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Magnetoelectric coupling, Berry phase, and Landau level dispersion in a biased bilayer graphene
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We study the energy spectrum of a graphene bilayer in the presence of transverse electric and magnetic fields.
We find that the resulting Landau levels exhibit a nonmonotonic dependence on the electric field, as well as
numerous level crossings. This behavior is explained using quasiclassical quantization rules that properly take
into account the pseudospin of the quasiparticles. The pseudospin generates the Berry phase, which leads to a shift
in energy quantization and results in a pseudo-Zeeman effect. The latter depends on the electric field, alternates
in sign among the two valleys, and also reduces the band gap. Analytic formulas for other pseudospin-related
quantities, such as the anomalous Hall conductivity, are derived and compared with prior theoretical work.
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I. INTRODUCTION

The physics of monolayer and bilayer graphene has
attracted much recent attention.1 A unique feature of bilayer
graphene (BLG) is its tunable band structure: The symmetric
bilayer is gapless, but when an interlayer potential difference
U is induced, a band gap opens. The low-energy regions
affected by the gap are situated at the Brillouin zone corners,
e.g., points K± = ±(4π/3a0)x̂, henceforth referred to as K±
valleys, near which the band dispersion acquires a “sombrero”
shape2,3 (see Fig. 1), where a0 = 2.46 Å is the lattice constant
for the underlying triangular Bravais lattice.

There have been interesting theoretical predictions that
electron interactions can spontaneously generate layer polar-
ization and a band gap,4–10 experimental evidence for which
has been recently reported.11–15 Robust ways of creating an
interlayer bias U include doping and gating. The latter enables
one to change U continuously, although the dependence
of U on the gate voltage is nontrivial.16,17 In most of
the experimental studies of bilayer graphene, a single gate
electrode was used.12,17–26 In such devices the interlayer bias U

and the induced electron density n vary concomitantly with the
gate voltage. Separate control of U and n can be achieved with
two gates.27,28 Experiments with dual-gate devices11,27,29–31

have been reported recently.
Another intriguing property of graphene is that its low-

energy quasiparticles are endowed with a pseudospin- 1
2 de-

gree of freedom, associated with the sublattice structure of
each monolayer, whose dynamics is linked to their orbital
motion.1 When a quasiparticle traces a closed-loop trajectory
in momentum space, its pseudospin sweeps out a certain
solid angle, just as in the canonical Berry phase setting.32,33

Such orbits naturally occur when an external magnetic field
B is present—they are the cyclotron orbits. In monolayer
graphene the corresponding Berry phase is equal to π =
1
2 (2π ) at all energies.34 This property is the reason for the
1
2 -shift in the Landau-level filling factor ν = 4(N − 1

2 ) at
which N th magnetoresistance minimum occurs.35,36 Here the
factor of 4 is the spin-valley degeneracy, assuming it is
preserved.

Given the unusual band structure of BLG, it is interesting to
consider the effects of the Berry phase and other pseudospin-
related phenomena on the Landau levels and the magnetic
response in this material. Indeed, it is known37,38 that the

pseudospin generates a linear coupling to the transverse
component Bz of the magnetic field, similar to a real
spin.

Note that such a pseudo-Zeeman coupling does not vi-
olate the time-reversal symmetry of the system at B = 0.
Since this symmetry operation interchanges the valleys, it is
only the sum M+

z + M−
z of the corresponding magnetic

moments that must vanish. Further symmetry considerations
require the pseudo-Zeeman shift of the energy eigenvalue Eq

to be linear in both applied fields,

�Eq ∝ −EzBz cos 3φq, (1)

where φq is the polar angle in reciprocal space relative
to the zone center q = 0. This expression conforms to the
following valley-interchanging operations: (i) a reflection O1

with respect to the y-z plane, and (ii) a composite operation O2

consisting of a rotation through angle π around the x axis in the
midplane, followed by time reversal. Both of these operations
leave the crystal structure invariant (see Fig. 3). The first one
keeps Ez the same but reverses the sign of Bz (because B is a
pseudovector). The second changes the sign of Ez but keeps
Bz the same.

Equation (1) constitutes a magnetoelectric effect in bilayer
graphene. It implies that the valley symmetry cannot be broken
solely by Bz or by Ez alone. Rather, both fields must be nonzero
simultaneously. (It is also reminiscent of the Chern-Simons
term, which occurs in topological insulators.39) Below we
study this kind of valley-symmetry breaking analytically,
focusing on the question how it modifies the Landau-level
dispersion.

Prior theoretical studies2 have already showed that Landau
levels in bilayer graphene become valley split at finite U . This
was explained by noting that the quasiparticle wave functions
of the two valleys have different dipole moments in the z

direction. Equation (1) offers a complementary interpretation:
The two valleys in a biased bilayer graphene have different
magnetic moments.37,38

The ratio of the pseudo-Zeeman term (1) and the Zeeman
energy due to real spin determine the effective g factor of
bilayer graphene. We show below that g can be an order of
magnitude higher than its bare value g = 2. This resembles the
situation in Bi, another low band-gap material. In fact, there is
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FIG. 1. (Color online) BLG band dispersion as a function of εk =
h̄v0k, where k is the momentum measured from the nearest K± point.
At B = 0 the bands are valley degenerate. The dashed curves show
their dispersion calculated from Eq. (8) for the interlayer bias 2U =
240 meV. In a finite field, the bands acquire a pseudo-Zeeman shift,
Eq. (48), opposite in the two valleys. The solid curves show the result
for K+ at B = 5 T.

a mathematical similarity of the low-energy theories40 of the
two materials. (Of course, Bi is three-dimensional.)

The dependence of Landau-level energies in bilayer
graphene on Bz and U is known to be quite compli-
cated (see, e.g., Refs. 41–44). We show that it can be
understood if one applies quasiclassical quantization to the
sombrero band structure. This procedure requires calculating
the phase shifts �c acquired by quasiparticles on their
cyclotron orbits. Both the pseudo-Zeeman term and the
Berry phase contribute to �c. As a result, �c generally is
not an integer multiple of the monolayer value π . When
it does become equal to π , at certain values of U , an
interesting phenomenon occurs: Adjacent Landau levels of
opposite valleys become degenerate. Therefore, there are an
infinite number of Landau-level crossings within the same
band.

Landau-level crossings in the two-dimensional electron gas
(2DEG) have previously attracted much theoretical45–51 and
experimental52–63 interest because the 2DEG then exhibits
many of the properties found in ferromagnets. Therefore,
BLG may be a promising system for studying quantum Hall
ferromagnetism.

The remainder of this article is organized as follows.
A brief summary of BLG band structure properties is
given in Sec. II. The quasiclassical approximation is dis-
cussed in Sec. III. Illustrative Landau-level spectra are
presented in Sec. IV. The anomalous Hall conductivity
of the BLG is computed in Sec. V. Concluding remarks
are given in Sec. VI. Technical notes are gathered in the
Appendixes.

b1

b2

a1

a2

δ2

δ3

v

u
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FIG. 2. (Color online) Graphene monolayer (left-hand side) and
resulting Brillouin zone (right-hand side).

II. ANALYTIC RESULTS FROM PRIOR WORK

A. Zero magnetic field

The band structure of BLG, well known from previous
literature,1 is shown in Fig. 1. In this section we summarize its
main properties, focusing on analytic results.

The unit cell of a graphene bilayer, depicted in Fig. 3,
consists of four atoms, which we label u, v, ũ, and ṽ. The
underlying Bravais lattice is the triangular Bravais lattice of
either honeycomb monolayer (Fig. 2). The Bravais lattice
sites are at locations R = n1a1 + n2a2, where a1 = a0x̂ and
a2 = a0( 1

2 x̂ +
√

3
2 ŷ) are primitive direct lattice vectors, n1,2

are integers, and a0 = 2.461 Å is again the lattice constant.
The corresponding elementary reciprocal lattice vectors are
b1 = 4π

a0
√

3
(
√

3
2 x̂ − 1

2 ŷ) and b2 = 4π

a0
√

3
ŷ. The three nearest-

neighbor separation vectors δ1,2,3 are given by δ1 = − 1
3 a1 −

1
3 a2, δ2 = 2

3 a1 − 1
3 a2, and δ3 = − 1

3 a1 + 2
3 a2, each of length

|δj | = a0/
√

3 = 1.42 Å. The in-plane locations of the four
sublattices are then given by the subscripts uR, vR+δ1 , ũR+δ1 ,
and ṽR−δ1 , and the separation between the (u,v) and (ũ,ṽ)
planes is d = 3.35 Å. The (ũ,ṽ) layer (B) is shifted by δ1

relative to the (u,v) layer (A), a configuration known as Bernal
stacking.

Note that repeating the Bernal stacking ABABAB. . .

generates the common form of graphite. In graphite, the v

and ũ sublattices form one-dimensional chains, while the u

and ṽ sites lie above and below hexagon centers in neighboring
planes. The electronic structure of graphite dates to the seminal
work of Wallace64 and subsequent work by McClure65 and by
Slonczewski and Weiss,66 known as the Slonczewski-Weiss-
McClure (SWMc) model. The SWMc model is equivalent to a
seven-parameter tight-binding model which describes nearest-
neighbor in-plane hopping (amplitude −γ0), three interplane
hopping processes (γ1,γ3,γ4), two next-nearest plane hoppings
(γ2,γ5), and an on-site energy shift �′ which distinguishes
the chain sites (v,ũ) from the nonchain sites (u,ṽ) in each
unit cell. The parameter �′ should not be confused with
� ≡ �′ + γ2 − γ5.

In BLG, γ2 and γ5 do not enter and one further expects67

�′
BLG = �′

graphite/2. Therefore, in BLG we are left with
five parameters: γ0 = 3.0 eV, γ1 = 0.41 eV, γ3 = 0.3 eV,
γ4 = 0.15 eV, and �′ = 0.018 eV. (For the interpretation of
these parameters within the tight-binding picture, see Fig. 3.
For a discussion of their numerical values, including the
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FIG. 3. (Color online) Crystal structure of bilayer graphene. We
label four sublattices by u, v, ũ, ṽ. Also shown is the assignment of
the hopping parameters γj of the tight-binding model. The labels ±U

indicate the electrostatic potential energies of the layers.

uncertainties, see Ref. 67.) Finally, to describe a biased BLG,
we include a scalar potential ±U on the two layers.

The SWMc Hamiltonian of BLG in second-quantized
notation is written as Ĥ = ∑

q 	
†
qHq	q , where

	†
q = ( u

†
q v

†
q ũ

†
q ṽ

†
q ), (2)

is a four- (sublattice) component creation operator with crystal
momentum q, and

Hq =

⎛⎜⎜⎝
−U −γ0Sq γ4Sq γ3S

∗
q

−γ0S
∗
q −U + �′ γ1 γ4Sq

γ4S
∗
q γ1 U + �′ −γ0Sq

γ3Sq γ4S
∗
q −γ0S

∗
q U

⎞⎟⎟⎠ . (3)

Here, as in Ref. 64, we define the dimensionless in-plane
hopping amplitude

Sq = eiq·δ1 + eiq·δ2 + eiq·δ3 . (4)

In the vicinity of the two inequivalent Brillouin zone corners
q = ±K (see Fig. 2), Sq vanishes, and writing q = ±K + k
one finds

SK+k = −
√

3
2 (kx − iky)a0 + O(k2), (5)

S−K+k = +
√

3
2 (kx + iky)a0 + O(k2). (6)

Setting all parameters but γ0 to zero, one obtains the monolayer
dispersion,

εk = γ0|Sq | = h̄v0|k| + O(k2) , (7)

where v0 = √
3γ0a0/2h̄ ≈ 1.0 × 108 cm/s is the Fermi

velocity.
If we turn on the interlayer hopping γ1 and the interlayer

potential U , keeping γ3 = γ4 = �′ = 0, then we obtain68 the
spectrum

Es1s2,k = s1

√
1
2γ 2

1 + U 2 + ε2 + s2
2(εk), (8)


(ε) ≡ [
1
4γ 4

1 + (
γ 2

1 + 4U 2
)
ε2

]1/4
. (9)

Here s1 and s2 label the four bands as follows: s1 = ± labels
the conduction and valence bands, respectively, while s2 = +1
for the outer bands and s2 = −1 for the inner bands. Thus, the
ordering of the four levels is

E−+ < E−− � E+− < E++. (10)

(For aesthetic reasons, we will usually abbreviate s1,2 = ± in
the subscripts, as above.)

Due to particle-hole symmetry at γ4 = �′ = 0, we may
restrict our attention to the conduction bands s1 = +1. In this
case, the shape of the energy bands is as follows. For the outer
band, E++ is a monotonic function of ε, starting at q = ±K ,
where E++ = E� ≡ √

γ 2
1 +U 2 and extending to E++(0) ≈ 3γ0

(assuming γ0 	 γ1,U ). We will be interested mainly in the
inner (s2 = −1) bands, shaped as the sombreros near q = K±,
i.e., k = 0. For example, the conduction band E+−,k has a local
maximum—the top of the hat—at εk = 0, where E+− = U and
a local minimum—the bottom of the hat—at εk = ε�, where

ε� =
√

U 2 + E2
� , E� = γ1U√

γ 2
1 + 4U 2

. (11)

Hence, this minimum is attained on circles of radius k� =
ε�/h̄v0, centered at the zone corners.

Inverting the relation between E and ε, and suppressing the
labels s1,2, one finds

ε2
k = E2

k + U 2 − s3�
2(Ek), (12)

�(E) ≡ [(
γ 2

1 + 4U 2
)
E2 − γ 2

1 U 2
]1/4

, (13)

where s3 = ±1. This equation has no solutions when E2 < E2
� ,

which is the band gap for the bulk states. (However, gapless
edge states still may exist at such E—see Refs. 69–71 and
Sec. V.) There are two solutions when E� � |E| � U , both
in the inner (s2 = −1) band. For U � |E| � E� ≡ √

U 2+γ 2
1 ,

the energy is between the local maximum of the inner band
and the minimum of the outer band, and there is one solution.
Finally, for |E| > E� there are again two solutions, one with
s2 = −1 and one with s2 = +1. As we shall see in Sec. IV A,
the existence of two solutions E within the inner band—one on
the inside and the other on the outside of the sombrero—gives
rise to multiple level crossings when magnetic field is turned
on.

If one is interested only in the inner bands and low
energies, |Es1,−,k| 
 γ1, then one can implement a unitary
transformation, discussed in Appendix A, which decouples
the inner (s2 = −1) and outer (s2 = +1) bands.2,72 The results
of this procedure are further described in Sec. II B 2.

B. Quantizing magnetic field

In the presence of a magnetic field B = Bẑ, the two
components of the wave vector no longer commute. Near
the zone corners, we invoke the Kohn-Luttinger substitution
ki → πi such that [πx,πy] = −i/2

B , where B = √
h̄c/e|B| is

the magnetic length. We define the ladder operators,

a = − B√
2

(πx − iπy), a† = − B√
2

(πx + iπy), (14)

which satisfy the commutation relation

[a,a†] = sgn(B). (15)
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Using Eqs. (3) and (14), we find the Hamiltonian of K+ valley
to be

H+(U ) =

⎛⎜⎜⎝
−U −ω0a η4ω0a η3ω0a

†

−ω0a
† −U + �′ γ1 η4ω0a

η4ω0a
† γ1 U + �′ −ω0a

η3ω0a η4ω0a
† −ω0a

† U

⎞⎟⎟⎠ , (16)

where η3 = γ3/γ0 = 0.1, η4 = γ4/γ0 = 0.05, and

ω0 =
√

2
h̄v0

B

≈ 35 meV
√

|B(T)|. (17)

Throughout we shall ignore the effects of real Zeeman
splitting, which are small due to the value of the Bohr magneton
μB = eh̄/2mec = 57.9 μeV/T. At the highest fields in the
relevant experiments (B ≈ 30 T) the real Zeeman splitting is
on the order of a few meV, which is much smaller than even
the smallest of the SWMc energy scales. (As we shall see, the
pseudo-Zeeman effect can be significantly larger.)

The Hamiltonian H− of K− valley is obtained from H+
via the replacements

Rx : a → −a†, a† → −a, (18)

which is the reflection in the y-z plane. The commutation
relation (15) between a and a† and therefore the energy
spectrum is preserved if we additionally reverse the magnetic
field,

RB : B → −B. (19)

The product RxRB implements the symmetry operation O1

discussed in Sec. I. The other valley-interchanging operator
O2 is represented in terms of the unitary matrix

V =
(

0 σx

σx 0

)
(20)

and the time-reversal operation Sq → (Sq)∗, i.e.,

RT : a → −a, a† → −a†, B → −B. (21)

It is easy to see that

H−(U ) = RT RB[V†H+(−U )V]. (22)

Since RT RB also does not change the commutation relation
(15), the spectra of H−(U ) and H+(−U ) coincide. Thus, it
suffices to discuss the spectrum of H+, from which one can
obtain the spectrum of H− by reversing the sign of either U

or B.
These symmetries further imply that at B = 0 the two

valleys are degenerate in energy and that, additionally, each
valley is symmetric under U → −U . On the other hand, at
finite B, the valleys are degenerate only if U = 0. Note also
that the total spectrum, including both valleys, is particle-hole
symmetric when �′ = γ4 = 0.

Making use of the eigenvectors |n〉 of the number operator
a†a, we write the general bilayer wave function as

|	〉 =
∞∑

n=0

⎛⎜⎝un |n〉
vn |n〉
ũn |n〉
ṽn |n〉

⎞⎟⎠ . (23)

FIG. 4. (Color online) Landau-level energies vs magnetic field
for U = 0 (left-hand side) and U = 80 meV (right-hand side). Solid
lines correspond to the K+ valley and broken lines to the K− valley.
The color distinguishes the spectra of Ha (black), Hb (red), and
Hc (blue), where Ha,b,c are defined in Appendix B.

The matrix representation of the corresponding Hamiltonian is
discussed in Appendix B. If all SWMc parameters are kept, it
can be diagonalized only numerically. Some results are shown
in Figs. 4–6, which illustrate that the spectrum can be rather
complicated. In the remainder of this section we review certain
limits where some analytical progress can also be made, which
helps with a physical understanding of these results.

1. γ3 = 0 limit

It is simplest to consider the case where γ3 = 0, which turns
out to be an excellent approximation at large fields. When
γ3 = 0, the eigenstates of H+ fall into one of three classes:

|ψ−1〉 =

⎛⎜⎝ 0
0
0
|0〉

⎞⎟⎠ , |ψ0〉 =

⎛⎜⎝ 0
v0 |0〉
ũ0 |0〉
ṽ1 |1〉

⎞⎟⎠ , (24)

and

|ψn〉 =

⎛⎜⎝un−1 |n − 1〉
vn |n〉
ũn |n〉

ṽn+1 |n + 1〉

⎞⎟⎠ , (25)

with n � 1. Clearly |ψ−1〉 is an eigenstate with eigenvalue E =
U . Applying H+ to |ψ0〉, one obtains the 3 × 3 Hamiltonian
for the ψ0 sector,

H0 =
⎛⎝−U + �′ γ1 η4ω0

γ1 U + �′ −ω0

η4ω0 −ω0 U

⎞⎠ . (26)
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FIG. 5. (Color online) Landau-level energies vs magnetic field B

for the case γ3 = γ4 = U = 0. The labeling of the states corresponds
to that in the text.

Finally, the spectrum for the |ψn〉 states (n � 1) is given by
the eigenvalues of the 4 × 4 Hamiltonian

Hn =

⎛⎜⎝−U −Wn η4Wn 0
−Wn −U + �′ γ1 η4Wn+1

η4Wn γ1 U + �′ −Wn+1

0 η4Wn+1 −Wn+1 U

⎞⎟⎠ , (27)

where

Wn ≡ √
n ω0. (28)

To label the states, it is helpful to consider the case γ3 =
γ4 = �′ = U = 0, corresponding to a pure nearest-neighbor
hopping model with constant (zero) local site energies. One
then finds the following (valley-degenerate) spectrum:

E−1 = E0 = 0, E0,s1,+ = s1γ1
√

1 + β, (29)

En,s1,s2 = s1γ1

√
1

2
+

(
n + 1

2

)
β + s2Cn, (30)

where

β =
(

ω0

γ1

)2

= B

135 T
(31)

and

Cn =
√

1

4
+

(
n + 1

2

)
β + 1

4
β2. (32)

Note that the n = −1 and n = 0 states require a separate
labeling convention.

For the full model, with γ3, γ4, and �′ restored, particle-hole
symmetry is broken by the γ4 and �′ terms. These are relatively
small however, so there remains an approximate particle-hole
symmetry, as shown in Fig. 6. The state labels are then defined
by adiabatic continuity with the γ3 = γ4 = �′ = 0 limit.

E
ne

rg
y

(m
eV

)

U (meV)

-120

-80

-40

0

40

80
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FIG. 6. (Color online) Landau-level energies vs interlayer bias U

for a field value B = 5 T. Solid lines correspond to the K+ valley
and broken lines to the K− valley. The color distinguishes the spectra
of Ha (black), Hb (red), and Hc (blue). At an accidental degeneracy
(level crossing), the color and the line type cannot both be identical.
The shaded area indicates the energy gap at B = 0.

2. Low-energy effective theory

As mentioned above, at low energies one can implement a
unitary transformation, which decouples the inner (s2 = −1)
and outer (s2 = +1) bands order by order in S, which vanishes
at the zone corners.2,72 Here S = ∓(

√
3/2)a0(kx ∓ iky) and

the upper (lower) sign denotes the K+ (K−) valley. To order
S2 one obtains

H̃ =

⎛⎜⎜⎝λ(�̃ + 2U )SS† − U γ3S
† − γ 2

0

γ1
S2

γ3S − γ 2
0

γ1
S†2 λ(�̃ − 2U )S†S + U

⎞⎟⎟⎠ , (33)

where λ = (γ0/γ1)2 ≈ 53.5 and

�̃ = �′ + 2γ1γ4

γ0
≈ 59 meV (34)

is a composite parameter describing electron-hole symmetry
breaking effects of �′ and γ4. Anticipating the introduction of
an external magnetic field, we have allowed for the possibility
that S and S† do not commute (cf. Appendix A for the
derivation).

The eigenvalues of H̃ to leading order in γ3 are73

Ẽ±
s1,−,k = ε2

k

γ 2
1

�̃

+ s1

√(
2ε2

k

γ 2
1

− 1

)2

U 2 + ε4
k

γ 2
1

± 2γ3ε
3
k

γ0γ1
cos 3ϕ,

(35)
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where ϕ is the polar angle of k. This agrees with Eq. (8) in the
appropriate limit.

The 2 × 2 form of matrix H̃ in Eq. (33) naturally leads to the
concept of a pseudospin- 1

2 degree of freedom, which simplifies
calculations somewhat. We use this approach sparingly for the
following reasons. First, in experiments U is not necessarily
much smaller than γ1, in which case the reduction to a two-
band effective Hamiltonian is not valid. Second, the calculation
of the pseudospin-related effects is not difficult even when all
four bands are kept. Finally, the low-energy theory does not
produce accurate results for the Berry phase. A brief discussion
of this technical issue is also given in Appendix A.

In a nonzero magnetic field, H̃+ becomes⎛⎜⎝β(�̃ + 2U )aa† − U
γ3

γ0
ω0a

† − βγ1a
2

γ3

γ0
ω0a − βγ1a

†2 β(�̃ − 2U )a†a + U

⎞⎟⎠ , (36)

while H̃− is obtained via substitutions (18). When γ3 = 0,
their eigenvalues are easily obtained by considering the basis
of states

|φ+
n 〉 =

(
u+

n |n − 1〉
v+

n |n + 1〉
)

. (37)

In this basis the above Hamiltonian takes the form⎛⎝β(�̃ + 2U )n − U −βγ1
√

n(n + 1)

−βγ1
√

n(n + 1) β(�̃ − 2U )(n + 1) + U

⎞⎠ . (38)

When n = −1, we have u+
−1 = 0 and the energy levels in the

two valleys are E±
−1 = ±U . With n = 0 we again have u+

0 = 0,
and

Ẽ±
0 = β�̃ ± (1 + 2β)U. (39)

The splitting of the n = −1 and n = 0 levels and their valley-
dependent slope as a function of U lead to a characteristic
diamond-shaped crossing pattern, shown in Fig. 7. The largest
energy gap occurs at U = 0. Its magnitude ≈0.5 meV × B(T)
is only a few times smaller than the gaps11,13,14 measured in
suspended BLG, which were attributed to many-body effects.
On the other hand, much smaller gaps have been observed in
a more disordered BLG on the SiO2 substrate.12

Finally, for n > 0 Landau levels one has44

Ẽ±
n,s1,− =

(
n + 1

2

)
β�̃ ∓ βU

+ s1

√[
(2n + 1)βU ∓ β�̃

2
− U

]2
+ n(n + 1)β2γ 2

1 .

(40)

This completes our summary of the (mostly) known analytic
results for the energy spectrum of BLG.

III. QUASICLASSICAL APPROXIMATION

A. Effective g factor

Renormalization of the electron magnetic moment is a well-
known phenomenon in the solid-state physics. Most often it
comes from spin-orbit interaction; however, in crystals without
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FIG. 7. (Color online) Landau levels −1 and 0 as a function of U

at B = 5 T. The solid (dashed) lines correspond to K+ (K−) valley.
The SWMc parameters are taken from Ref. 67.

inversion symmetry there is an additional contribution due to
the orbital angular momentum:

Mα ≡ 〈α |M| α〉 = − e

2c
〈α| r × v |α〉 . (41)

Here α is a given Bloch state and r ,v are the position and
velocity operators, respectively. Since we are not interested in
the center-of-mass motion, in evaluating Mα we must assume
that the expectation value of position vanishes, i.e., that r has
only off-diagonal matrix elements74

〈α |r| α′〉 = i〈α |∇k| α′〉, α �= α′. (42)

This leads to

Mα = e

2ic

∑
α′ �=α

[〈α |∇k| α′〉 × 〈α′ |v| α〉]. (43)

A lucid derivation of Eq. (43) was given previously in Refs.
75,76, which also contain references to much earlier work.77

Below we assume that B and M are both in the ẑ direction.
The orbital contribution to the g factor is g = 2Mα/μB, where
μB = eh̄/(2mec) is the Bohr magneton and me is the bare
electron mass. To calculate Mα , we can add and subtract the
omitted diagonal term in Eq. (43), which gives

Mα = e

2c
(Fα − Dα), (44)

where

Fα = −i 〈α |∇k × v| α〉 · ẑ, (45)

Dα = −i[〈α| ∇k |α〉 × vg] · ẑ, (46)

(note that both Fα and Dα are real) and where

vg ≡ 〈α| v |α〉 = h̄−1∇kEα (47)
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is the group velocity vector (the subscript α in vg is omitted
for simplicity). Using these formulas we compute the energy
dispersion

Ẽα = Eα − BMα. (48)

It is interesting to compare our formula with those in
literature. A very close analogy is provided by Bi, whose
effective Hamiltonian is also a 4 × 4 matrix linear in k. In
an early paper40 where the calculation of the g factor of Bi is
discussed, the subtraction of the diagonal term Dα is lacking,
so that the result is not gauge invariant. Below we show that
Dα is related to the Berry phase, which apparently has not
been handled correctly in Ref. 40 (considering that it precedes
Berry’s work32 by almost two decades, it is hardly surprising).

Let us now apply our general formula to BLG. For the K+
valley we can choose the eigenvectors of H+ in the form

|α+〉 = (uαe−iϕ,vα,ũα,ṽαeiϕ)T, (49)

where α now throughout this section stands for {s1,s2,k}. It is
assumed that the imaginary parts and the entire dependence
on ϕ—the polar angle of k—enter via the exponential factors
only. A straightforward calculation yields

D+
α = vg

u2
α − ṽ2

α

k
= − vgU

2kEα

(
1 + 4ε2 − γ 2

1

2s2
2(εk)

)
, (50)

F+
α = 2v0

uαvα − ũαṽα

k
− D+

α = − 2h̄v2
0U

s2
2(εk)
− D+

α , (51)

where 
(ε) is given by Eq. (9). The eigenvectors for the K−
valley can be obtained by replacing e±iϕ in Eq. (49) with −e∓iϕ

and so the signs of Fα and Dα are reversed.
The last term represents the pseudo-Zeeman effect due to

the orbital magnetic moment. Algebraic manipulations with
Eqs. (9), (44), (50), and (51), together with the relations

vg = 1

h̄

dE

dk
= v0

ε

E

s3�
2(E)

s2
2(ε)
(52)

and

s3�
2(Eα) − s2


2(εk) = 1
2γ 2

1 + 2U 2, (53)

yields

M+
α = −eh̄

c

2v2
0γ

2
1 U

γ 4
1 + 4(γ 2

1 + 4U 2)ε2
k

(1 − ε2
k

E2
α

). (54)

For the lower-energy conduction band, on which we mostly
focus later, M+

+−,k is plotted in Fig. 8. The modified spectrum
Ẽα is plotted alongside Eα in Fig. 1 for all four bands and in
Fig. 9 for the lower conduction band only. At k = 0 we have a
particularly simple result,

g±
s1,s2,0

= 2

μB
M±

s1,s2,0
= ∓8mev

2
0

U

γ 2
1

(55)

for all s1,2, in agreement with Eq. (54) of Ref. 38.
As one can see from Fig. 8, the g factor has an intriguing

energy dependence, which prompts the question of whether
it can be verified experimentally. Unfortunately, this appears
problematic. There is no optical transition between the energy
levels split by the pseudo-Zeeman effect as they belong to
different valleys, and so methods analogous to the electron spin
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FIG. 8. (Color online) Orbital magnetization M+
+− of K+ valley

as a function of εk = h̄v0k at U = 0.1 eV.

resonance would not work. Another conventional method of
extracting the g factor would be to measure the valley splitting
of the Shubnikov–de Haas effect. However, this splitting also
includes the contribution of the Berry phase, discussed later
in this section. This contribution effectively compensates for
nonmonotonic variation of the g factor, making the valley
splitting of Landau levels only weakly dependent on the Fermi
energy (or Landau-level index).

The most easily observable manifestation of the pseudo-
Zeeman effect appears to be the displacement of the band
edges, e.g., the bottom of the sombrero of the conduction
band. At this point, Eq. (54) yields (the superscript denotes the
valley, as usual)

g±
+−,k�

= 2

μBa
M±

+−,k�
= ± 8mev

2
0U

γ 2
1 + 4U 2

. (56)

Thus, at U = 100 meV we obtain |g±
+−,k�

| ≈ 22. This is one
order of magnitude higher than the bare value g = 2 and is
approximately as large40 as in Bi. (For this reason, we neglect
the bare Zeeman coupling in this paper.) For U 
 γ1, the
effective g factor is proportional to U , as appropriate for the
linear magnetoelectric coupling [Eq. (1)]. Therefore, a roughly
linear variation of the band-edge positions with B and U can
be expected. This issue is addressed in more detail in Sec. IV.

B. Quantization rules

While numerical calculations of the Landau-level spectrum
is possible for any choice of parameters, in Sec. IV we shall
see that the result can be rather complicated. Therefore, both
exact and approximate analytical methods remain valuable for
this task in hand. So far we have discussed two such methods.
First, for U = γ3 = γ4 = �′ = 0, closed-form expressions for
the Landau-level energies [Eqs. (29) and (30)] exist. Second, if
these energies are much smaller than γ1, then the approximate
Eq. (40), valid for finite U , can be used. In this section we
outline another approach—the quasiclassical quantization—
which can be used for an arbitrary relation between U and
γ1. Within this approximation, Landau-level energies E±

n,s1,s2
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FIG. 9. (Color online) Evolution of a particular (n = 5) Landau
level of the K+ valley as a function of U . Superimposed are the spectra
at zero field (thin traces) and that with pseudo-Zeeman correction in
a magnetic field B = 5 T (thick trace). (a) At small U , the quantized
cyclotron orbit is outside the sombrero. (b) For certain U , the orbit
goes inside the gap of the zero-field spectrum. (c) At larger U , it moves
underneath the sombrero where the direction of the group velocity
is opposite to the momentum. (d) At very large U (not presently
accessible in experiments), where the BLG spectrum consists of two
copies of monolayer spectra shifted by ±U , the nth electron Landau
level of BLG approaches the (n + 1)st hole Landau level of the higher-
energy monolayer.

are taken to be equal to the renormalized band energies (48)
evaluated at certain quantized orbits in the reciprocal space:

E±
n,s1,s2

= E±
s1,s2,k

±
n
. (57)

If we ignore γ3, the orbits are circular and the area of the nth
such orbit satisfies the Onsager condition78

π (k±
n B)2 = 2π (n + δ±

n ), (58)

where k±
n is the radius of the orbit and δ±

n is a dimensionless
number discussed below.

The quasiclassical approximation is accurate through the
order O(−2

B ) or alternatively O(1/n). It turns out to be exact
for parabolic dispersion (where δ = 1

2 ) and in monolayer
graphene (where δ = 0). The quasiclassical approximation
for general matrix Hamiltonians was previously studied in
Refs. 79,80 and specifically in the context of graphene in
Ref. 81. However, we found it most instructive to follow
Refs. 75,82.

The physical picture is as follows. In a weak magnetic field,
momentum k of a quasiparticle slowly rotates as a function of
time t according to the equation of motion

k̇ = ωcẑ × k, ωc ≡ 2π

T
sgn(vg), (59)

where T = 2πkn
2
B/|vg(kn)| is the cyclotron period. (For

simplicity, the valley and band labels are temporarily omitted.)
The rotation of k causes a slow evolution of the wave function
|α〉 in the pseudospin, i.e., sublattice space. This causes the
accumulation of the Berry phase32,33

�B ≡ sgn(vg)
∫ T

0
dt 〈α |i∇k| α〉 · k̇. (60)

The quasiclassical quantization rule is75

sgn(vg)
∮

dπy 2
Bπx + �B = π (knB)2 + �B

= (2n + 1)π. (61)

This formula can be understood as a generalized Bohr-
Sommerfeld rule: Since 2

Bπx plays the role of “momentum”
conjugate to the “coordinate” πy , the top line represents
the total phase shift acquired along the orbit, including the
geometric phase. Equation (61) establishes the precise relation
between the Onsager number δ and the Berry phase �B:

δ = 1

2
− �B

2π
, (62)

Thus, in monolayer graphene where �B = π , we get δ = 0,
which implies the existence of a level at zero energy.1

Comparing Eqs. (46) and (60) we see that for the isotropic
spectrum, i.e., for γ3 = 0, we have

�B = 2πk

vg
Dα. (63)

Postponing the discussion of this equation for just a moment,
we note that for vg �= 0, another version of the quantization
rule can be established.82 To this end one defines a modified
orbit radius k̃n such that

En,s1,s2 = Es1,s2 ,̃kn
. (64)

To the leading order in B, the rule that determines k̃n is similar
to Eq. (61) except �B is replaced by a different phase shift �c:

π (̃knB)2 = (2n + 1)π − �c, (65)

�c = �B + sgn vg
MBT

h̄
= πk

vg
(Fα + Dα). (66)

With further analysis it is possible to show that our �c

coincides with the “semiclassical phase” defined in Ref. 81.
Therefore, the difference between �c and �B noted in that
paper is entirely due to the pseudo-Zeeman shift rather than a
violation of adiabaticity.

Applying the above formulas to BLG, we obtain

�±
B

2π
= ∓ U

2Eα

⎛⎝1 + s2
4ε2

k − γ 2
1√

γ 4
1 + 4(γ 2

1 + 4U 2)ε2
k

⎞⎠ . (67)

At finite U the Berry phase is a nonmonotonic function of
momentum, which is addressed in more detail in Sec. V.
Here we comment only on the simple case U = 0, where
Eq. (67) gives �±

B = 0 at all k �= 0. This seems to contradict
to the assignment �±

B = ±2π made in most of the previous
work.2,18 In fact, there is no contradiction because the Berry
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phase is not unique: Different choices for an overall phase of
the wave function in Eq. (60) can shift �±

B by an arbitrary
integer multiple of 2π . In the context of Landau quantization,
such shifts can be compensated by relabeling the Landau index
n, so that the physical quantities—the radii k±

n of the orbits
and their energies—remain the same.

Combining Eqs. (66) and (67), we obtain the analytic
formula for the semiclassical phase:

�±
c

2π
= ∓ s3

UEα√(
γ 2

1 + 4U 2
)
E2

α − γ 2
1 U 2

, (68)

This equation should be used away from momentum k�, where
its denominator vanishes. Finally, the quantization rule (65)
becomes

n + 1

2
=

(
εk

ω0

)2

+ �c

2π
. (69)

In comparison, the precise relation between n and Eα for the
case γ3 = γ4 = �′ = 0 reads

n + 1

2
= E2

α + U 2

ω2
0

− s3

√
�4(Eα)

ω4
0

+ 2UEα

ω2
0

+ 1

4
. (70)

This result follows from Eq. (30); the composite label α

denotes the set {n,s1,s2}. The semiclassical Eq. (69) does agree
with the exact Eq. (70) to the leading order in ω2

0, i.e., O(1/n)
at large n. Fortuitously, it is also valid for n = −1. It predicts
k̃+

1−− = 0, which entails E+
1−− = U , in agreement with our

earlier result.
The valley splitting of the Landau levels can be expressed

as follows:

E+
α − E−

α = −2h̄

T
�+

c = s1s2
2γ 2

1 βU√
γ 4

1 + 4
(
γ 2

1 + 4U 2
)
ε2
k

. (71)

Here either k±
n or k̃±

n can be used in place of k because this
formula is valid only to the leading order in β. At low energies,
it simplifies to

E+
α − E−

α � −2βU, n 	 1, (72)

in agreement with Eq. (40). We see that unlike the pseudo-
Zeeman term, discussed in Sec. III A, the net valley splitting
of the Landau levels has little energy or n dependence.

It is now straightforward to apply the above quantization
rules in order to understand qualitatively the evolution of
some n 	 1 Landau level as a function of U . For the K+
valley, illustrated in Fig. 9, the situation is as follows. As U

increases starting from zero, the radius of the orbit changes
only slightly because �B/2π ∼ 1 
 n for all U . On the other
hand, the sombrero expands in both height (energy) and width
(momentum). As a result, the quantized orbit slips from the
exterior (k > k�) to the interior (k < k�) of the hat. In the
process, the orbit passes through a region where its energy is
inside the gap of the B = 0 dispersion because of the negative
pseudo-Zeeman term. [For the K+ valley this occurs only if
U > 0 but not if U < 0—see Eq. (56) and Sec. IV below.]
Eventually, at very large U , the orbit approaches the (n + 1)st
hole Landau level of graphene monolayer, except it is shifted
upward by U .
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FIG. 10. (Color online) Landau-level energies vs interlayer bias
U for a field value B = 5 T. (a) Top panel: γ3 = 0; (b) bottom panel:
γ3 = 0.3 eV. The color and line type are as in Fig. 6. Note the bunching
of levels at the edges of the central band gap when γ3 �= 0: The two
levels just below the gap for U � 100 meV are both very nearly
threefold degenerate.

IV. LANDAU-LEVEL SPECTRUM

A. Level crossings

In this section we explain the physical origin of a nonmono-
tonic U dependence of Landau-level energies, which gives rise
to a complicated netlike pattern with numerous crossings—see
Figs. 10 and 15. It should be clarified that electron interactions,
which are ignored in our calculations, can produce significant
corrections to the Landau-level spectrum. However, we expect
that topological properties of the level diagram would not
change much.

Figure 10 shows the first several Landau levels, which we
calculated numerically as a function of U at a representative
magnetic field of B = 5 T. Only U > 0 are shown because
the energies at negative U can be obtained from the symmetry
relation E+

α (U ) = E−
α (−U ). Let us focus on the s1 = +1 levels

and consider the limits of small and large U (a similar argument
can be applied to the s1 = −1 levels with appropriate sign
changes).

For small U , the Landau levels are roughly equidistant and
those with higher index n have higher energies [in agreement
with Eq. (30) for U = 0]. In the opposite limit of U 	 γ1, from
Eq. (16) it is easy to see that the BLG spectrum consists of two
copies of the monolayer spectrum shifted by ±U . Accordingly,
the set {E±

n+−} approaches the Landau-level energies of the
holes in the monolayer,1 but shifted by U > 0:

E+
n+− � U − √

n + 1 ω0, E−
n+− � U − √

n ω0. (73)
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In this limit states of higher index have lower energies.
Therefore, any two levels of the s2 = −1 band cross at some
value of U . This occurs when the corresponding quantized
orbits are located at the same energy but on the opposite sides
of the sombrero (see Fig. 9).

In addition, it is possible to have crossings of orbits on the
same side of the sombrero if they belong to opposite valleys. In
the semiclassical approximation, this occurs whenever �±

c /π

is an integer. In this case the difference in n is compensated
by the difference in the semiclassical phase, yielding the
same momentum k̃n and energy Es1,s2 (̃kn) [see Eq. (65)]. For
example, at U = 0 we have �±

c = 0, so that all Landau levels
should be (and are) valley degenerate. Next, |�±

c | → π as
U → ∞, so in this limit the adjacent Landau levels coincide,
in agreement with Eq. (73). Using Eqs. (11), (13), and (68),
one can show that the condition |�±

c | = Nπ is met at

E2
α = E2

�

1 − (2E�/Nγ1)2
(γ3 = γ4 = �′ = 0). (74)

This implies that the level crossings are confined to the range
of energies E� � |Eα| � |U |, which is precisely the range
between the top and the bottom of the sombrero. The crossings
at the top of the hat are between the adjacent Landau levels
(N = 1). Since the special level E±

−1 = ±U also happens to
be at the same energy, these are actually triple crossings. In
the s1 = ±1 band, they involve nth level of K±, the (n − 1)st
level of K∓, and the −1 level of K± (assuming U > 0). When
γ3 = γ4 = �′ = 0 these unusual triple crossings appear when
U = Un ≡ 1

2

√
n ω0. We can show by algebraic means that

finite γ4 and �′ give corrections to Un but do not lift the triple
degeneracies. We suspect that this property stems from some
hidden symmetry of the Hamiltonians H±

n .

B. Trigonal warping

The parameter γ3 has a number of interesting effects
on both the zero-field and Landau-level spectra. It mixes
Landau levels of the same valley with indices n different
by an integer multiple of three (see Appendix B). This turns
crossings between such levels into avoided crossings. Strictly
speaking, we can no longer label Landau levels by {n,s1,s2}.
Nevertheless, the effect of γ3 is small at low U , so that
with proper care it is possible to track the levels through the
avoided crossings and still retain our labeling scheme. The
calculation of the Landau-level spectra with γ3 �= 0 is handled
numerically. To account for the level mixing at high U we
had to diagonalize matrices of size 4J with large enough J

(J ≈ 100) to ensure numerical accuracy (see Appendix B).
One effect of γ3 is to lift the triple degeneracy of the adjacent
Landau levels by moving the crossing point energy away from
the top of the sombrero, as expected.

A more interesting effect is the shift of the B = 0 band
edges, which are the boundaries of the central band gap
in Fig. 6. This can be understood as follows. The hopping
γ3 induces a trigonal warping of the zero-field bands, as
described by Eq. (35). Accordingly, the low-energy region
of the conduction band develops three kidney-shaped pockets
along the k = k� circle centered, in K+ valley, at ϕ = 1

3π , π ,

and 5
3π angular positions.83 To the leading order in γ3, their

energy is lowered below E� by

δE �
√

8γ3

γ0

U 2

γ1

(
γ3

γ0

 U

γ1

 1

)
, (75)

which follows from Eqs. (35). Accordingly, the band edge
of the conduction and valence band at B = 0 shifts by ∓δE.
For example, at U = 0.15 eV we obtain δE ≈ 8 meV. This is
in a good agreement the numerical results shown in Figs. 6
and 10.

The effect of γ3 on Landau levels is even more striking. As
one can see from Fig. 10, it leads to a bunching of Landau
levels near the conduction- (and valence-) band edges as
U increases above 0.1 eV. Apparently, these Landau levels,
which can be labeled n = n� − 1, n�, and n� + 1, become
nearly degenerate. Within a simple quasiclassical picture, the
explanation is straightforward: This trio of levels correspond
to three orbits, which are identical in shape and energy but
are separately confined inside the three equivalent pockets.2

In a more refined description, such orbits are hybridized by
a weak quantum tunneling, so that the Bloch functions have
equal amplitude in each pocket but different phases. To verify
this picture, we chose a set of U in the range between 0 and
0.15 eV and for each of them computed the Bloch function
of the lowest-energy state numerically. We took γ3 = 0.15,
for which there is only a single threefold degenerate level
lying just within the central gap. At all U , these functions
exhibit maxima centered at ϕ = 1

3π , π , and 5
3π , as expected

(see Fig. 11). However, for U � 0.1 eV such maxima become
very sharp, consistent with the picture of confinement and in
concert with the coalescence of the energy levels into a single
narrow bunch, as in Fig. 10.

In general, the influence of γ3 on the spectrum gets stronger
as B decreases or U increases. This is because the depth δE of
the pockets and their width increases with U while the area in
momentum space per orbit is equal to 2π/2

B ∝ B, as discussed
in Sec. III. Hence, at large U and/or small B, each pocket may
host several orbits, so that higher-energy Landau levels can
also form bunches of three, as is apparent in Fig. 10, where
there are two nearly threefold degenerate sets of Landau levels
separated by 10–20 meV from a tangle of higher-energy states.
The first bunch emerges at U ≈ 80 meV and the second at
U ≈ 120 meV. Conversely, as B increases at fixed U , separate
orbits no longer fit into the pockets and they unite into a single
contiguous loop. At this point, the effect of γ3 can safely be
neglected.

C. Energy gap

The above discussion indicates that the energy gap of BLG
can be controlled not only by U but also by B while keeping U

fixed. Since this gap can strongly affect the low-temperature
transport, it may be of interest in applications, and so it
deserves some discussion. The magnetic field tends to reduce
the gap relative to the zero-field case, as one can see in Figs. 6,
10, and 15, where the gray area indicates the zero-field gap.
In other words, some Landau levels can reside inside the band
gap |E| < E� of the B = 0 spectrum. This phenomenon is
a direct manifestation of the pseudo-Zeeman shift. It is seen
more clearly in Fig. 9(b), where only one Landau level (from
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FIG. 11. (Color online) Absolute value of the Bloch function for
the lowest-energy Landau level of the conduction band. The origin is
at the K+ point, the radial coordinate is kB , and U = 0.15 eV.

the K+ valley) is shown. For a certain U > 0 this level drops
below the zero-field minimum E� of the conduction band.
Similarly, there is another Landau level from K+ valley, not
shown in the Fig. 9(b), which rises above the maximum −E�

of the valence band. This is because the pseudo-Zeeman effect
has opposite signs in the two valleys. Based on this argument,
we can use Eq. (56) to show that, e.g., the bottom of the
conduction band shifts to

E�(B) � E�(0) − β|U |
1 + (2U/γ1)2

, (76)

where β is defined in Eq. (31). In principle, this approximate
formula can be refined by semiclassical quantization. The true
band edge is determined by the lowest-energy Landau level
of the conduction band. Its index n�, which depends on U

and B, can be found by setting k̃ = k� and dropping the second
term on the right-hand side of Eq. (69): n� + 1

2 � ε2
�/ω

2
0 =

(1/β)(ε�/γ1)2. A similar result can be obtained from the low-
energy effective theory, by minimizing the energy in Eq. (40)
with respect to the Landau index n. With �′ = 0 we obtain

n� = 1

β

2U 2

γ 2
1 + 4U 2

. (77)

Since β ∝ B, our approximate formula 2Ẽ+
� for the gap

predicts a linear gap narrowing as B increases at U = const.
Figure 12 demonstrates that it is quite accurate up to the point
where n� drops to zero, i.e., up to the field where β ≈ 2U 2/γ 2

1 .
Of course, this approximation misses the small cusps produced
by the discrete changes in n�.
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FIG. 12. (Color online) Energy gap separating Landau levels of
the valence bands from those of the conduction band as a function
of the magnetic field B. The cusps on the curves are due to discrete
changes in Landau-level index n� (see the main text). The upper solid
curve is for γ3 = 0 and the lower one for γ3 = 0.30 eV. The analytic
estimate per Eqs. (76) and (78) is shown by the dashed line.

At larger B, the gap is determined by the energy of the
special n = 0 Landau level for which Eq. (76) is not valid.
Instead, we can use Eq. (39) to get

E�(B) � E�(0) − (2|U | − �̃)β, β < 2U 2/γ 2
1 . (78)

We see that the B dependence remains linear but the slope
becomes larger by a factor of 2 or so. This prediction
is in a reasonable agreement with numerical calculations
(Fig. 12). The deviations seen at B � 10 T are due to
insufficient accuracy of the low-energy theory at such fields.
The total reduction of the gap as the field changes from
B = 0 T to 15 T is ∼15 meV or 10%.

At even larger B, level n = 0 on the s1 = sgn(U ) side
would cross with level n = −1, so that the slope of the linear
dependence would change again. That n = −1 level would
eventually intersect with the n = 0 level of the other valley if
B keeps increasing, at which point the gap would momentarily
vanish. An example of such an intersection is shown in Fig. 7
(although the energies are plotted as a function of U ).

Let us now discuss the effect of γ3. In Fig. 6, the
energies of the lowest-energy levels of the conduction and its
counterpart in the valence band seem to be lined up with the
respective edges of the B = 0 spectrum, as though the pseudo-
Zeeman effect is canceled. This cancellation is fortuitous. We
attribute it to the zero point motion of the orbits confined
inside the pockets. Clearly, the Bloch functions (Fig. 11)
have some finite spread around the centers of the pockets.
Thus, in the conduction band such orbits are raised in energy
above the actual minima of the band, which counteracts the
effect of the pseudo-Zeeman shift. Indeed, a better measure
of the pseudo-Zeeman effect is the valley splitting, which
is nearly the same in Figs. 10(a) and 10(b). (The latter is
essentially the upper half of Fig. 6.) The magnitude of the
zero-point energy shift depends on U and B and just happens
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to be numerically close to the pseudo-Zeeman shift in a range
of parameters used in Fig. 6.

The gap narrowing becomes more apparent at larger
magnetic fields (see Fig. 12). The upper and the lower
solid curves represent the energy gap without and with γ3,
respectively. At B = 0, the distance between the two curves
is ∼8 meV, which is close to 2δE ≈ 9 meV per Eq. (75).
As B increases, this distance quickly diminishes, and the gap
concomitantly narrows.

V. ANOMALOUS HALL CONDUCTIVITY AND
MAGNETIZATION

Systems that carry a finite Berry phase can exhibit a
nonzero Hall conductivity σH even at B = 0. This is known
as the anomalous Hall effect (AHE). The AHE and other
manifestations of the Berry phase in electronic properties have
been recently reviewed in Ref. 84. It has been shown that for
a partially filled band, σH is equal to the Berry curvature

�α ≡ [∇k × 〈α |i∇k| α〉] · ẑ, (79)

integrated over all occupied states α. In the present case, α

stands for {s1,s2,k} and the conductivity is assumed to be in
the units of gse

2/h, where gs = 2 is the spin degeneracy. By
the Stokes’ theorem, the net result for σH is determined solely
by the Berry phase at the Fermi level Eα = μ. Therefore, we
can readily compute it from our Eq. (67) once we rewrite it as
a function of energy Eα . Substituting Eq. (53) into Eq. (67),
we obtain the desired formula

1

2π
�±

B = ±σ̄ (Eα,s3), (80)

σ̄ (E,s3) = U

E

2E2 − γ 2
1 − 2s3�

2(E)

4U 2 + γ 2
1 − 2s3�2(E)

, (81)

where �(E) is defined in Eq. (13) and s3 = s1s2 sgn vg

according to Eq. (52). Functions σ̄+(E) and σ̄−(E) are plotted
in Fig. 13(a) for a representative U .

The opposite signs in Eq. (80) indicate that the two valleys
give opposite contributions σ±

H to the AHE. Therefore, the
total anomalous Hall conductivity σH is nonvanishing only
if unequal population of the two valleys is created. While
this occurs naturally for B �= 0, in the context of the AHE,
it can also occur in the absence of an external magnetic
field. Theoretical proposals to realize this situation have been
advanced in Refs. 37,85–88. Here we do not address the means
of creating the valley polarization. We simply compute all the
quantities assuming that the chemical potential in valley K+
is equal to μ, while the chemical potential of the K− valley is
at zero.

As shown below, the anomalous Hall conductivity is never
large, and so it is important to consider not only the bulk but
also the edge contribution to σH. For simplicity, we assume
that the BLG has no propagating states at the edge.69 In
the absence of strong spin-orbit coupling,70 such states are
not topologically protected, so their existence depends on
boundary conditions at the edge.89 In practice, the edge states
in BLG are likely to be localized by disorder.71

Finally, we ignore the electron-hole asymmetry parameters
γ4 and �′ in this section, so it suffices to consider only the case
μ � 0. Interestingly, the anomalous Hall conductivity σH(μ)

is even in μ, unlike the usual Hall conductivity, which is odd in
μ in electron-hole symmetric systems. Therefore, σH(μ) can
be computed considering only the conduction bands and then
extended to negative μ by symmetry.

Using the Stokes’ theorem and Eq. (81), we obtain

σH =

⎧⎪⎨⎪⎩
0, |μ| < E�,

σ̄−(μ) − σ̄+(μ), E� � |μ| < U,

σ̄−(μ) − σ̄+(U ), U � |μ| < E�,
σ̄−(μ) − σ̄+(U ) + σ̄+(μ), E� � |μ|,

(82)

where

E� ≡ E++(k = 0) =
√

γ 2
1 + U 2 (83)

is the bottom of the upper conduction band. As illustrated in
Fig. 13(b), the function σH(μ) has a discontinuous derivative at
the energies E�, U , and E�, which are marked by the dots. At
these energies the topology of the Fermi surface changes: from
two concentric circles to one and back to two (we ignore γ3).
As also shown in Fig. 13(b), at small U the shape of function
σH(μ) approaches that of a narrow dip of the unit depth.

Another quantity we can calculate is the total magnetization
M. Recall that at finite U each state carries the orbital magnetic
moment Mα . However, when computing the magnetization
at a given fixed μ, one must account for the Berry phase,
which effectively modifies the density of states. The net result
is that, in addition to summing the magnetic moment over
the occupied states of the original spectrum, there is also a
contribution related to the Berry curvature.37,84 Namely, M =
MM + M�, where

MM =
∫

occ
Mα, (84a)

M� =
∫

occ
(μ − Eα)

e

h̄c
�α, (84b)

and we used another short-hand notation∫
occ

· · · ≡ gs

∑
s2

∫
d2k

(2π )2
�(μ − E+,s2 ) · · · . (85)

It is easy to see that the contribution of the K− valley vanishes
when its chemical potential is held at zero, which we assume
here. Therefore, we need to consider only the states of the K+
valley. Using the relation

�α = 1

2πk

d�B

dk
, (86)

which follows from Eq. (79), we reduce the expression for
M� to the integral over the Berry phase:

M� =
∫

occ
vg

�+
B (k) − �+

B (0)

2πk
. (87)

At this point we recall that the orbital magnetic moment
Mα given by Eq. (54) is related to the difference of the
semiclassical and Berry phases. As a result, the desired
combination MM + M� can be represented by the integral
over the semiclassical phase:

M = e

c

∫
occ

vg
�+

c (k) − �+
B (0)

2πk
. (88)

This integral can be evaluated analytically. The integration
limits depend on μ. Thus, for μ > U , in which case the
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FIG. 13. (Color online) (a) Contributions σ̄± to the anomalous Hall conductivity from the two possible branches of kF,±(μ). The thick traces
in all plots are for U = 0.1 eV and the dots mark has positions of the cusps at which the Fermi surface’s topology changes. (b) Anomalous
Hall conductivity σH as a function of the chemical potential μ of the K+ valley with the chemical potential of the K− valley held at zero. (c)
Magnetization per unit area M(μ) under the same conditions.

occupied states of the conduction bands of the K+ valley fill
a circle, the integration is from k = 0 to k = kF,s2 , where

kF,s2 = 1

h̄v0

√
μ2 + U 2 − s2�2(μ). (89)

For E� < μ < U , the limits on k are from the inner Fermi
momentum kF,+ to the outer one kF,−. The final result is

M(μ) = e

πh̄c
max(0,μ − U ) + e

πh̄c

E�

γ1

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, 0 � μ < E�,

2
√

μ2 − E2
� , E� � μ < U,√

μ2 − E2
� + 2UE�

γ1
, U � μ < E�,√

4U 2 + γ 2
1 , E� � μ.

(90)

Similar to the Hall conductivity, function M(μ) has cusps
at the energies where the Fermi surface topology changes
[cf. Figs. 13(b) and 13(c)]. For example, at μ = U ,

M(U ) = e

πh̄c

4U 3

γ 2
1 + 4U 2

. (91)

The positive sign of M is unrelated to paramagnetism because
the external magnetic field is assumed to be zero. As explained
above, in equilibrium the K− valley would make an equal and

opposite contribution to the total magnetization of the system
and only the square of Mα would contribute to the magnetic
susceptibility:

χP = M2
αν = 1

4g2μ2
Bν. (92)

But χP is only one of the terms (known as the Pauli
paramagnetism) which determine magnetic susceptibility. As
shown in previous work,38,90–92 the total susceptibility χ of
BLG also contains the Landau diamagnetic term

χL = − 1
3 (me/meff)

2 μ2
Bν, (93)

as well as other contributions, which together generate a very
complicated dependence of χ on μ. (Here ν is the total
electron density of states at the Fermi energy and 1/meff =
h̄−2dE2

α/dk2 is the inverse effective mass.)
Concluding this section, we note that Mα , σH(μ), and

M(μ) in BLG were previously calculated numerically in
Ref. 37. Their results for the magnetization M are essentially
in agreement with ours. The plots of Mα agree with those in
Ref. 37 in the overall shape. It is unclear how to compare
the absolute values because the units in Fig. 2(b) of Ref. 37
lack an energy factor. Using γ0 as a natural choice for this
missing factor produces the right-hand axis in our Fig. 8.
The most notable differences between our work and Ref. 37
concern σH(μ). They can be attributed to the effect of impurity
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scattering in the form of the side jump, which is included in
Ref. 37 but is not considered here.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have presented a quasiclassical Landau
quantization procedure which includes both the Berry phase
and the magnetoelectric effects on the band structure. This
method provides an intuitive picture of the Landau-level
dispersion and several other measurable properties of biased
BLG. In some cases, we have been able to derive analytic
expressions for the Landau-level energies; we also discussed
how they may be computed numerically.

Our results are applicable in the analysis of a number
of experiments which probe transport and thermodynamic
properties of BLG, including cyclotron resonance, activated
conductivity, charge compressibility, and magnetization. A
more realistic calculation of these quantities should also
include interaction effects. The self-consistent mean-field ap-
proximation for BLG has been addressed in several published
works, but generally such treatments have neglected exchange
and correlation effects, which were considered in Refs. 93–96
and shown to give as much as a ∼30% correction to the
mean-field (Hartree) approximation, similar to the case in two-
dimensional (2D) electron systems in semiconductors45,96,
Currently, experimental results for the Landau-level energies
from the cyclotron resonance21 and the charge compressibility
studies30 can be fitted to the theory if undetermined vari-
ables (U , for example) are treated as adjustable parameters.
Incorporating all major experimentally relevant ingredients—
Hartree, exchange, and disorder contributions—into the same
calculation would be a more stringent test of the theory.

Although the Landau-level dispersion and therefore
Landau-level crossing points cannot yet be calculated with
a high degree of accuracy, phenomena that may be observed at
such points are quite interesting. Indeed, crossing of Landau
levels has been previously studied45–63 in the context of the
quantum Hall effect in conventional 2D systems. In those
systems, the crossings are between Landau levels of different
subbands or between spin-split levels of different Landau
levels of the same subband. Near the crossing the energy gap
vanishes, and so a spike in conductance is expected. In the
quantum Hall effect conditions, this is simultaneously a spike
in resistance. In experiments, such spikes have been observed
to be hysteretic. Sometimes they were also accompanied by
a spatial anisotropy of the transport. The leading theoretical
explanation47 attributes these phenomena to quantum Hall
ferromagnetism (QHF). Namely, when two Landau levels
are nearly degenerate and the chemical potential is close to
the crossing energy, the occupation of the Landau levels is
modeled as a two-state pseudospin system. Depending on the
nature of the crossing, QHF can be of either easy-axis or
easy-plane type. In the former case, one expects formation of
domains whose collective dynamics can in principle generate
both hysteresis and anisotropy. The BLG appears to be a
promising system to study QHF because of its high tunability
and a rich pattern of level crossings that we have discussed
in this paper. Recent theoretical work on this subject includes
Refs. 97,98.
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APPENDIX A: LOW-ENERGY THEORY OF BLG

In this Appendix we derive the low energy of BLG by the
standard method of canonical transformation. Our results are
in a good agreement with previous work.2,72,99 Some minor
discrepancies can be attributed to typographic errors therein
or differences in notations.

We begin with the Hamiltonian of Eq. (3). The bilayer’s
electronic structure has four bands. When q = K±, the two
central levels lie at E = ±U . For |Sq | 
 1, where Sq is given
in Eq. (4), we can derive an effective 2 × 2 Hamiltonian by
writing

HK+k = H 0 + V, (A1)

where H 0 = H (K±) contains terms dependent on γ1, �′, and
U , and V contains the γ0Sq , γ3Sq , and γ4Sq terms. (To lighten
notations, the subscript q is dropped in the following.)

The unperturbed Hamiltonian H 0 has levels E0
1,4 =

∓√
γ 2

1 +U 2 and E0
2,3 = �′ ∓ U . The eigenfunctions |ψj 〉 are

the column vectors of the matrix

	 =

⎛⎜⎜⎜⎝
0 1 0 0

cos(θ/2) 0 0 sin(θ/2)

− sin(θ/2) 0 0 cos(θ/2)

0 0 1 0

⎞⎟⎟⎟⎠ , (A2)

where tan θ = γ1/U . Eliminating the high-energy subspace
spanned by |ψ1,4〉 by unitary transformation

H̃ = eiQHe−iQ, (A3)

we obtain the effective 2 × 2 Hamiltonian

H̃nn′ = E0
nδnn′ + Vnn′ + 1

2

∑
a

(
1

E0
n − E0

a

+ 1

E0
n′ − E0

a

)
×VnaVan′ , (A4)

up to terms of order V 2. Here n,n′ ∈ {2,3} are labels for the
low-energy subspace, while a ∈ {1,4} labels the high-energy
subspace, and Vij = 〈ψi |V |ψj 〉. The matrix elements of Q are
given by

Qna = i
Vna

E0
a − E0

n

+ i
∑
n′

Vnn′Vn′a(
E0

a − E0
n

)(
E0

a − E0
n′
)

−i
∑
a′

Vna′Va′a(
E0

a − E0
n

)(
E0

a′ − E0
n

) + o(V 2), (A5)

with Qan = (Qan)†.
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Proceeding in this manner, we obtain the 2 × 2 block for
the inner bands,

H̃ =
(

ε0 − U + ω ξ

ξ ∗ ε0 + U − ω

)
, (A6)

where, to lowest order in U and �′,

ε0 =
(

γ0γ4

γ1
+

(
γ 2

0 + γ 2
4

)
�′

2γ 2
1

)
{S,S†} + Uγ 2

0

γ 2
1

[S,S†], (A7)

ω = Uγ 2
0

γ 2
1

{S,S†} +
(

γ0γ4

γ1
+

(
γ 2

0 + γ 2
4

)
�′

2γ 2
1

)
[S,S†], (A8)

ξ = γ3S
† −

(
γ 2

0 + γ 2
4

γ1
+ 2γ0γ4�

′

γ 2
1

)
S2. (A9)

Anticipating the introduction of an external magnetic field, we
have allowed for the possibility that S and S† do not commute.
Recognizing that γ4/γ0 = 0.05 
 1, it is permissible to drop
the terms of order γ 2

4 and γ4�
′, in which case

ε0 = γ 2
0 �̃

2γ 2
1

{S,S†} + Uγ 2
0

γ 2
1

[S,S†], (A10)

ω = Uγ 2
0

γ 2
1

{S,S†} + γ 2
0 �̃

2γ 2
1

[S,S†], (A11)

ξ = γ3S
† − γ 2

0

γ1
S2, (A12)

leading to Eq. (33). Our results agree with those of Ref. 2 if
�′ and γ4 are set to zero.

For B = 0, in the vicinity of the K± points, the four bands
disperse as shown in Fig. 1. The two central bands, which
comprise the low-energy sector, are separated by 2U at k = 0.
Their dispersion is described by the effective Hamiltonian of
Eq. (A6). One finds that for k = kx̂ the central bands have
a characteristic double hump (or sombrero) shape provided
U > 2γ1γ3/γ0 ≈ 80meV.

It is convenient to write H̃ = ε0 + B(k)σ , where Bz = ω,
Bx − i By = ξ , and σ is the vector of Pauli matrices. When
the actual magnetic field B vanishes,

ε0 = �̃ε2
k

γ 2
1

, ω = 2ε2
k

γ 2
1

U, (A13)

ξ = γ3

γ0
εke

−iϕ − ε2
k

γ1
e+2iϕ, (A14)

where εk = h̄v0k, the origin in k space is taken as one of the
K± points, and ϕ = tan−1(ky/kx) is the corresponding polar
angle. The eigenvalues are

Ẽs1,−,k = ε0 + s1|B(k)|. (A15)

Let us now discuss the Berry phase. Semiclassically, in the
presence of a weak magnetic field, the wave vector k evolves
in time according to Eq. (59):

k̇ = ωcẑ × k, ωc ≡ 2π

T
sgn(vg).

If we can neglect γ3, then the trajectory the pseudospin traces
on the Bloch sphere winds twice for every cycle of k, owing to
the e2iϕ factor in Bx − i By = ξ . Therefore, the accumulated

u

v

ũ

ṽ

−U

Δ′ − U

Δ′ + U

U

|0〉 |1〉 |2〉 |3〉 |4〉

|3J − 2〉 |3J − 1〉 |3J〉

. . .

. . .

Ha Hb Hc

Hc Hb Ha

−γ0

γ1

γ3

γ4

FIG. 14. (Color online) Sketch of the structure of the magnetic
bilayer Hamiltonian, showing nonzero matrix elements as links. Each
link between orbitals in column n and column n + 1 is multiplied by
a factor

√
n + 1(ω0/γ0). The diagonal entries in the Hamiltonian for

each orbital are given at the upper left-hand side. When γ3 = 0, the
Hamiltonian breaks up into a direct sum of 4 × 4 blocks.

Berry phase is equal to 2 × 1
2 = 1 times the solid angle traced

by vector B(k). Actually, the Berry phase is defined modulo
2π . To be consistent with the earlier choice of the overall phase
factor of the basis state (49), we need to subtract 2π from the
solid angle. The result is

�′
B = 2π

(
1 + Bz

|B|
)

− 2π = 2πU

Es1,−,k

(
2ε2

k

γ 2
1

− 1

)
. (A16)

However, it differs from our earlier Eq. (67) for the Berry
phase in BLG. The discrepancy arises due to the canonical
transformation by which we obtain the wave function in the
new basis |ψ ′〉 = e−iQ|ψ〉:

δ� ≡ �B − �′
B = −2πi〈ψ ′|eiQ∂ϕe−iQ|ψ ′〉

= 2π
ε2
k

γ 2
1

Bz

|B| � ε2
k

γ 2
1

2πU

Es1,−,k

.
(A17)

The combined phase �B = �′
B + δ� is in agreement with the

four-band expression Eq. (67), to within the accuracy of this
calculation.

Finally, we can go beyond the semiclassical approximation,
obtaining the effective Hamiltonian in Eq. (36). If γ3 is ne-
glected, each pseudospin component Landau level is connected
to a unique mate, and the Hamiltonian breaks up into a direct
sum of 2 × 2 blocks, given by Eq. (38) (n = −1 and n = 0
are special cases where H̃ reduces to a scalar).
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FIG. 15. (Color online) Landau-level energies vs interlayer bias
U for a field value B = 20 T. Solid lines correspond to the K+ valley
and broken lines to the K− valley. The color and line types are as in
Fig. 6. The shaded area indicates the energy gap at B = 0.

APPENDIX B: MATRIX REPRESENTATION OF THE
HAMILTONIAN IN A FINITE MAGNETIC FIELD

In the presence of a magnetic field, the full Hamiltonian
H+ in the K+ valley is given by Eq. (16),

H+ =

⎛⎜⎜⎝
−U −ω0a η4ω0a η3ω0a

†

−ω0a
† −U + �′ γ1 η4ω0a

η4ω0a
† γ1 U + �′ −ω0a

η3ω0a η4ω0a
† −ω0a

† U

⎞⎟⎟⎠ ,

where a and a† are Landau-level lowering and raising
operators, respectively. In the occupation number basis |n〉,
the matrix elements of H+ can be understood pictorially by
referring to Fig. 14. Writing the general wave function as

|	〉 =
∞∑

n=0

(un |n〉 ,vn |n〉 ,ũn |n〉 ,ṽn |n〉)T , (B1)

the links in Fig. 14 indicate matrix elements between the
various components {un,vn,ũn,ṽn}.

One finds that H = Ha ⊕ Hb ⊕ Hc can be written as
a direct sum of three terms. In evaluating the spectrum

numerically, we truncate Ha,b,c at a high Landau-level index,
as shown in the figure. Typically we chose a maximum
index of nmax ≈ 300, checking that the spectrum did not vary
significantly as the upper index cutoff was further increased.
This feature is most evident at high fields, such as in Fig. 15,
where we have taken B = 20 T. The spectrum of Ha is shown
in black, that of Hb in red, and that of Hc in blue. Solid lines
correspond to the K+ valley and broken lines to the K− valley.
One sees in the figure that curves of the same color and line
type cannot cross at an accidental degeneracy.

Frequently in this paper we have ignored the SWMc
parameter γ3, setting it to zero. In this approximation, as
can be seen from Fig. 14, the occupation number space
Hamiltonian further resolves itself into a direct sum of 4 × 4
blocks, given by the expression in Eq. (27), which connect
{un−1,vn,ũn,vn+1} for each n. (There is also a remaining
1 × 1 and 3 × 3 block associated with the indices n = 0 and
n = 1.)

In addition to eigenvalues, we also calculated the eigen-
functions, one of which is shown in Fig. 11. To do so we chose
the symmetric gauge, where the Bloch wave functions of |m〉
oscillator states are given by

〈 k| n〉 = m+1
B√
m!

(
kx − iky√

2

)m

e−k22
B/4. (B2)

These basis states were weighted with the coefficients obtained
from diagonalizing the Hamiltonian matrix and then summed
over all components (both n and the sublattice index).

From these calculations we concluded that the effect of
γ3 diminishes as B increases, as was previously observed in
Ref. 2. The semiclassical argument that explains this behavior
was given in Sec. IV B. Here we mention another reasoning,2

which is based on the usual perturbation theory.
The leading-order correction to the energies due to γ3

is approximately ω2
0/�E, where �E ≈ h̄|vg|/(k2

B) is the
Landau-level spacing. Therefore, the relative magnitude of
this energy shift is small, provided

γ3 
 γ0

kB

. (B3)

At U = 0 and εk 
 γ1 this inequality gives2 ω0 	 γ3γ1/γ0,
which is roughly consistent with the threshold B ∼ 1 T, where
the effect of γ3 is observed to become insignificant in the
numerical calculations. On the other hand, at finite U and near
the bottom of the sombrero, where vg = 0, the expression on
the right-hand side of Eq. (B3) diverges. This implies that the
effect of γ3 is larger and persists to higher B. This is also
consistent with the numerics (see Sec. IV B).
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