
PHYSICAL REVIEW B 84, 075465 (2011)

Ab initio analytical model of light transmission through a cylindrical subwavelength
hole in an optically thick film
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The rigorous analytical theory of light transmission through a cylindrical hole of arbitrary diameter in an
optically thick film is developed. The approach is based on the introduction of fictitious surface currents at both
hole openings and both film surfaces. The solution of Maxwell’s equations obeying the boundary conditions at
all interfaces is obtained in the form of the Fourier integral over the axial-wave-vector component. The exact
integral equation which determines the field-amplitude Fourier transforms is derived. The general approach is
simplified in the case of an elongated hole, where the film thickness considerably exceeds the hole diameter. It
is emphasized that a specific pole corresponding to excitation of surface plasmon polaritons does not appear in
the analysis. The theory is illustrated by the calculation of light transmission through a subwavelength hole in an
Ag film.
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I. INTRODUCTION

Since its discovery, the effect of the extraordinary optical
transmission (EOT) has attracted considerable attention from
both experimental and theoretical points of view.1 Being
first demonstrated for thin metal films perforated with sub-
wavelength hole arrays,2 this effect has been also studied in
transmission through individual apertures in a metal screen.3,4

The term “extraordinary” originates from the fact that at
certain wavelengths the transmission efficiency normalized to
the total area of the holes exceeds unity, which suggests that
the metal film plays an active role in light transmission. This
conclusion has led to the assumption that the EOT phenomenon
is mediated by excitation of surface plasmon polaritons (SPPs).
Extensive numerical calculations have been carried out aiming
at explanation of this effect. Some of them claimed that EOT
correlates with the excitation of SPPs in the metal film.5–8

However, the other works which modeled the metal film by
a perfect conductor (PC), which does not support SPPs, have
also revealed enhanced light transmission.9–12 Moreover, it
was noticed that the SPP model is not consistent with all
experimental observations.13

The reason for such contradictory explanations of EOT is
the lack of a rigorous analytical theory and the use of various
approximations whose validity is not well established. To
interpret the EOT phenomenon, one needs to elucidate the light
transmission through a single aperture. The first theoretical
model developed for light diffraction at a subwavelength
hole in an infinitely thin PC film was suggested by Bethe14

and corrected for the near-field region by Bouwkamp.15,16

Much later Roberts17 calculated light transmission through
a hole in a PC film of finite thickness using the so-called
coupled-mode method. Although in its general formulation
this method is rigorous, one should notice, however, that
being cut at a certain maximum mode number it is not
capable of describing accurately sharp edges of the hole.5 The
transmission properties of isolated apertures in real metals
have been also studied theoretically using different numerical
techniques such as the multiple multipole (MMP) technique,5

the discrete sources method8 (which is close to the MMP
technique), the field-susceptibility technique (also known as
Green’s dyadic),18,19 and the finite-difference time domain
method.6,7 Although these approaches provide rigorous so-
lution of the problem, they require much computation time
for convergence or have limited applicability. In addition, to
discuss the physical background behind such calculations one
needs to invoke simplified analytical models, which can result
in misleading interpretation.

Recently, we have developed an analytical approach which
allows one to obtain a rigorous solution of Maxwell’s equations
for a cylindrical resonator of finite length and of arbitrary
radius.20 This method is based on the introduction of fictitious
electric and magnetic current sheets. A similar approach is
applied here to the problem of light transmission through
a cylindrical hole in an optically thick real metal film. The
paper is organized as follows. In Sec. II we describe a general
formalism and introduce the Hertz vectors and fictitious
currents. We derive also an integral equation which determines
the optical response of the system. In Sec. III we obtain
an expression for the transmitted field and analyze it in the
far-field limit. In Sec. IV the developed theory is applied
to the case of an elongated hole. Section V illustrates this
approach by the numerical calculations for an Ag film. In
Sec. VI we discuss the role of SPPs in light transmission
through a hole. Section VII summarizes the main results of the
work.

II. GENERAL THEORY

Let an infinite film of thickness L have a circular cylindrical
hole of radius a with its axis perpendicular to the film surface
[see Fig. 1(a)]. Let the film be characterized by the dielectric
function ε1(ω), the hole be filled with the material having
the dielectric function ε2(ω), and the film be surrounded by
medium with the dielectric function ε0. We choose the origin
of the cylindrical coordinate system R = (r,θ,z) at the center
of the hole and direct its z axis along the hole axis from the
entrance toward the exit hole opening.
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FIG. 1. (Color online) (a) Geometry of the problem. (b) The
fictitious surface currents. The currents within the hole openings and
out of them are indicated separately. The notations of the currents are
explained in the text.

A. Incident wave

Let us assume that a plane wave of frequency ω strikes the
film surface under the angle α with respect to the z axis so that
its wave vector k0 lies in the xz plane. Then its electric and
magnetic field vectors can be written as

Ei = (
Ei

xex + Ei
yey + Ei

zez

)
ei(k0xx+k0zz)e−iωt (1)

and

Hi = (
Hi

xex + Hi
yey + Hi

z ez

)
ei(k0xx+k0zz)e−iωt , (2)

respectively, where eμ are the unit vectors of the rectangular
coordinates, k0 = (ω/c)

√
ε0, c is the speed of light in vacuum,

k0x = k0 sin α, and k0z = k0 cos α. The field components, Ei
μ

and Hi
μ, depend on the wave polarization. For the electric field

vector parallel to the xz plane (p polarization),

Ei = (−E0 cos α,0,E0 sin α), Hi = (0, − H0,0), (3)

whereas for the electric field vector parallel to the y axis (s
polarization),

Ei = (0,E0,0), Hi = (−H0 cos α,0,H0 sin α). (4)

Here E0 and H0 = √
ε0E0 are the electric and magnetic field

amplitudes of the incident wave, respectively.

B. Fictitious currents

A general solution of Maxwell’s equations can be found
in terms of the electric and magnetic Hertz vectors, �e and
�m, respectively.21 Assuming the temporal dependence of the

fields in the form of exp(−iωt), one can obtain the electric and
magnetic field amplitudes in Gaussian units as follows:

Ej = ∇(∇ · �e
j

) + k2
j�

e
j + i

ω

c
∇ × �m

j , (5)

Hj = ∇(∇ · �m
j

) + k2
j�

m
j − iεj

ω

c
∇ × �e

j , (6)

where kj = (ω/c)
√

εj = (2π/λ)
√

εj with λ the wavelength in
vacuum and the subscript j labels different media.

To construct the solution of Maxwell’s equations in the
film interior (−L/2 < z < L/2), we first find the fields which
would be there in the absence of the hole. Such a solution can
be found using standard methods.22 The corresponding field
components, E1μ and H1μ, for both p and s polarizations of
the incident light are given in Appendix A. In what follows
the Hertz vectors associated with these fields are denoted by
�σ

1 (σ = e,m). Analogously one can find the reflected fields in
the region z < −L/2. We denote the Hertz vectors associated
with the fields at z < −L/2 in the absence of the hole by
�σ

0 . These fields include the incident wave fields, Ei and Hi ,
Eqs. (1) and (2), and together with the fields determined by
the potentials �σ

1 they satisfy the continuity of the tangential
components at z = −L/2.

Let us consider now the film with a hole. To proceed
we use a variant of the induction theorem formulated by
Schelkunoff.23 The presence of the hole both disturbs the fields
below the entrance hole aperture leading to the “reflected”
fields, E′ and H′, and produces the fields E′′ and H′′ above it.
At this moment we do not know these fields, however; to find
them in a first approximation we require that their components
tangential to the plane z = −L/2 would be continuous across
this plane, namely,

E−
1t + E′(1)

t = E′′(1)
t , (7)

H−
1t + H′(1)

t = H′′(1)
t , (8)

where the superscript minus sign means that the field com-
ponents are taken at z = −L/2, the subscript t denotes the
components tangential to the film surface, and the superscript
(1) designates the first approximation, which is corrected later.
Here we have used the fact that in the absence of the hole the
tangential field components are equal to E−

1t and H−
1t on both

sides from the plane z = −L/2. According to Schelkunoff,23

the field Ē(1), H̄(1) composed of E′(1), H′(1) below the plane
z = −L/2 and of E′′(1), H′′(1) above it could be produced by
electric and magnetic current sheets over the entrance hole
aperture with the current densities

Ke = c

4π
ez × H−

1t (9)

and

Km = − c

4π
ez × E−

1t , (10)

respectively [see Fig. 1(b)]. Using the expansion

eik0xx = eik0x r cos θ =
∞∑

n=−∞
inJn(k0xr)e−inθ (11)
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with Jn(ρ) the Bessel function of the first kind, one can
represent the current densities in the form

Kσ (r,θ ) =
∞∑

n=−∞

[
κσ

rn(r)er + κσ
θn(r)eθ

]
e−inθ , (12)

where er and eθ are the unit vectors of the cylindrical
coordinates and the current components κσ

νn(r) depend on
the incident wave polarization. In the following we consider
in detail the case of light transmission through a hole in an
optically thick metal film. This implies that the film thickness
is much larger than the skin depth, i.e.,

L � (Imk1)−1. (13)

One can show that in this limit the contribution of the
amplitudes Fσ

− in Eqs. (A1)–(A10) can be neglected. In such
a case the fictitious current components take the form given in
Appendix B.

The Hertz vectors which describe the fields produced by
the fictitious currents (9) and (10) in the hole interior can be
found with the use of Green’s function as follows:

�σ
2 (R) = i

τ σ
2 ω

∫
S2

Kσ (R′)
eik2|R−R′|

|R − R′| dR′, (14)

where τ e
j = εj , τm

j = 1, the surface S2 is the entrance opening
of the hole, and it is assumed that the currents Ke and Km are
taken in the rectangular coordinates (x,y,z).

The distance between the points R and R′ can be written in
the cylindrical coordinates as follows:

|R − R′| =
√

d2 + (z + L/2)2 (15)

with

d =
√

r2 + r ′2 − 2rr ′ cos(θ − θ ′). (16)

Now using the identity24

eikj

√
d2+z2

√
d2 + z2

= i

2

∫ ∞

−∞
H

(1)
0 (qjd)eiβzdβ (17)

and the theorem of addition for the cylindrical functions,

H
(1)
0 (qjd) =

∞∑
s=−∞

Js(qj r<)H (1)
s (qj r>)e−is(θ−θ ′) (18)

with

qj =
√

k2
j − β2, 0 � Arg(qj ) < π, (19)

r< = min(r,r ′), r> = max(r,r ′), and H (1)
n (ρ) the Hankel func-

tion of the first kind, one can express the quantity (14)
in the form of the Fourier integral over β. To include in
the consideration any arbitrary values of β, we analytically
continue the corresponding Fourier transform onto the whole
complex plane of β and take the integral over the integration
path C, which runs along the real axis (see Fig. 2). As a result,
we obtain

�σ
2 (r,θ,z) = 1

2π

∫
C

�̃σ
2 (r,θ ; β)eiβ(z+L/2)dβ, (20)

-k 2

k2

-k 1

k1

β0

Im β

Reβ

C C +

-β 0

FIG. 2. Complex plane of the axial propagation constant, β. The
cuts and poles are shown schematically by thick lines and dots,
respectively. For simplicity, only a single waveguide mode, β0, is
indicated. The integration path C+ includes also the arcs of an infinite
radius.

where

�̃σ
2 =

∞∑
n=−∞

�̃σ
2ne

−inθ (21)

with

�̃σ
2n(r; β) = − π2

τσ
2 ω

∫ a

0

[
pσ

n−(r ′)Jn−1(q2r<)H (1)
n−1(q2r>)

+ pσ
n+(r ′)Jn+1(q2r<)H (1)

n+1(q2r>)
]
r ′dr ′. (22)

Here the functions pσ
n±(r) are defined as follows:

pσ
n±(r) = [

κσ
rn(r) ∓ iκσ

θn(r)
]
(er ± ieθ ). (23)

C. Solution inside the film

Equations (20)–(22) give a partial solution of the Helmholtz
equation which, being combined with the fields determined
by the potentials �σ

0 , obeys the continuity of the tangential
field components at z = −L/2 [see Eqs. (7) and (8)]. It does
not, however, satisfy the necessary boundary conditions at the
hole wall, r = a. To obtain a general solution for the fields
in the slab −L/2 < z < L/2 we add to the Hertz vectors �σ

j

a general solution of the homogeneous Helmholtz equation
which only has a z component, �σ

j ,21 so that the total Hertz
vectors take the form

�σ
j = �σ

j + �σ
j ez, j = 1,2. (24)

The quantities �σ
j can be written as the Fourier integrals

�σ
j (r,θ,z) = 1

2π

∫
C

�̃σ
j (r,θ ; β)eiβzdβ (25)

with the same integration path C as before. The Fourier
transforms �̃σ

j in their turn can be expanded in the elementary
waves of a cylinder,

�̃σ
j (r,θ ; β) = 1

q2
j

∞∑
n=−∞

aσ
jn(β)Zn(qj r)e−inθ , (26)
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where Zn(ρ) is a cylindrical function defined as

Zn(qj r) =
{
Jn(q2r) if r < a,

H (1)
n (q1r) if r > a.

(27)

Due to the contributions given by the Hertz vectors �σ
j =

�σ
j ez, the boundary conditions for the total fields dictated by

the Hertz vectors �σ
j , Eq. (24), are not satisfied at both planes

z = −L/2 and z = L/2. The discontinuities of the tangential
field components at these surfaces can be represented by the
fictitious electric and magnetic surface currents [see Fig. 1(b)]
by the same procedure as in Sec. II B:

Le±
j = c

4π
ez × Hψ±

j (28)

and

Lm±
j = − c

4π
ez × Eψ±

j , (29)

respectively, with

Eψ±
j (r,θ ) = 1

2π

∫
C

∞∑
n=−∞

[Ẽψ

jrn(r; β)er

+ Ẽ
ψ

jθn(r; β)eθ ]e−inθ e±iβL/2dβ, (30)

Hψ±
j (r,θ ) = 1

2π

∫
C

∞∑
n=−∞

[H̃ψ

jrn(r; β)er

+ H̃
ψ

jθn(r; β)eθ ]e−inθ e±iβL/2dβ, (31)

where the ± signs correspond to the planes z = ±L/2 and
the Fourier-transformed field components Ẽ

ψ

jμn and H̃
ψ

jμn are
given in Appendix C.

The coefficients aσ
jn(β) in Eq. (26) are not yet defined.

We choose them to ensure the continuity of the tangential
components of the total fields across the cylindrical surface
r = a. This field inside the hole (j = 2) and outside it (j = 1)
is given by a sum of the fields originating from the Hertz vector
�j , Eq. (24), and the fields produced by the currents Lσ±

j ,
Eqs. (28) and (29). As a result the boundary condition at r = a

is reduced to the integral equation

M̂n(β) �An(β) − 1

2π

∫
C

[e−i(β−β ′)L/2 − ei(β−β ′)L/2]

× N̂n(β,β ′) �An(β ′)dβ ′ = �Bn(β)eiβL/2, (32)

where

�An(β) =

⎛
⎜⎜⎜⎝

ae
2n(β)

am
2n(β)

ae
1n(β)

am
1n(β)

⎞
⎟⎟⎟⎠ , (33)

and

�Bn(β) =

⎛
⎜⎜⎜⎝

�Ẽθn(β)

�Ẽzn(β)

�H̃θn(β)

�H̃zn(β)

⎞
⎟⎟⎟⎠ (34)

with �Ẽμn(β) ≡ Ẽ1μn(a; β) − Ẽ
φ

2μn(a; β) and �H̃μn(β) ≡
H̃1μn(a; β) − H̃

φ

2μn(a; β), μ = θ, z; the tilde above a symbol

denotes the Fourier transform of the corresponding quan-
tity. The explicit form of the field amplitudes Ẽ1μn(r; β),
H̃1μn(r; β) and Ẽ

φ

2μn(r; β), H̃
φ

2μn(r; β) as well as the matrices

M̂n(β) and N̂n(β,β ′) are given in Appendices D, E, and F,
respectively.

Let us note that the equation

M̂n(β) �An(β) = 0 (35)

determines the solutions of source-free Maxwell equations for
a cylindrical hole in an infinite metal. Correspondingly, the
roots of det M̂n(β), βa , specify the waveguide modes of such
a channel. The quantity det M̂n(β) contains β only in the form
of β2; therefore, both βa and −βa are the roots of det M̂n(β).
The integral on the left-hand side of Eq. (32) originates from
the contribution of the channel terminations. The nontrivial
solutions of the homogeneous equation which corresponds to
Eq. (32) give the normal modes of a hole in a metal film of
finite thickness.20

III. TRANSMITTED FIELD

The fields Eψ+
j and Hψ+

j along with the fields originating
from the Hertz vectors �σ

2 taken at z = L/2 dictate the
electromagnetic field transmitted through the film. Denoting
the latter contribution to the fictitious surface currents by Mσ ,
one can write the Hertz vectors of the transmitted field as
follows:

�σ (R) = i

τ σ
0 ω

{∫
S1

Lσ+
1 (R′)

eik0|R−R′|

|R − R′| dR′

+
∫

S2

[
Lσ+

2 (R′) + Mσ (R′)
]eik0|R−R′|

|R − R′| dR′
}

,

(36)

where the surfaces S1 and S2 are the back film surface and the
exit opening of the hole, respectively.

Using identities (17) and (18), one can transform Eq. (36)
to the form

�σ (r,θ,z) = 1

2π

∫
C

∞∑
n=−∞

[�̃
σ

1n(r; β) + �̃
σ

2n(r; β)]

× e−inθ eiβ(z−L/2)dβ, (37)

where

�̃
σ

jn(r; β) = − π2

τσ
0 ω

∫
Aj

[
qσ

jn−(r ′)Jn−1(q0r<)H (1)
n−1(q0r>)

+ qσ
jn+(r ′)Jn+1(q0r<)H (1)

n+1(q0r>)
]
r ′dr ′ (38)

with

Aj =
{

[a,∞) if j = 1,

[0,a] if j = 2,
(39)

qσ
1n±(r) = [λσ

1rn(r) ∓ iλσ
1θn(r)](er ± ieθ ), (40)

and

qσ
2n±(r) = {[λσ

2rn(r) + μσ
rn(r)]

∓ i[λσ
2θn(r) + μσ

θn(r)]}(er ± ieθ ). (41)
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Here the quantities λσ
jrn, λσ

jθn and μσ
rn, μσ

θn are determined
by the components of the fictitious currents Lσ+

j and Mσ ,
respectively, and are given in Appendix G.

The Fourier transforms of the electromagnetic field ampli-
tudes associated with the Hertz vectors �σ can be obtained
formally from Eqs. (E3)–(E10) with the use of the following
substitutions:

pσ
n±,r → qσ

jn±,r , τ σ
j → τσ

0 , qj → q0. (42)

The Hertz vectors of the transmitted field can be signifi-
cantly simplified in the far-field region where k0R � 1 with
R =

√
r2 + (z − L/2)2. Assuming also that q0r � 1, one can

replace the Hankel functions by their asymptotics and come to
the expression

�̃
σ

jn(r; β) ≈ iπ3/2

ω

√
2

q0r
e−i(2n+1)π/4[Sσ

jn+(β)−Sσ
jn−(β)]eiq0r ,

(43)

where

Sσ
jn±(β) = 1

τσ
0

∫
Aj

qσ
jn±(r ′)Jn±1(q0r

′)r ′dr ′. (44)

Substituting Eq. (43) in Eq. (37) and considering the
distance to the observation point, R, as a large parameter,
one can evaluate the Fourier integral with the use of the
steepest-descent method. Introducing the angle of diffraction,
χ , by the relations

r = R sin χ, z − L/2 = R cos χ, (45)

one finds �σ = �σ
1 + �σ

2 , where

�σ
j (R,χ,θ ) ≈ π

ω

eik0R

R
Qσ

j (χ,θ ) (46)

with

Qσ
j (χ,θ ) =

∞∑
n=−∞

(−i)ne−inθ [Sσ
jn+(βs) − Sσ

jn−(βs)] (47)

and βs = k0 cos χ is the saddle point.
The electromagnetic field determined by the Hertz vectors

(46) is purely transversal in the leading order in 1/R; i.e.,
ER = HR = 0. The corresponding power diffracted into the
elementary solid angle d� = sin χdχdθ is given by

dP (χ,θ ) ≈ πω2ε
3/2
0

8c3
(| Gχ (χ,θ ) |2 + | Gθ (χ,θ ) |2)d�,

(48)

where the functions Gχ (χ,θ ) and Gθ (χ,θ ) determine the
angular dependence of the field components Eχ and Eθ ,
respectively. They are found as follows:

Gμ(χ,θ )=
∞∑

n=−∞
(−i)ne−inθ [G1μn(χ )+G2μn(χ )], μ = χ,θ

(49)

with

Gjχn(χ ) = √
ε0

[
Se

jn+,r (βs) − Se
jn−,r (βs)

]
cos χ

+ i
[
Sm

jn+,r (βs) + Sm
jn−,r (βs)

]
, (50)

Gjθn(χ ) = i
√

ε0
[
Se

jn+,r (βs) + Se
jn−,r (βs)

]
− [

Sm
jn+,r (βs) − Sm

jn−,r (βs)
]

cos χ, (51)

and Sσ
jn±,r are the r components of the vectors Sσ

jn±.
The total power transmitted through the film is given by

P =
∫ 2π

0

∫ π/2

0
dP (χ,θ ) ≈ π2ω2ε

3/2
0

4c3

×
∞∑

n=−∞

∫ π/2

0
[| G1χn(χ ) + G2χn(χ ) |2

+ | G1θn(χ ) + G2θn(χ ) |2] sin χdχ, (52)

where we have neglected the contribution of small diffraction
angles such that χ � 1/

√
k0R. Let us note that at normal

incidence (α = 0) the sum in Eq. (52) contains only the terms
with n = ±1.

In just the same way as it has been done in this section one
can find the field diffracted into the half-space z < −L/2. This
field is determined by the fictitious currents Kσ and Lσ−

j . In
the far-field region where q0r � 1, its evanescent part can be
represented by a cylindrical wave similar to (43) integrated
over imaginary propagation constants β. This contribution
varies with the distance from the hole center as eik0r/r . Such
a diffracted field was invoked in Ref. 13 to explain light
transmission through subwavelength hole arrays.

IV. LIMIT OF ELONGATED HOLE

Up to this point we have not made any assumptions
regarding the hole sizes. In this section we assume that the
film thickness exceeds considerably the hole diameter; i.e.,
L � 2a. Let us rewrite Eq. (32) in the following form:

�Cn(β) − 1

2π

[ ∫
C+

e−i(β−β ′)L/2N̂n(β,β ′)M̂−1
n (β ′) �Cn(β ′)dβ ′

−
∫

C−
ei(β−β ′)L/2N̂n(β,β ′)M̂−1

n (β ′) �Cn(β ′)dβ ′
]

= �Bn(β)eiβL/2, (53)

where

�Cn(β) = M̂n(β) �An(β). (54)

The integration path C+ runs in the upper half-plane em-
bracing the cuts and the poles in the right half-plane of
the complex plane of β (see Fig. 2) while the integration
path C− runs similarly in the lower half-plane embracing the
cuts and the poles in the left half-plane (not shown). The
contributions from the cut edges are estimated as being of
the order of (2a/L)2 and can be neglected. The remaining
integrals are determined by the sum of residues of the
integrands at the poles given by the roots of det M̂n(β ′),
i.e., by the propagation constants of the normal modes of
an infinitely long hole, βa . As a result, one comes to the
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following equation:

�Cn(β) − i

{ ∑
b

e−i(β−βb)L/2N̂n(β,βb)Res
[
M̂−1

n (βb)
] �Cn(βb)

+
∑

b

ei(β+βb)L/2N̂n(β, − βb)

× Res
[
M̂−1

n (−βb)
] �Cn(−βb)

}
= �Bn(β)eiβL/2, (55)

where Res[M̂−1
n (βb)] is a matrix composed of the residues of

the matrix elements of M̂−1
n (β) at the pole β = βb. Equation

(55) determines the vector functions �Cn(β) in terms of the
vector coefficients �Cn(βb) which satisfy in their turn the set of
equations

�Cn(βa) − i

{ ∑
b

e−i(βa−βb)L/2N̂n(βa,βb)Res
[
M̂−1

n (βb)
] �Cn(βb)

+
∑

b

ei(βa+βb)L/2N̂n(βa, − βb)

× Res
[
M̂−1

n (−βb)
] �Cn(−βb)

}
= �Bn(βa)eiβaL/2. (56)

The dimension of this set of equations is dictated by the
number of waveguide modes which are supported by an
infinitely long hole at a given frequency ω for a given number
n, the modes propagating in both directions being taken into
account.

In the considered limit the functions λσ
jνn(r) and μσ

νn(r), ν =
r,θ , which determine the fictitious surface currents at the exit
hole opening, can also be significantly simplified. Replacing
the path of integration, C, in Eqs. (G1)–(G8) by the contour C+
and neglecting the contribution from the cut edges as before,
one obtains that the functions λσ

jνn(r) are reduced to the sum of
the contributions from the poles βa of the coefficients aσ

jn(β)
while all the functions μσ

νn(r) = 0. Taking into account the
representation �An(β) = M̂−1

n (β) �Cn(β), one concludes that the
poles of the coefficients aσ

jn(β) are given by both the normal
modes of an infinitely long hole, βa , and the pole β = k1z,
which appears in the components of the vector function �B(β).
The latter pole gives the contribution to the quantities λσ

jνn(r),
which is proportional to the factor exp(ik1zL) and hence can
be neglected in the limit of an optically thick film.

Let us consider in some more detail the limit of a
subwavelength hole when for a given n only a single mode, β0,
gives an essential contribution to the field amplitudes. Then
the vector coefficients �C(β0) satisfy the equation

Ôn(β0) �Cn(β0) = �Bn(β0) (57)

with

�Cn(β) =
( �Cn(β)

�Cn(−β)

)
(58)

and

�Bn(β) =
( �Bn(β)eiβL/2

�Bn(−β)e−iβL/2

)
. (59)

Here Ôn(β) is a block matrix

Ôn(β) =
(

Ôn,11(β) Ôn,12(β)

Ôn,21(β) Ôn,22(β)

)
(60)

with

Ôn,11(β) = Î − iN̂n(β,β)Res
[
M̂−1

n (β)
]
, (61)

Ôn,12(β) = −ieiβLN̂n(β, − β)Res
[
M̂−1

n (−β)
]
, (62)

Ôn,21(β) = −ieiβLN̂n(−β,β)Res
[
M̂−1

n (β)
]
, (63)

Ôn,22(β) = Î − iN̂n(−β, − β)Res
[
M̂−1

n (−β)
]
, (64)

and Î is a 4 × 4 unit matrix. Let us note that the maxima of
| det Ôn(β0) |−1 which can occur at certain ω determine the
Fabry-Pérot modes of the nanohole (cf. Ref. 20).

The above equations can be further simplified if the
waveguide mode decays essentially at the hole length; i.e.,
exp(−Imβ0L) � 1. In such a case the equations for the
vector coefficients �C(β0) and �C(−β0) are decoupled. Then
the transmitted power normalized to the incident wave power
through an area πa2, P0, takes the form

P

P0
= f (a,λ)e−2Imβ0L, (65)

where the coefficient f (a,λ) does not depend on L.

V. NUMERICAL RESULTS

We illustrate the general theory developed above by
the numerical calculations of light transmission through a
hole in an optically thick Ag film which was investigated
experimentally in Ref. 3. To calculate the dielectric function of
Ag we use the interpolation of the data represented in Ref. 25.
For the case of normal incidence of light, one needs to take
into account only the waveguide modes with n = ±1. Figure 3
shows the dispersion of such modes in the wavelength range
of interest. It is seen that one of these modes is propagating
below cutoff at λ ≈ 600 nm and evanescent above it, while
the other two modes are strongly evanescent in the whole
considered domain. We use therefore the approximation of the
elongated hole in the single-mode regime. The total power,
P , transmitted through the hole calculated with the use of
Eq. (52) and normalized to the quantity P0 is represented in
Fig. 4. The intensity drop at λ ≈ 600 nm corresponds to the
transition across the cutoff. This decrease is more sharp for
a larger film thickness that is in agreement with the tendency
observed in Ref. 3. One should keep in mind, however, that
the approximation developed in Sec. IV is valid only for large
aspect ratios, L/(2a) � 1.

The transmission spectra display also several distinct peaks
whose positions differ for different hole depths. To elucidate
their origin we have plotted the quantity | det Ôn(β0) |−1 in
Fig. 5. One can see that the positions of the maxima in this
figure exactly coincide with those in Fig. 4, which allows one
to conclude that they correspond to the Fabry-Pérot modes of
the nanohole.

Another feature which requires an explanation is the high
intensity of the peaks (P/P0 � 10) near the cutoff wavelength.
To understand this behavior we notice that in the considered
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FIG. 3. (Color online) Dispersion of the waveguide modes with
n = ±1 calculated for a hole of radius a = 135 nm in an Ag film;
ε2 = 1.

approximation the field amplitudes are determined by the
residues of the vector �An(β) at the pole β = β0:

Res[ �An(β0)] = Res
[
M̂−1

n (β0)
] �Cn(β0), (66)

where the matrix elements of the matrix Res[M̂−1
n (β0)] are

inversely proportional to the derivative d[det M̂n(β)]/dβ taken
at β = β0. The latter quantity for n = 1 is plotted in Fig. 6.
One can see that in the range λ = 550–600 nm both its real and
imaginary parts are very close to zero, which explains the large
amplitudes of the transmitted field. Such peculiar behavior is a
consequence of the quasidegeneracy of the waveguide modes
in the considered wavelength domain, which is seen in Fig. 3.
Really, the expansion of the function det M̂1(β) in the vicinity
of the point β = β0 has the form

det M̂1(β) = det M̂1(β0) +
{

d[det M̂1(β)]

dβ

}
β=β0

(β − β0)

+ 1

2

{
d2[det M̂1(β)]

dβ2

}
β=β0

(β − β0)2 + · · · ,

(67)

where det M̂1(β0) = 0 by the definition of a waveguide mode.
On the other hand, the existence of a double root at β = β0
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FIG. 4. (Color online) The normalized power transmitted through
a hole in an Ag film; ε0 = ε2 = 1, a = 135 nm. Inset: the same
quantity shown on a larger scale.

means that this expansion starts from the third term, which
implies that {d[det M̂n(β)]/dβ}β=β0 = 0.

Figure 7 illustrates the angular dependence of the transmit-
ted light intensity in the far zone. One can see that for small
diffraction angles (| χ |� 15◦) the intensity almost does not
depend on the angle θ which specifies the observation direction
with respect to the plane of polarization of the incident wave.
On the contrary, along the direction parallel to the film surface,
the intensity differs sufficiently between scattering in the plane
of polarization and perpendicularly to it.

Finally, Fig. 8 shows the dependence of the factor f (a,λ)
which determines the transmitted power in the limit of the
infinite film thickness [see Eq. (65)] on the ratio a/λ as
compared with that calculated in the model of a perfectly
conducting film.12 The latter quantity is proportional to (a/λ)4,
so it is represented by a straight line on a double logarithmic
scale. One can see that even in the limit of a subwavelength
hole (a � λ) the power transmitted through a real metal film
does not follow a power law with respect to a/λ. Its behavior
is determined by the waveguide mode dispersion β0(λ). Also,
it is seen that the model of a perfect conductor overestimates
this quantity several-fold.

VI. DISCUSSION

One of the purposes of the present paper is to elucidate
the role of surface plasmon polaritons in light transmission
through a hole in a real metal film. Although some authors,
analyzing the numerical or experimental results on the EOT
through an isolated hole, declare that SPPs participate in the
transfer of energy through a hole, this statement requires a
rigorous justification.

A surface plasmon polariton manifests itself as a pole in the
Fourier (or Laplace) transform of the Hertz vector with respect
to the wave-vector component parallel to the surface.26 Its
frequency dependence is given by the SPP dispersion relation.
The contribution of this pole to the integral representation
of the Hertz vector describes a SPP propagating along the
surface. In this paper, we have found the Hertz vector of
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FIG. 5. (Color online) The wavelength dependence of the quan-
tity | det Ôn(β0)|−1 for n = ±1. The maxima correspond to the
Fabry-Pérot modes of the nanohole. Calculations for an Ag film,
ε0 = ε2 = 1, a = 135 nm: (a) L = 200nm, (b) L = 800 nm. Insets:
the same quantities shown in a narrow wavelength range.

the electromagnetic field transmitted through a cylindrical
hole in a parallel plate of a real metal starting from first
principles and not making any simplifying assumptions. We
should emphasize that a pole which corresponds to a SPP does
not appear in the Hertz vector Fourier transform. Instead, the
transmitted electromagnetic field is governed by the normal
modes of a finite-length hole. Such modes are determined by
the solutions of the integral Eq. (32) with a zero right-hand-side
part. They depend on the hole length, L, and can be identified
with Fabry-Pérot modes of the hole.

In this context, it is necessary to stress that the light
transmission through a subwavelength hole is a diffraction
problem, and the normalization of the transmitted power to
the incident wave power in the ray approximation may be
somewhat misleading. In particular, the values of transmission
efficiency exceeding unity do not necessarily mean that the
field enhancement takes place. From this point of view, it
is not surprising that the models which treat a metal as a
perfect conductor are able to describe the extraordinary optical
transmission.
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FIG. 6. (Color online) The wavelength dependence of the real
and imaginary parts of the quantity {d[det M̂1(β)]/d(βa)}β=β0 .
Calculations for an Ag film, ε2 = 1, a = 135 nm.

This does not exclude, however, that SPPs can be observed
in experiments on light transmission through a nanohole.
The authors of Ref. 27 have reported SPP generation from
isolated nanoholes at the back side of an Au film. A source
for such surface waves could be surface defects at the rim
of the exit hole opening,28 which are not considered in
the framework of the present model. This process can be
described in terms of an effective point dipole located above
the surface (including the limit of an infinitesimal height
above the surface). It is essentially the same model as that
considered by Sommerfeld,26 which involves excitation of
SPPs. Alternatively, one can treat this problem using Green’s
dyadic functions. Such an approach has been used in Ref. 29
to find the surface electromagnetic field radiated by a hole in
a metal film. The radiation from a hole itself, however, should
be described by an effective dipole (or by fictitious surface
currents as in the present paper) located in the surface plane.
This case requires a special consideration since Green’s dyadic
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FIG. 7. (Color online) The angular dependence of the transmitted
field intensity in the far zone for two different azimuthal angles, θ .
Calculations for an Ag film, ε0 = ε2 = 1, a = 135 nm, L = 800 nm,
λ = 581 nm.
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FIG. 8. (Color online) The dependence of the function f (a,λ)
[Eq. (65)] on the ratio a/λ calculated for a hole of radius a =
20 nm in an Ag film, double logarithmic scale. This factor found
in the model of a perfectly conducting film is also shown for
comparison.

as a function of the dipole position is discontinuous across the
surface plane.

The question can arise of how the theory presented here
correlates with the previous models. The only model which
allows a rigorous analytical approach and can be found in the
literature is that of a perfectly conducting film. One could try
to obtain this limit by setting formally ε1 → i∞. In such a
case the fictitious magnetic current Km, Eq. (10), is equal
to zero while the fictitious electric current Ke, Eq. (9), is
nonzero. The latter current generates four nonzero tangential
field components (Eθ , Ez, Hθ , and Hz) at the cylindrical
hole surface r = a. However, the general solution of the
homogeneous Helmholtz equation for a hole in a PC film
for a given n is determined by only two arbitrary constants,
ae

2n and am
2n, because the fields outside the hole are identically

equal to zero. The set of four equations which follows from
the boundary conditions is overdetermined in this case and
it is not possible to find the Hertz vector in the form (24).
Alternatively, one can conclude that the matrix M̂n(β) becomes
singular for a PC film and the developed approach does not
allow a continuous limiting transition to this model.

VII. CONCLUSION

In this paper, we have found an analytical solution of
Maxwell’s equations for a cylindrical hole of arbitrary size
in a film of optically thick material. Having introduced
fictitious surface current sheets at both film surfaces, we
have satisfied the necessary conditions at all boundaries. The
solution is found in the form of the Fourier integral over
the axial component of the wave vector. We have derived the
integral equation which determines the field-amplitude Fourier
transforms. This general solution has been analyzed in the case
when the hole length is considerably larger than its diameter.
Then the integral equation is reduced to a set of linear algebraic
equations whose dimension is dictated by the number of
waveguide modes supported by a hole of a given diameter. We

have illustrated the developed theory by the calculations of the
transmission spectrum of a subwavelength hole in an optically
thick Ag film. We have demonstrated that all spectral features
can be clearly associated with the normal modes of the system.
We have emphasized that surface plasmon polaritons, whose
existence would be manifested as a specific pole in the field-
amplitude Fourier transforms, do not appear in our analysis.

APPENDIX A: FIELD AMPLITUDES INSIDE A FILM
WITHOUT A HOLE

The field amplitudes depend on the polarization of the
incident wave. For p polarization,

E1x(x,z) = k1z

(
Fe

−e−ik1zz − Fe
+eik1zz

)
eik0xx, (A1)

E1y(x,z) = 0, (A2)

E1z(x,z) = k0x

(
Fe

−e−ik1zz + Fe
+eik1zz

)
eik0xx, (A3)

H1x(x,z) = H1z(x,z) = 0, (A4)

H1y(x,z) = −ε1
ω

c

(
Fe

−e−ik1zz + Fe
+eik1zz

)
eik0xx . (A5)

For s polarization,

E1x(x,z) = E1z(x,z) = 0, (A6)

E1y(x,z) = ω

c

(
Fm

− e−ik1zz − Fm
+ eik1zz

)
eik0xx, (A7)

H1x(x,z) = k1z

(
Fm

− e−ik1zz − Fm
+ eik1zz

)
eik0xx, (A8)

H1y(x,z) = 0, (A9)

H1z(x,z) = k0x

(
Fm

− e−ik1zz + Fm
+ eik1zz

)
eik0xx . (A10)

Here

Fσ
± = −2ck0z

ω

Bσ
±

Dσ
e−i(k0z±k1z)L/2 (A11)

with k1z =
√

k2
1 − k2

0x and

Be
± = (ε0k1z ± ε1k0z)H0, (A12)

Bm
± = (k1z ± k0z)E0, (A13)

De = (ε1k0z − ε0k1z)
2eik1zL − (ε1k0z + ε0k1z)

2e−ik1zL,

(A14)

Dm = (k0z − k1z)
2eik1zL − (k0z + k1z)

2e−ik1zL. (A15)

APPENDIX B: FICTITIOUS CURRENT COMPONENTS κσ
μn

The fictitious current amplitudes, κσ
μn, defined by Eq. (12)

for an optically thick film are found for p polarization of the
incident wave as follows:

κe
rn(r) = in−1

4π
ε1ωAeJ ′

n(k0xr), (B1)

κe
θn(r) = − inn

4π

ε1ωAe

k0xr
Jn(k0xr), (B2)

κm
rn(r) = inn

4π

ck1zA
e

k0xr
Jn(k0xr), (B3)

κm
θn(r) = in−1

4π
ck1zA

eJ ′
n(k0xr), (B4)
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where

Ae = 2cH0

ω

k0z

ε1k0z + ε0k1z

e−ik0zL/2 (B5)

and the prime above the Bessel function denotes its derivative
with respect to its argument.

For s polarization of the incident wave one finds

κe
rn(r) = − inn

4π

ck1zA
m

k0xr
Jn(k0xr), (B6)

κe
θn(r) = − in−1

4π
ck1zA

mJ ′
n(k0xr), (B7)

κm
rn(r) = − in−1

4π
ωAmJ ′

n(k0xr), (B8)

κm
θn(r) = inn

4π

ωAm

k0xr
Jn(k0xr), (B9)

where

Am = 2cE0

ω

k0z

k0z + k1z

e−ik0zL/2. (B10)

In the case of normal incidence α = 0, k0x = 0 and both
polarizations are equivalent to each other. Then the sum (12)
only contains the terms with n = ±1, and their cylindrical
components are given by (E0 ‖ ex)

κe
r,±1 = 1

8π
ε1ωAe

0, (B11)

κe
θ,±1 = ∓ i

8π
ε1ωAe

0, (B12)

κm
r,±1 = ± i

8π
ck1A

e
0, (B13)

κm
θ,±1 = 1

8π
ck1A

e
0 (B14)

with

Ae
0 = 2cH0

ω

k0

ε1k0 + ε0k1
e−ik0L/2. (B15)

APPENDIX C: FIELD AMPLITUDES ASSOCIATED WITH
THE HERTZ VECTORS �σ

j

The field amplitudes dictated by the Hertz vectors �σ
j are

obtained by their substitution in Eqs. (5) and (6) instead of the
vectors �σ

j . The result has the form of the Fourier integrals

F
ψ

jμ(r,θ,z) = 1

2π

∫
C

∞∑
n=−∞

F̃
ψ

jμn(r; β)e−inθ eiβzdβ, (C1)

with the Fourier-transformed quantities F̃
ψ

jμn given by the
following equations:

Ẽ
ψ

jrn(r; β) = iβ

qj

Z′
n(qj r)ae

jn(β) + ωn

cq2
j r

Zn(qj r)am
jn(β),

(C2)

Ẽ
ψ

jθn(r; β) = βn

q2
j r

Zn(qj r)ae
jn(β) − iω

cqj

Z′
n(qj r)am

jn(β),

(C3)

Ẽ
ψ

jzn(r; β) = Zn(qj r)ae
jn(β), (C4)

H̃
ψ

jrn(r; β)=− ck2
j n

ωq2
j r

Zn(qj r)ae
jn(β)+ iβ

qj

Z′
n(qj r)am

jn(β),

(C5)

H̃
ψ

jθn(r; β)= ick2
j

ωqj

Z′
n(qj r)ae

jn(β)+ βn

q2
j r

Zn(qj r)am
jn(β),

(C6)

H̃
ψ

jzn(r; β) = Zn(qj r)am
jn(β). (C7)

Here the functions Zn are defined by Eq. (27) and the quantities
aσ

jn are the coefficients in Eq. (26).

APPENDIX D: FOURIER TRANSFORMS OF THE FIELDS
TRANSMITTED INTO THE FILM

In the limit of an optically thick film one can neglect
the coefficients Fσ

− in Eqs. (A1)–(A10) and represent the z

dependence of the fields as follows:

eik1z(z+L/2) = 1

2πi

∫
C

eiβ(z+L/2)

β − k1z

dβ. (D1)

Then using expansion (11) one can write the cylindrical
components of the field amplitudes in the form

F1ν(r,θ,z) = 1

2π

∫
C

F̃1ν(r,θ ; β)eiβ(z+L/2)dβ, (D2)

with

F̃1ν(r,θ ; β) =
∞∑

n=−∞
F̃1νn(r; β)e−inθ . (D3)

For p polarization of the incident light, one obtains

Ẽ1rn(r; β) = ink1zA
e

β − k1z

J ′
n(k0xr), (D4)

Ẽ1θn(r; β) = in−1nk1zA
e

k0xr(β − k1z)
Jn(k0xr), (D5)

H̃1rn(r; β) = in−1nε1ωAe

ck0xr(β − k1z)
Jn(k0xr), (D6)

H̃1θn(r; β) = inε1ωAe

c(β − k1z)
J ′

n(k0xr). (D7)

For s polarization,

Ẽ1rn(r; β) = − in−1nωAm

ck0xr(β − k1z)
Jn(k0xr), (D8)

Ẽ1θn(r; β) = inωAm

c(β − k1z)
J ′

n(k0xr), (D9)

H̃1rn(r; β) = ink1zA
m

β − k1z

J ′
n(k0xr), (D10)

H̃1θn(r; β) = in−1nk1zA
m

k0xr(β − k1z)
Jn(k0xr). (D11)
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Here the quantities Aσ are defined in Appendix B.
In the case of normal incidence (E0 ‖ ex), the only nonzero

field components are those with n = ±1. They are given by

Ẽ1r,−1(β) = Ẽ1r,1(β) = ik1A
e
0

2(β − k1)
, (D12)

Ẽ1θ,−1(β) = −Ẽ1θ,1(β) = − k1A
e
0

2(β − k1)
, (D13)

H̃1r,−1(β) = −H̃1r,1(β) = − ε1ωAe
0

2c(β − k1)
, (D14)

H̃1θ,−1(β) = H̃1θ,1(β) = iε1ωAe
0

2c(β − k1)
, (D15)

where Ae
0 is defined by Eq. (B15).

APPENDIX E: FIELD AMPLITUDES ASSOCIATED WITH
THE HERTZ VECTORS �σ

2

The field components associated with the Hertz vectors �σ
2

can be written as the Fourier integrals

F
φ

2ν(r,θ,z) = 1

2π

∫
C

F̃
φ

2ν(r,θ ; β)eiβ(z+L/2)dβ, (E1)

with

F̃
φ

2ν(r,θ ; β) =
∞∑

n=−∞
F̃

φ

2νn(r; β)e−inθ , (E2)

where the quantities F̃
φ

2νn are given by the equations

Ẽ
φ

2rn(r; β) = −π2

ω

[
β

(
βP e

n< − i
ω

c
P m

n<

)
H

(1)
n−1(q2r) + β

(
βP e

n> − i
ω

c
P m

n>

)
Jn−1(q2r)

+β

(
βQe

n< + i
ω

c
Qm

n<

)
H

(1)
n+1(q2r) + β

(
βQe

n> + i
ω

c
Qm

n>

)
Jn+1(q2r)

+ nq2

r

(
P e

n< + Qe
n<

)
H (1)

n (q2r) + nq2

r

(
P e

n> + Qe
n>

)
Jn(q2r) + 2i

πτ e
2

(
pe

n−,r + pe
n+,r

)]
, (E3)

Ẽ
φ

2θn(r; β) = π2

ω

[(
ik2

2P
e
n< + β

ω

c
P m

n<

)
H

(1)
n−1(q2r) +

(
ik2

2P
e
n> + β

ω

c
P m

n>

)
Jn−1(q2r) −

(
ik2

2Q
e
n< − β

ω

c
Qm

n<

)
H

(1)
n+1(q2r)

−
(

ik2
2Q

e
n> − β

ω

c
Qm

n>

)
Jn+1(q2r) − i

nq2

r

(
P e

n< − Qe
n<

)
H (1)

n (q2r) − i
nq2

r

(
P e

n> − Qe
n>

)
Jn(q2r)

]
, (E4)

Ẽ
φ

2zn(r; β) = π2

ω
q2

{[
iβ

(
P e

n< − Qe
n<

) + ω

c

(
P m

n< + Qm
n<

)]
H (1)

n (q2r) +
[
iβ

(
P e

n> − Qe
n>

) + ω

c

(
P m

n> + Qm
n>

)]
Jn(q2r)

}
. (E5)

Here the following functions have been introduced:

P σ
n<(r) = 1

τσ
2

∫ r

0
pσ

n−,r (r ′)Jn−1(q2r
′)r ′dr ′, (E6)

P σ
n>(r) = 1

τσ
2

∫ a

r

pσ
n−,r (r ′)H (1)

n−1(q2r
′)r ′dr ′, (E7)

Qσ
n<(r) = 1

τσ
2

∫ r

0
pσ

n+,r (r ′)Jn+1(q2r
′)r ′dr ′, (E8)

Qσ
n>(r) = 1

τσ
2

∫ a

r

pσ
n+,r (r ′)H (1)

n+1(q2r
′)r ′dr ′. (E9)

The amplitudes H̃
φ

2rn, H̃
φ

2θn, and H̃
φ

2zn can be formally

obtained from Ẽ
φ

2rn, Ẽ
φ

2θn, and Ẽ
φ

2zn, respectively, using the

substitutions

P e
nν → P m

nν, Qe
nν → Qm

nν,

P m
nν → −ε2P

e
nν, Qm

nν → −ε2Q
e
nν, (E10)

τ e
2 → τm

2 , pe
n±,r → pm

n±,r ,

where the subscript ν acquires the values < or >. Let us note
that

P σ
n>(a) = Qσ

n>(a) = 0. (E11)

APPENDIX F: EXPLICIT FORM OF THE MATRICES
M̂n AND N̂n

The matrix M̂n has the following form:

M̂n(β) =

⎛
⎜⎜⎜⎝

(
βn/q2

2a
)
Jn(q2a) −(iω/cq2)J ′

n(q2a) −(
βn/q2

1a
)
H (1)

n (q1a) (iω/cq1)H (1)′
n (q1a)

Jn(q2a) 0 −H (1)
n (q1a) 0(

ik2
2c/ωq2

)
J ′

n(q2a)
(
βn/q2

2a
)
Jn(q2a) −(

ik2
1c/ωq1

)
H (1)′

n (q1a) −(
βn/q2

1a
)
H (1)

n (q1a)

0 Jn(q2a) 0 −H (1)
n (q1a)

⎞
⎟⎟⎟⎠ , (F1)
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where the prime above the Bessel and Hankel functions
denotes their derivative with respect to their argument.

The matrix elements of the matrix N̂n are found as follows:

[N̂n(β,β ′)]11 = π2

ω

{
−

[
ik2

2π
e,1
2,−1(β,β ′) + ω

c
βπ

m,1
2,−1(β,β ′)

]
H

(1)
n−1(q2a) +

[
ik2

2π
e,1
2,1 (β,β ′) − ω

c
βπ

m,1
2,1 (β,β ′)

]
H

(1)
n+1(q2a)

+ i
nq2

a

[
π

e,1
2,−1(β,β ′) − π

e,1
2,1 (β,β ′)

]
H (1)

n (q2a)
}
, (F2)

[N̂n(β,β ′)]12 = π2

ω

{
−

[
ik2

2π
e,2
2,−1(β,β ′) + ω

c
βπ

m,2
2,−1(β,β ′)

]
H

(1)
n−1(q2a) +

[
ik2

2π
e,2
2,1 (β,β ′) − ω

c
βπ

m,2
2,1 (β,β ′)

]
H

(1)
n+1(q2a)

+ i
nq2

a

[
π

e,2
2,−1(β,β ′) − π

e,2
2,1 (β,β ′)

]
H (1)

n (q2a)
}
, (F3)

[N̂n(β,β ′)]13 = π2

ω

{[
ik2

1π
e,3
1,−1(β,β ′) + ω

c
βπ

m,3
1,−1(β,β ′)

]
Jn−1(q1a) −

[
ik2

1π
e,3
1,1 (β,β ′) − ω

c
βπ

m,3
1,1 (β,β ′)

]
Jn+1(q1a)

−i
nq1

a

[
π

e,3
1,−1(β,β ′) − π

e,3
1,1 (β,β ′)

]
Jn(q1a)

}
, (F4)

[N̂n(β,β ′)]14 = π2

ω

{[
ik2

1π
e,4
1,−1(β,β ′) + ω

c
βπ

m,4
1,−1(β,β ′)

]
Jn−1(q1a) −

[
ik2

1π
e,4
1,1 (β,β ′) − ω

c
βπ

m,4
1,1 (β,β ′)

]
Jn+1(q1a)

− i
nq1

a

[
π

e,4
1,−1(β,β ′) − π

e,4
1,1 (β,β ′)

]
Jn(q1a)

}
, (F5)

[N̂n(β,β ′)]21 = −π2

ω
q2

{
iβ

[
π

e,1
2,−1(β,β ′) − π

e,1
2,1 (β,β ′)

] + ω

c

[
π

m,1
2,−1(β,β ′) + π

m,1
2,1 (β,β ′)

]}
H (1)

n (q2a), (F6)

[N̂n(β,β ′)]22 = −π2

ω
q2

{
iβ

[
π

e,2
2,−1(β,β ′) − π

e,2
2,1 (β,β ′)

] + ω

c

[
π

m,2
2,−1(β,β ′) + π

m,2
2,1 (β,β ′)

]}
H (1)

n (q2a), (F7)

[N̂n(β,β ′)]23 = π2

ω
q1

{
iβ

[
π

e,3
1,−1(β,β ′) − π

e,3
1,1 (β,β ′)

] + ω

c

[
π

m,3
1,−1(β,β ′) + π

m,3
1,1 (β,β ′)

]}
Jn(q1a), (F8)

[N̂n(β,β ′)]24 = π2

ω
q1

{
iβ

[
π

e,4
1,−1(β,β ′) − π

e,4
1,1 (β,β ′)

] + ω

c

[
π

m,4
1,−1(β,β ′) + π

m,4
1,1 (β,β ′)

]}
Jn(q1a), (F9)

[N̂n(β,β ′)]31 = π2

ω

{
−

[
ik2

2π
m,1
2,−1(β,β ′) − ω

c
βε2π

e,1
2,−1(β,β ′)

]
H

(1)
n−1(q2a) +

[
ik2

2π
m,1
2,1 (β,β ′) + ω

c
βε2π

e,1
2,1 (β,β ′)

]
H

(1)
n+1(q2a)

+ i
nq2

a

[
π

m,1
2,−1(β,β ′) − π

m,1
2,1 (β,β ′)

]
H (1)

n (q2a)
}
, (F10)

[N̂n(β,β ′)]32 = π2

ω

{
−

[
ik2

2π
m,2
2,−1(β,β ′) − ω

c
βε2π

e,2
2,−1(β,β ′)

]
H

(1)
n−1(q2a) +

[
ik2

2π
m,2
2,1 (β,β ′) + ω

c
βε2π

e,2
2,1 (β,β ′)

]
H

(1)
n+1(q2a)

+ i
nq2

a

[
π

m,2
2,−1(β,β ′) − π

m,2
2,1 (β,β ′)

]
H (1)

n (q2a)
}
, (F11)

[N̂n(β,β ′)]33 = π2

ω

{[
ik2

1π
m,3
1,−1(β,β ′) − ω

c
βε1π

e,3
1,−1(β,β ′)

]
Jn−1(q1a) −

[
ik2

1π
m,3
1,1 (β,β ′) + ω

c
βε1π

e,3
1,1 (β,β ′)

]
Jn+1(q1a)

− i
nq1

a

[
π

m,3
1,−1(β,β ′) − π

m,3
1,1 (β,β ′)

]
Jn(q1a)

}
, (F12)

[N̂n(β,β ′)]34 = π2

ω

{[
ik2

1π
m,4
1,−1(β,β ′) − ω

c
βε1π

e,4
1,−1(β,β ′)

]
Jn−1(q1a) −

[
ik2

1π
m,4
1,1 (β,β ′) + ω

c
βε1π

e,4
1,1 (β,β ′)

]
Jn+1(q1a)

− i
nq1

a

[
π

m,4
1,−1(β,β ′) − π

m,4
1,1 (β,β ′)

]
Jn(q1a)

}
, (F13)

[N̂n(β,β ′)]41 = −π2

ω
q2

{
iβ

[
π

m,1
2,−1(β,β ′) − π

m,1
2,1 (β,β ′)

] − ω

c
ε2

[
π

e,1
2,−1(β,β ′) + π

e,1
2,1 (β,β ′)

]}
H (1)

n (q2a), (F14)
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[N̂n(β,β ′)]42 = −π2

ω
q2

{
iβ

[
π

m,2
2,−1(β,β ′) − π

m,2
2,1 (β,β ′)

] − ω

c
ε2

[
π

e,2
2,−1(β,β ′) + π

e,2
2,1 (β,β ′)

]}
H (1)

n (q2a), (F15)

[N̂n(β,β ′)]43 = π2

ω
q1

{
iβ

[
π

m,3
1,−1(β,β ′) − π

m,3
1,1 (β,β ′)

] − ω

c
ε1

[
π

e,3
1,−1(β,β ′) + π

e,3
1,1 (β,β ′)

]}
Jn(q1a), (F16)

[N̂n(β,β ′)]44 = π2

ω
q1

{
iβ

[
π

m,4
1,−1(β,β ′) − π

m,4
1,1 (β,β ′)

] − ω

c
ε1

[
π

e,4
1,−1(β,β ′) + π

e,4
1,1 (β,β ′)

]}
Jn(q1a). (F17)

Here we have introduced the following functions:

π
σ,k
j,μ(β,β ′) = 1

τσ
j

a

β2 − β ′2 C
σ,k
j,μ(β ′)Dj,μ(β,β ′), (F18)

where σ = e,m; k = 1,2,3,4; j = 1,2; μ = ±1; τ e
j = εj ;

τm
j = 1; and

C
e,1
2,1(β) = −C

e,1
2,−1(β) = i

c2k2
2

4πωq2
; (F19)

C
e,2
2,1(β) = C

e,2
2,−1(β) = − cβ

4πq2
; (F20)

C
e,3
1,1(β) = −C

e,3
1,−1(β) = −i

c2k2
1

4πωq1
; (F21)

C
e,4
1,1(β) = C

e,4
1,−1(β) = cβ

4πq1
; (F22)

C
m,1
2,1 (β) = C

m,1
2,−1(β) = cβ

4πq2
; (F23)

C
m,2
2,1 (β) = −C

m,2
2,−1(β) = i

ω

4πq2
; (F24)

C
m,3
1,1 (β) = C

m,3
1,−1(β) = − cβ

4πq1
; (F25)

C
m,4
1,1 (β) = −C

m,4
1,−1(β) = −i

ω

4πq1
; (F26)

Dj,μ(β,β ′) = q ′
jZn+μ(qja)Zn+μ−1(q ′

j a)

− qjZn+μ−1(qja)Zn+μ(q ′
j a); (F27)

with q ′
j =

√
k2
j − β ′2 and

Zm(qja) =
{
H (1)

m (q1a) if j = 1,

Jm(q2a) if j = 2.
(F28)

When calculating the matrix elements of N̂n(β,β ′) at β ′ → β

one should use the limit

lim
β ′→β

π
σ,k
j,μ(β,β ′) = − a2

2τσ
j

C
σ,k
j,μ(β)D0

j,μ(β) (F29)

with

D0
j,μ(β)= [Zn+μ(qja)]2−Zn+μ−1(qja)Zn+μ+1(qja). (F30)

APPENDIX G: EXPLICIT FORM OF THE FUNCTIONS
λσ

jνn(r) AND μσ
νn(r)

The functions λσ
jνn(r) and μσ

νn(r) with ν = r,θ which
determine the quantities qσ

jn±(r) are found as follows:

λe
jrn(r) = − c

8π2

∫
C

H̃
ψ

jθn(r; β)eiβL/2dβ, (G1)

λe
jθn(r) = c

8π2

∫
C

H̃
ψ

jrn(r; β)eiβL/2dβ, (G2)

λm
jrn(r) = c

8π2

∫
C

Ẽ
ψ

jθn(r; β)eiβL/2dβ, (G3)

λm
jθn(r) = − c

8π2

∫
C

Ẽ
ψ

jrn(r; β)eiβL/2dβ, (G4)

μe
rn(r) = − c

8π2

∫
C

H̃
φ

2θn(r; β)eiβLdβ, (G5)

μe
θn(r) = c

8π2

∫
C

H̃
φ

2rn(r; β)eiβLdβ, (G6)

μm
rn(r) = c

8π2

∫
C

Ẽ
φ

2θn(r; β)eiβLdβ, (G7)

μm
θn(r) = − c

8π2

∫
C

Ẽ
φ

2rn(r; β)eiβLdβ, (G8)

where the Fourier-transformed field amplitudes Ẽ
ψ,φ

jνn and H̃
ψ,φ

jνn

are given in Appendices E and C.
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