semiclassical
Green’s function it is convenient to organize the trajectories
in terms of tori, respectively, families f , in the trace integral,
Eq. (6):

ρ(kE) = − 1

π
Im
∑
f

∫
Vf

dxTr[Gf (x,x)], (82)

leading to the Berry-Tabor formula for ρosc in terms of sums
over families of periodic orbits organized on resonant tori.44

The semiclassical pseudospin propagator for graphene does
not alter the resonance condition (cf. the chaotic case in
Sec. IV C), and for periodic classical orbits its trace Tr(Kγ )
does not depend on the coordinates of the starting and end
points:

σα1 x = σxαN
= σα1αN

. (83)

FIG. 6. Example of a family of degenerate classical orbits in
a circular billiard. The black triangular orbit can be rotated by
an arbitrary angle without changing its length. All resulting orbits
contribute the same to the density of states. (Adapted from Ref. 57.)

Therefore, the integrals over Vf are the same as for
Schrödinger billiards with Dirichlet boundary conditions.
Hence we can adapt the corresponding results by explicitly
including the correct pseudospin trace for each orbit family.

The collective effect of orbit families giving rise to
constructive interference due to action degeneracies leads
to pronounced signatures in the DOS of integrable systems
known as shell effects.57 We analyze below how such features
are modified due to graphene edge effects.

1. Circular billiard with infinite-mass-type edges

We begin with a circular billiard with infinite-mass-type
edges. Then the quantum energy levels Enm = h̄vF knm are
given by the intersections of Bessel functions:64

Jn(knmR) = τJn+1(knmR), (84)

where R is the billiard radius, τ = ±1 labels the two valleys,
and n,m ∈ Z, where m counts the intersections.

For the semiclassical calculation of ρosc we adapt results for
the Schrödinger disk billiard as derived and discussed in detail,
e.g., in Ref. 57. Periodic-orbit families in the disk are labeled
by the total number of reflections v and the winding number w,
with v � 2w. Examples with w = 1,2 are depicted in Fig. 7.
We also allow for negative winding numbers w and define
the sign such that w > 0 for clockwise orbits and w < 0 for
counterclockwise orbits. Simple geometry gives, for the length
Lv,w and the angle of rotation ϕv,w acquired for an orbit (v,w),

Lv,w = 2vR sin(|ϕv,w|), (85)

ϕv,w = π
w

v
. (86)

Then the reflection angles read

θv,w =
(

sgn(w)

2
− w

v

)
π. (87)

Graphene physics enters through the pseudospin propagator,
Eq. (77), with boundary matrix

Pα = (1 + τz ⊗ σtα

)
/2 (88)

FIG. 7. Classical periodic orbits representing families in the
circular billiard. Here v is the total number of reflections along the
orbit, and w denotes the winding number. If (v,w) are not coprime,
the orbit is a repetition of a shorter primitive orbit. For example, (4,2)
is a repetition of (2,1) and (6,2) of (3,1). (Adapted from Ref. 66.)
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for the infinite-mass case [see Eq. (4) and Table I ]. For an
orbit (v,w) the trace over K yields

TrKv,w = ivTr
(
τ v
z ⊗ σv

z eivθv,wσz
)

= 4 cos(vθv,w)

{
(−1)v/2 for even v,

0 for odd v.
(89)

Equation (89) reveals the interesting property that only orbits
with an even number of reflections are contributing to the
oscillating DOS in the circular graphene billiard, while for
odd v, the pseudospins are interfering destructively. Note that
this holds true also in each valley separately because, in the
case of odd v, the contributions from winding numbers w and
−w have opposite signs.

Adapting the expression for the circular Schrödinger
billiard57,70 accordingly yields the semiclassical expression
for the oscillatory part of the DOS of the graphene disk:

ρsc
osc(kE) = 4

√
kER3

π

∞∑
w=1

∞∑
v=2w
even

(−1)w+v/2 fv,w√
v

× sin3/2(ϕv,w) sin

(
kELv,w + 3

4
π

)
e−(ξLv,w/2)2

,

(90)

where fv,w = 1 if v = 2w and otherwise fv,w = 2.
The last factor in Eq. (90), giving rise to an exponential

suppression of orbits of length Lv,w > 1/ξ , represents a
broadening of the peaks in the quantum density of states by
convoluting ρ with a Gaussian of width ξ . Such a broadening is
additionally introduced to mimic, e.g., temperature smearing
or to account for a finite life time of the quantum states,
for instance, due to residual disorder scattering.71 Thereby,
Eq. (90) relates the gross effects in smeared quantum spectra
or experimental spectra obtained with limited resolution to the
contributions from families of the shortest periodic orbits.57,72

Using the Poisson summation formula, we can approxi-
mately sum up the trace formula (90) for ξ = 0 and find the
approximate eigenenergies kV W = xV W/R corresponding to
poles in the semiclassical sum, which fulfill the equation

V + 3

2
= (2W + 1)[1 − arccos(W/XV W )/π ]

+ 2XV W

π

√
1 − W 2/X2

V W − 2W. (91)

In Figs. 8(a)–8(c) we compare the results of the semiclassi-
cal trace formula (90) with exact quantum results from Eq. (84)
for the lower part of the graphene disk spectrum. For ξ = 0
[Fig. 8(a)] even the exact quantum levels (blue circles) are
reproduced with remarkable accuracy by the semiclassical
theory (black peaks; see also numerical values in Table II.
For every level, we have a sharp peak in the semiclassical
result. An exception is the two levels close to kER = 6, for
which we have only one peak, though it is twice as high as the
others, meaning that in the semiclassical expression the two
levels are nearly degenerate.

Figure 8(b) shows the broadened spectrum for ξ = 0.3/R.
Again, the semiclassical result (solid line) is in very good
agreement with the corresponding quantum result (dotted line).
For comparison, Fig. 8(d) shows the same energy range for

TABLE II. Energy levels knR of the circular billiard with infinite-
mass-type edges obtained from the semiclassical trace formula
Eq. (90) by summing over many classical orbits with ξ = 0 (TF) and
by summing up all orbits approximately [TF (P), Eq. (85)] compared
to the quantum-mechanical result [QM, Eq. (84)]. Also given are
energy levels knL for square billiards with KL mod 2π = 2π/3
(L = 200a, “semiconducting”) and KL mod 2π = 0 (L = 201a,
“metallic”). Again, we compare the result from the semiclassical trace
formula (95) at ξ = 0 with the quantum-mechanical result (C6).

Circular infinite- Semiconducting Metallic
mass billiard square billiard square billiard

TF TF (P) QM TF QM TF QM

1.49 1.57 1.43 6.85 6.81 6.86 6.85
2.72 2.78 2.63 7.85 7.84 7.30 7.28
3.10 3.14 3.11 7.93 7.87 7.92 7.85
3.87 3.92 3.77 8.11 8.05 8.15 8.09
4.46 4.49 4.48 8.97 8.92 8.41 8.39
4.69 4.71 4.68 9.11 9.10 8.84 8.80
5.00 5.04 4.88 9.26 9.24 9.43
5.73 5.75 5.75 9.35 9.32 9.54 9.50
6.10 6.12 5.98 10.47 9.85 9.85
6.10 6.14 6.09 10.86 10.86 10.06 10.05
6.26 6.28 6.27 10.92 10.90 10.59 10.56
6.95 6.98 6.98 11.05 11.01 11.04 11.00
7.20 7.23 7.06 11.18 11.14 11.04 11.03
7.43 7.45 7.41 11.29 11.27 11.21 11.16
7.71 7.72 7.71 11.52 11.71 11.69

the corresponding Schrödinger billiard. In Fig. 8(c) we have
a closer look at which orbit families contribute. In fact, we
can see from Fig. 8(c) that the two shortest nonvanishing orbit
families (2,1) and (4,1) already yield a good approximation to
the shell structure for ξ = 0.4/R.

Figure 9 shows the power spectrum of the exact quantum
result (Gaussian convoluted with ξ = 0.3/R). Evidently, only
families with an even number of vertices v are contained in
the spectrum, as semiclassically predicted. For example, the
triangular orbits (3,1) that would give a peak at L/R = 5.2 and
also the pentagram orbits (5,2) (L/R = 9.5) do not contribute.
The inset shows the same plot on a logarithmic scale, where
the absence of the odd orbits is even more evident.

2. Rectangular billiard with zigzag and armchair edges

The rectangular billiard represents another prominent
classically integrable geometry. While for the Schrödinger
equation with Dirichlet boundary conditions this is a simple
textbook problem, there is no explicit expression for eigenen-
ergies of the graphene rectangle with two opposite zigzag
and two opposite armchair edges. (For the derivation of a
closed formula for the quantum eigenenergies in terms of a
transcendental equation, see Appendix C.) We will show that
our semiclassical theory provides a very good approximation
to the quantum density of states.

In the rectangle, the periodic orbit families can again be
labeled with two indices. We denote by N and M the number
of reflections at the bottom zigzag (N ) and the left armchair
(M) side of the rectangle with lengths Lx and Ly , respectively
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FIG. 8. (Color online) Oscillating part ρosc of the density of
states of a circular billiard as a function of kER. (a) Peaks are
obtained from the semiclassical expression (90) by summing up
orbit families up to v,w = 400 for ξ = 0. Blue circles mark the
positions of the exact quantum-mechanical levels given by Eq. (84)
(see also Table II). (b) Gaussian convoluted ρosc for ξ = 0.3/R. The
solid (dotted) curve shows the semiclassical (quantum mechanical)
results. (c) Comparison between the full semiclassical orbit sum
(dotted curve, ξ = 0.4/R) with the contribution from the two shortest
orbit families (2,1) and (4,1) (solid curve). (d) Corresponding results
(for ξ = 0.4/R) for a circular Schrödinger billiard with Dirichlet
boundary conditions.

(see Fig. 10). The absolute values of the reflection angles at
the zigzag and armchair edges then read

|θzz| = arctan

(
MLx

NLy

)
,

(92)

|θac| = π

2
− |θzz| = arctan

(
NLy

MLx

)
.
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FIG. 9. Power spectrum of the Gaussian-convoluted (ξ = 0.3/R)
quantum density of states of the graphene disk with infinite-mass
edges. Peaks can be uniquely assigned to periodic-orbit families
(v,w); see text. The inset shows the logarithmic representation.

From Eq. (81) we can read off the following matrix factors for
reflections with angles θzz and θac:

−iτze
−iθzzτz ⊗ σx, − iτze

iθzzτz ⊗ σx,
(93)

iτy ⊗ σze
iθacσz , − iτye

i2KLxτz ⊗ σze
iθacσz ,

for the lower zigzag edge, the upper zigzag edge, the left
armchair edge, and the right armchair edge, respectively. This
enables us to calculate the pseudospin trace of a periodic orbit
from family (N,M) as

TrKNM = (−1)N4 cos(2MKLx − 2N |θzz|). (94)

This expression holds irrespective of the propagation direction
along the orbit. Note also that the θzz in Eq. (94) occurs only
due to the fact that we have different zigzag edges at the top
and the bottom boundaries (A and B terminated, respectively).
Equation (94) is now used to adapt the trace formula for the
Schrödinger equation, which has been derived, e.g., in Refs. 57
and 72. Taking into account the interfering pseudospins in
graphene, we find

ρsc
osc(kE) =

√
kE

2π3

∞∑
M=1

∞∑
N=1

fNMLxLy√
LNM

× cos
(
kELNM − π

4

)
TrKNMe−(ξLNM/2)2

,

(95)

with length LNM = 2
√

M2L2
x + N2L2

y and TrKNM from Eq. (94).
Further, fNM = 1 if N = 0 or M = 0, and otherwise, fNM =
2. Note that the size of the billiard determines whether certain
orbits contribute: The quantity KLx can only take values that
are multiples of π/3. In particular, for KLx mod 2π = 0,73

families (N,NLy/Lx) with odd N do not contribute according
to Eq. (94). Further examples are the families (M,0) and
(0,N ) for odd N and M , respectively. They cancel each other
exactly for KLx mod 2π = 0 because of the (−1)N term in
the pseudospin trace.

In Fig. 11 and Table II we compare the results from the
semiclassical trace formula (95) for Lx = Ly = L with the
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FIG. 10. Families of periodic classical orbits in the rectangular
billiard. N (M) is the number of reflections at the bottom (left) side.

quantum-mechanical results obtained by solving Eq. (C6)
numerically. Again, we find very good agreement with
the quantum result. This is rather remarkable because of the
complicated structure of the quantization condition (C6). The
semiclassical predictions concerning the frequency content of
the DOS oscillations are confirmed in Figs. 11(c) and 11(d).
For example, the shortest orbits (1,0), (0,1), and (1,1) do not
contribute for the system in Fig. 11(d) (KLx mod 2π = 0)
due to destructive pseudospin interference, while they are
important in Fig. 11(c) (KL mod 2π = 2π/3).

Note that in Table II we find some additional levels from
the semiclassical trace formula that cannot be associated with
quantum energy levels of the rectangle. Rather, these peaks
occur at positions that fulfill the quantization condition of a
fictitious 1D quantum well of width L with armchair boundary
conditions. It is well known57 that this is an effect of subleading
order ([kEL]−1/2 with respect to leading order) produced by
orbits that “graze” along the edges.

C. Trace formula for classically chaotic graphene billiards

Finally, we consider classically chaotic graphene systems.
In this case no spatial symmetries are present that would give
rise to an orbit degeneracy as in the regular case. From Eq. (78)
we already know that the final result differs from the trace
formula for chaotic Schrödinger billiards only with respect to
the pseudospin trace. Thus we have to work out how the spatial
integral in Eq. (6) depends on this trace. To this end we do not
start directly from the semiclassical Green’s function (76) but
go one step back to Eq. (73). In order to calculate the integral

ρN (kE) = − 1

π
Im
∫
V
dxTr [GN (x,x)] (96)

we consider only the x-dependent part of the integrand,

IN =
∫
V
dx

K(x,α)√|x − αN ||α1 − x|e
ikE (|x−αN |+|α1−x|), (97)

and choose the parametrization x = l l̂ + t t̂ , where l̂ is the
direction from αN to α1 and t̂ is the direction perpendicular to
l̂ such that a right-handed coordinate system results. The origin
l = t = 0 is at the point αN , and we denote lN1 = |αN − α1|.
Then we can rewrite the phase

ϕ(l,t)/kE = |x − αN | + |α1 − x|
tl,l−lN1≈ lN1

(
1 + t2

2l[lN1 − l]

)
. (98)

We are now evaluating the t integral in stationary phase
approximation assuming kElN1 � 1. The stationary phase
point t0 is given by

∂ϕ(l,t0)

∂t
= kElN1t0

l(lN1 − l)
= 0 ⇒ t0 = 0, (99)

∂2ϕ(l,t0)

∂t2
= kElN1

l(lN1 − l)
, (100)

ϕ(l,t0) = kElN1 = kE|αN − α1|. (101)

This means, however, that at the critical point t0, the pseudospin
propagator K(α) has no dependence on l left since, for t = 0,
Eq. (83) holds. Thus the remaining integral can be performed
exactly:

IN =
√

2πlN1

kE

K(α)eikE |αN−α1|. (102)

This tells us that as for the Green’s function, we can essentially
read off the result for ρsc

osc directly from the corresponding
Dirichlet problem for the Schrödinger equation42 and find the
Gutzwiller-type trace formula for a chaotic graphene cavity,

ρsc
osc(kE) = vF

2π
Re
∑

γ

Tr(Kγ )Aγ eikELγ . (103)

Here the sum runs over all, infinitely many, classical periodic
orbits γ because the stationary phase points with t = t0 = 0
are lying exactly on the straight line connecting the last with
the first reflection point; i.e., the appearance of the pseudospin
does not affect the stationary points. The classical amplitudes
Aγ depend on the period, the stability, and the Maslov index
of the corresponding orbit.42 That means, except for h̄ and the
trace over Kγ , accounting for the interference of pseudospins,
the right-hand side of Eq. (103) contains only classical
quantities and has the same structure as Gutzwiller’s trace
formula. We note that in Ref. 46 a semiclassical trace formula
is presented for ρosc, which, however, does not take into
account the boundaries required to obtain chaotic dynamics.
Note that expression (103) for ρosc is only valid for systems
with isolated orbits, a prerequisite to evaluate the integral
perpendicular to αN − α1 in stationary phase approximation.
This is particularly fulfilled for chaotic systems.

Expression (103) allows, in principle, for computing semi-
classical approximations for energy levels in chaotic graphene
billiards. We presume that this trace formula holds true more
generally for classically chaotic graphene systems, not only
billiards, with an appropriate generalization of the pseudospin
evolution. Since the classical dynamics of a graphene billiard
is the same as that of a Schrödinger billiard, the convergence
properties of Eq. (103) are expected to be similar to those of
Gutzwiller’s trace formula, with convergence problems linked
to the exponential proliferation of periodic orbits with their
length. In Appendix D, we discuss the effect of weak bulk
disorder on the trace formula (103).

As Gutzwiller’s trace formula for the case of quantum
chaotic Schrödinger dynamics, the trace formula (103) rep-
resents a suitable starting point to consider the statistical
properties of energy levels for chaotic graphene cavities, in
particular universal spectral features within certain symmetry
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FIG. 11. Oscillating part of the density of states of a square billiard with two armchair edges and two zigzag edges (Lx = Ly = L). (a), (c)
The results for a square with KL = π/3 mod 2π (“semiconducting”) and (b), (d) the results for a square with KL = 0 mod 2π (“metallic”).
(a) and (b) show the Gaussian convoluted ρosc(kE) for ξ = 0.3/L. The dotted curves represent the quantum mechanically exact results calculated
with Eq. (C6) and broadened correspondingly. (c) and (d) show the quantum-mechanical power spectra (for ξ = 0.3). It is easy to identify the
peaks associated with the corresponding families (M,N ).

classes. Based on Eq. (103) we devote a major part of Ref. 54
to the semiclassical analysis of spectral statistics in graphene.
There we will see that intervalley scattering, semiclassically
incorporated in the pseudospin dynamics, plays a key role for
the effective symmetry class obeyed in graphene, e.g., unitary,
orthogonal, or intermediate statistics between the two.

V. CONCLUSION

The growing ability to manufacture graphene-based nanos-
tructures and their increasing role in the field of graphene
physics pose challenges to theory to treat confinement effects.
Addressing ballistic graphene cavities, we have focused on
the effect of different types of edges, zigzag, armchair, and
infinite-mass types, on the spectral properties. The multiple
reflection expansion used, combined with the semiclassical
approximation, allows for incorporating and analyzing edge
phenomena in a particularly transparent way, both for the
mean density of states ρ̄ and for the remaining oscillatory
part: The leading-order Weyl contribution to ρ̄ for graphene
billiards scales with the phase-space volume on the energy
shell, as for Schrödinger-type billiards. Edge effects are

expected to alter the perimeter correction to ρ̄, which is
proportional to the total boundary length in the Schrödinger
case with Dirichlet boundary conditions. We showed for
graphene billiards that armchair and infinite-mass edges do
not give any perimeter contribution, while zigzag edges yield
a characteristic low-energy term scaling with the length of the
zigzag boundary. As analyzed in detail, we could relate this
boundary term in ρ̄ to the average number of quantum zigzag
edge states. Thereby, our approach allows for an alternative,
analytical calculation of the zigzag-edge-state contribution.
For graphene nanostructures with an unknown portion of
zigzag-type edge segments, this enables one to estimate the
effective zigzag-edge length, and, respectively, the number of
edge states, from the characteristic feature in ρ̄(E); see Figs. 3
and 4. Hence, already, the mean density of states of graphene
flakes incorporates important physical information.

For the oscillatory contribution ρosc to the density of states
of graphene billiards we derive semiclassical trace formulas
in terms of sums over classical periodic orbits. We show
that, within the leading-order semiclassical approximation,
the classical orbital dynamics entering into the semiclassical
sums is the same as for Schrödinger billiards of the same
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geometry. This implies, for regular graphene geometries,
Berry-Tabor like44 sums over families of orbits and, for
chaotic geometries, a Gutzwiller-type42 trace formula in
terms of isolated periodic trajectories. Edge effects enter into
the contribution of each periodic orbit (family) exclusively
through the the pseudospin propagator and its trace along the
orbit. This leads to a particularly transparent representation of
graphene-edge phenomena. We gave a detailed interpretation
for two representative regular systems: the graphene disk with
infinite-mass edges and the graphene 2D box with boundaries
built from two zigzag and two armchair edges. The comparison
with full quantum results showed very good agreement, both
for smeared spectra, highlighting the role of short, fundamental
periodic orbits, and on the level of individual energy levels,
obtained semiclassically by summing up many orbit families.

A number of questions and further research directions are
now arising from this work. They include the challenge to
generalize the semiclassical expressions for the density of
states of clean billiards to cavities with impurity scattering
and systems with smooth confinement potentials, more gener-
ally, graphene with arbitrary classical Hamiltonian dynamics,
including also systems with mixed phase space. Second, the
fact that our treatment of the zigzag-edge-associated average
level density proves adequate for both settings, models without
and with particle-hole breaking effects, e.g., from next-nearest-
neighbor coupling (see Sec. III C 2, encourages us to address
zigzag edge magnetism19,74–76 within this framework. Third,
the semiclassical formalism developed allows for treating
graphene nanostructures with boundaries that can be viewed as
being composed of many zigzag- and armchair-edge segments.
In particular, analytical expressions can be derived by treating
long orbits with bounces off the different boundary segments in
a statistical way. Fourth, the techniques used can be generalized
to quantum transport through open graphene nanostructures.

In a future presentation54 we will particularly address
the two last items and study spectral statistics (through the
spectral form factor) of closed systems and transport properties
(weak localization, universal conductance fluctuations, and
shot noise) of open graphene billiards.
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chair at Sabancı University (I.A.). J.W. further acknowledges
the support and hospitality at Sabancı University.

APPENDIX A: THE SINGULARITY OF
A DIRAC-CHARGE LAYER

Here we derive expression (13) inducting the discontinuity
of the Green’s function at the boundary.40 Using the short-
distance asymptotic form for the Hankel function,

H+
0 (ξ )

ξ1−→ 2i

π
ln(ξ/2), (A1)

we obtain the short-range singularities of the free Green’s
function from Eq. (10):

G0(x,x′)
x→x′−→ − i

2π

σ · (x − x′)
|x − x′|2 . (A2)

If x′ lies in the interior of V and α is a point on the boundary
∂V ,

lim
x→α

G0(x,x′) = G0(α,x′) (A3)

is well defined, and the first term in Eq. (13) is trivially obtained
from Eq. (9). However, if x′ is on the boundary, the singular
behavior of the Green’s function becomes relevant. To see
this, we perform the boundary integral in two parts, dividing
∂V into a small region Dδ(α) = Cδ(α)

⋂
∂V , where Cδ(α)

is a circle with radius δ around α, and the remaining border
D̄δ(α) = ∂V \ Dδ(α). We will take the limit δ → 0 at the end
of the calculation.

We begin with the integration within Dδ(α). To this end we
use the asymptotic expression for G0 and get

IDδ (α) = lim
δ→0

lim
x→α

∫
Dδ(α)

dσβG0(x,β)iσnβ
μ(β,x′)

= σnβ

2π
μ(α,x′)σ · lim

δ→0
lim
x→α

∫
Dδ(α)

dσβ

(x − β)

|x − β|2 , (A4)

where we took μ out of the integral and evaluated it at β = α.
Without loss of generality, we choose α = 0, x = |x| ŷ and
approximate Dδ(α) by a straight line along the x axis, i.e.,
Dδ(α) = {ξ x̂|ξ ∈ [−δ,δ]}. Then we get

IDδ (α) = σnβ

2π
μ(α,x′)σ · lim

δ→0
lim

|x|→0

∫ δ

−δ

dξ
|x| ŷ − ξ x̂
|x|2 + ξ 2

= σnβ

2π
μ(α,x′)σ · lim

δ→0
lim

|x|→0
2 arctan(δ/|x|) ŷ

= 1

2
μ(α,x′). (A5)

Since the kernel of the integral on D̄δ(α) has no singularity, it
simply follows

lim
δ→0

lim
x→α

∫
D̄δ(α)

dσβG0(x,β)iσnβ
μ(β,x′)

=
∫

∂V

dσβG0(α,β)iσnβ
μ(β,x′). (A6)

It is known from potential theory that the integral on the right-
hand side exists,39 and thus Eq. (13) follows.

APPENDIX B: EFFECTIVE BOUNDARY CONDITION FOR
ZIGZAG EDGES IN THE PRESENCE OF
NEXT-NEAREST-NEIGHBOR HOPPING

It has been shown in Refs. 59 and 62 that the inclusion
of next-nearest-neighbor (NNN) hopping in the tight-binding
Hamiltonian of graphene has important consequences on the
properties of the zigzag edge states. While for bulk graphene,
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up to a constant energy shift, the effects are of subleading order
in k, for finite samples NNN hopping leads to an additional
effective potential that is located solely on the edge atoms,
therefore leading to qualitative changes of the edge-state
properties. These range from a finite dispersion to a complete
change of the current profile in transport.59

Here we neglect terms of higher order in k in the
Hamiltonian due to the NNN hopping and focus on the effects
of the resulting edge potential. To this end we derive an
effective boundary condition for the Dirac Hamiltonian with
zigzag boundary. We consider a single zigzag edge, where
the last row of atoms is located at y0 = a/

√
3. Furthermore,

the graphene flake shall be extended for y > y0; i.e., the last
row of atoms is of B type. The Hamiltonian is then given
by62

H = vF σ · p − h̄vF

t ′

2
δ(y − y0)(1 − σz ⊗ τz). (B1)

Here t ′ ≈ 0.1 is the ratio of the next-nearest-neighbor-hopping
constant, and the projection (1 − σz ⊗ τz) ensures that the
potential is located on the B sublattice. Similar edge poten-
tials can model also adsorbents at graphene edges or edge
magnetism.29,76

The Dirac equation together with the Bloch theorem gives,
for the y-dependent part of the wave functions in the valley
τ = +1,

kEψA(y) = kψB(y) − ∂ψB(y)

∂y
, (B2)

kEψB(y) = kψB(y) + ∂ψA(y)

∂y
− t ′δ(y − y0)ψB(y). (B3)

Now we integrate these equations over a small window
[y0 − ε,y0 + ε] around the potential and take the limit ε → 0
afterward. Assuming that ψ has at most a finite discontinuity
at y0, we obtain from Eq. (B2)

lim
ε0→0+

ψB(y + ε) − ψB(y0 − ε) = 0, (B4)

i.e., the B part of the spinor is continuous. Thus we divide
Eq. (B3) by ψB(y) before integrating and get

t ′ = lim
ε→0+

∫ y0+ε

y0−ε

1

ψB(y)

∂ψA(y)

∂y
(B5)

= lim
ε→0+

[
ψA(y0 + ε)

ψB(y0 + ε)
− ψA(y0 − ε)

ψB(y0 − ε)

]
(B6)

using integration by parts. For y < y0 we employ the actual
zigzag boundary condition ψA(0) = 0, leading to the known
expressions for the wave functions for y < y0:21,77

ψA(y) = A sin(qy),
(B7)

ψB(y) = A

kE

[ikτ sin(qy) + q cos(qy)] ,

with longitudinal and transverse momenta k and q, respec-
tively. Since the effective Dirac equation is valid for momenta

that are much smaller than 1/a, we approximate kEa,qa,ka ≈
0 to get

lim
ε→0+

ψA(y0 − ε)

ψB(y0 − ε)
= kE sin(qa/

√
3)

ik sin(qa/
√

3) + q cos(qa/
√

3)
≈ 0,

(B8)

which, inserted into Eq. (B6), finally leads to the effective
boundary condition

ψA

ψB

∣∣∣∣
∂V

= t ′, (B9)

in agreement with a result found for similar edge potentials in
Ref. 78. In an analogous way one can derive the effective
boundary condition for the other valley as well as for A-
terminated zigzag edges to end up with an effective boundary
condition matrix:

Pα = 1
2 (1 ∓ τz ⊗ σz − it ′σy ± t ′τz ⊗ σx) (B10)

for all points at the edge α. This expression turns into the usual
zigzag matrix (29) when t ′ = 0.

We further derive the edge-state dispersion and wave
function from the Dirac equation with the effective boundary
condition

ψA(0) = t ′ψB(0). (B11)

Due to the Bloch theorem we can write for k2
E = k2 + q2

�A(x,y) = eikxψA(y) = eikx(Aeiqy + Be−iqy) (B12)

and

ψB(y) = (τk + ∂y)ψA(y). (B13)

For nonzero kE , Eq. (B11) then leads to the condition

A(kE − t ′τk − it ′q) = −B(kE − t ′τk + it ′q). (B14)

The bulk states result from this equation when both sides are
nonzero. On the other hand, the edge state results if this is
not the case, e.g., kE − t ′τk + it ′q = 0. Solving this equation
gives for negative τk the edge state

�A(x,y) ≈ Beikxeτky, �B(x,y) ≈ B
2k

kE

eikxeτky, (B15)

with the dispersion relation

k
edge
E = 2kt ′τ

1 + t ′2
≈ 2kt ′τ. (B16)

This state exists only for negative (positive) momenta k in the
valley K (K ′) (as for the case without NNN hopping) and has
always a negative energy.

APPENDIX C: ENERGY EIGENVALUES OF A
RECTANGULAR GRAPHENE FLAKE

Here we present an implicit expression for the energy
eigenvalues of a graphene rectangle with zigzag edges at
y = 0 and y = Ly and armchair edges at x = 0 and x = Lx ,

075468-16



EDGE EFFECTS IN GRAPHENE NANOSTRUCTURES: FROM . . . PHYSICAL REVIEW B 84, 075468 (2011)

respectively. To this end we start from a superposition of
a forward- and a backward-propagating eigenmode of an
armchair nanoribbon with edges at x = 0 and x = Lx ,21,77

�(x,y) = A

⎛
⎜⎜⎜⎝

(qm − ik)eiqmx

kEeiqmx

kEe−iqmx

(−qm + ik)e−iqmx

⎞
⎟⎟⎟⎠ eiky

+B

⎛
⎜⎜⎜⎝

(qm + ik)eiqmx

kEeiqmx

kEe−iqmx

(−qm − ik)e−iqmx

⎞
⎟⎟⎟⎠ e−iky, (C1)

where qm are quantized according to

qm = mπ

Lx

− K m ∈ Z. (C2)

The spinors in Eq. (C1) are solutions to the Dirac equation
when

k2 + q2
m = k2

E. (C3)

Now we impose the zigzag boundary conditions �A(x,0) =
�A′(x,0) = �B(x,Ly) = �B ′(x,Ly) = 0, which result in the
two independent equations

(qm − ik)A + (qm + ik)B = 0, (C4)

eikLy A + e−ikLy B = 0. (C5)

These are solved for quantized knm that fulfill the transcenden-
tal equation

knm = −qm tan(knmLy). (C6)

With that we have formally solved the problem, and the
eigenenergies can be found, e.g., by solving Eq. (C6)
numerically.

APPENDIX D: EFFECT OF WEAK BULK DISORDER

At this point we briefly discuss the effect on the trace
formula (103) caused by smooth bulk disorder, which can
be accounted for by an additional term

H ′ = τ0 ⊗ σ0V (x) (D1)

in the Hamiltonian, where V (x) is smooth on the scale of
the lattice constant.79 In the semiclassical limit the Green’s
function for H + H ′ has been derived in Ref. 46 without
taking into account the boundaries. For the case of a Gaussian-
correlated disorder potential,

〈V (x)V (x′)〉 = C0 exp

[
− (x − x′)2

4�2

]
, (D2)

quantum calculations in the Boltzmann limit have been
performed.80,81 Under the assumption that the disorder poten-
tial is weak enough that the classical trajectories remain unaf-
fected, we get for the impurity-averaged Green’s function71〈

G′sc
0 (x,x′)

〉 ≈ Gsc
0 (x,x′) exp(−〈δS2〉/2h̄2), (D3)

with

〈δS2〉 = 1

(2vF kE)2

∫ x

x′
dq

∫ x

x′
dq ′〈[(x − x′) × ∇V (q)]

× [(x − x′) × ∇V (q ′)]〉/|x − x′|2 (D4)

≈ h̄2|x − x′|/l (D5)

and the mean free path

l = 4�h̄2v2
F k2

E√
πC0

. (D6)

For smooth potentials the jump of the Green’s function in
Eq. (13) and hence also the MRE (16) remains unchanged,
except that G0 has to be replaced by its impurity-averaged
version (D3). Thus each summand in the semiclassical Green’s
function (78) for a graphene cavity acquires a damping factor
e−Lγ /2l . In the trace integral (97), these factors do not alter
the stationary phase points, so that also in the trace formula
in (103) every periodic orbit contribution is weighted with a
factor e−Lγ /2l that improves convergence of the semiclassical
trace formula.
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