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Charge-transfer contribution to surface-enhanced Raman scattering in a molecular junction:
Time-dependent correlations
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Raman spectroscopy of molecular junctions is a promising diagnostic and control tool. We present a model for
charge-transfer contribution to surface-enhanced Raman spectroscopy, generalizing previous considerations to
strong laser pulses of arbitrary time dependence. The approach paves a way to realistic simulations of Raman spec-
troscopy experiments in molecular junctions. We demonstrate that the optical response of molecular conduction
junctions is correlated with the electron transport. Feynman diagrams responsible for such similarity are analyzed,
and a possible explanation for observed (anti)correlated behavior of Stokes signal and conductance is proposed.
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I. INTRODUCTION

Surface enhancement of Raman spectroscopy for molecules
chemisorbed on metal surfaces has been observed1–4 and
explained by a combination of local surface plasmon resonance
(LSPR) of the metal5,6 and charge transfer (CT) between
the molecule and the metal.7–14 Recent advancements in
experimental techniques allowed measurement of optical
response in molecular junctions. In particular, simultaneous
measurement of electronic conductance and Raman response
was reported in Resf. 15–17 use Raman spectroscopy for
observation of heating in current-carrying junctions.

Like older “standard” spectroscopies (resonant18,19 and
off-resonant20–24 inelastic electron tunneling spectroscopy,
and noise spectroscopy25), junction optical spectroscopies are
expected to play important roles in the field of molecular
electronics both as diagnostic methods and as control tools
for molecular devices. Optical spectroscopy at equilibrium
is well established.26 Optical spectroscopy of current-carrying
junctions sets a theoretical challenge in the need to describe the
optical response of an open nonequilibrium molecular system.

Recently, a theory of Raman scattering in molecular
junction, modeled by two levels [highest occupied molecular
orbital (HOMO) and lowest unoccupied molecular orbital
(LUMO) or ground and excited states] attached to metallic
electrodes, was considered within nonequilibrium Green’s
function (NEGF) formulation.27,28 This consideration is re-
stricted to mostly resonant Raman scattering in a junction
under steady-state conditions. With most of the experimental
measurements performed for the off-resonant situation, two
theoretical approaches were proposed: (i) the same two-level
model was employed within the quantum master equation
(QME) approach to calculate junction polarizability29 and
(ii) the single-level model for charge-transfer contribution to
surface-enhanced Raman spectroscopy (SERS) at equilibrium
introduced in Ref. 8 was generalized to the steady-state
junction situation within NEGF.30 Since standard QME misses
essential junction information (see, e.g., Refs. 31 and 32 for
discussion), the latter development is more promising. Note,
however, that the incident field in both Refs. 8 and 30 is treated
at second order of perturbation theory, which is questionable
for strongly enhanced local fields detected in experiments.
Treating the incident field classically in nonperturbative

manner is more relevant for SERS. Also, explicit time
dependency of the driving field can be easily incorporated into
the model. This, together with developed approaches for time-
dependent transport within NEGF,33–38 paves a way to practical
formulation of a scheme capable of simulation of time-
dependent Raman scattering in realistic molecular junctions.

Here, we consider a model for non-resonant Raman spec-
troscopy in molecular junctions, generalizing consideration of
Ref. 30 to non-perturbative treatment of driving laser field
with possibility to include explicit time dependence of the
latter into consideration. Section II introduces our model
and discusses the approach used to simulate off-resonant
vibrational Raman signal. Application of the approach to
the analytically solvable case of single harmonic mode is
considered in Sec. III. Numerical examples and discussion of
correlation between Raman flux and junction conductance are
given in Sec. IV. Section V concludes and outlines directions
for future research.

II. MODEL

We consider a molecule (M) coupled to two metallic
contacts (L and R), reservoirs of free charge carriers each
at its own equilibrium, and a bath of free radiation (accepting)
modes. Contacts induce an electric current (electron transfer
between the molecule and contacts) across the junction.
The radiation bath represents the device measuring outgoing
photon flux. The molecule is modeled by a single level ε0

coupled to a single molecular vibration and driven by an
external (classical) electromagnetic field (pumping mode). The
Hamiltonian of the system is

Ĥ (t) = Ĥ0(t) + V̂ , (1)

Ĥ0(t) = ĤM (t) + ĤK + Ĥp, (2)

V̂ = V̂et + V̂p. (3)

Here, ĤK (K = L,R), Ĥp are contacts and radiation-bath
Hamiltonians

ĤK =
∑
k∈K

εkĉ
†
kĉk, (4)

Ĥp =
∑
f

νf â
†
f âf , (5)
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where ĉ
†
k (ĉk) is an operator of creation (annihilation) of

an electron in state k of the contact, and â
†
f (âf ) creates

(annihilates) a photon in state f of the radiation bath. The
molecular Hamiltonian is

ĤM (t) = [ε0 − μE(t)] d̂†d̂ + ωvv̂
†v̂ + Mv(v̂ + v̂†)d̂†d̂, (6)

where d̂† (d̂) is a creation (annihilation) operator for an electron
on the level ε0, E(t) is an external driving field, μ is the
projection of the molecular dipole moment to the direction of
the external field, v̂† (v̂) creates (annihilates) a phonon in a
molecular vibration, and Mv characterizes coupling between a
tunneling electron and the vibration. Finally, V̂et and V̂p couple
the molecule to contacts and the radiation bath

V̂et =
∑

k∈{L,R}
(Vkd̂

†ĉk + H.c.), (7)

V̂p =
∑
f

Mf (âf + â
†
f )d̂†d̂. (8)

This model is a generalization of the SERS model considered
previously.8,30 Note that molecular Hamiltonian (6) can be
represented in a more general form (e.g., in terms of Hubbard
operators) with an appropriate change in the methodology to
calculate Raman scattering and current in the junction (see
Ref. 40 for details).

Time-dependent current at interface K (L or R) is calcu-
lated with the usual NEGF expression33

IK (t) = 2 Re
∫ t

−∞
dt ′[�<

K (t,t ′) G>(t ′,t)

−�>
K (t,t ′) G<(t ′,t)]. (9)

Here, �>(<)
K (t,t ′) is a greater (lesser) projection of an electronic

self-energy due to coupling to contact K:

�K (τ,τ ′) =
∑
k∈K

|Vk|2gk(τ,τ ′), (10)

where τ (τ ′) is the contour variable corresponding to the real
time t (t ′), and

gk(τ,τ ′) = −i〈Tc ĉk(τ ) ĉ
†
k(τ ′)〉 (11)

is the Green’s function of a free electron in state k. In this
model, we assume that time-dependent driving is confined to
the molecular region only, so that projections of the contact
self-energies depend on the difference of times, and Fourier
transform yields the familiar result

�<
K (E) = i�K (E)fK (E), (12)

�>
K (E) = −i�K (E) [1 − fK (E)] . (13)

Here, fK (E) = [e(E−μK )/T + 1]−1 is the Fermi distribution in
a contact K , and

�K (E) =
∑
k∈K

|Vk|2δ(E − εk) (14)

is the escape rate from a molecular level into the contact K . In
what follows, we assume wide-band approximation41 treating
�K as an energy-independent quantity.

G>(<)(t,t ′) in Eq. (9) is the greater (lesser) projection of the
single-particle Green’s function

G(τ,τ ′) = −i〈Tc d̂(τ ) d̂†(τ ′)〉. (15)

To calculate the time-dependent Raman flux, we follow the
argument of Refs. 27, 28, and 30. Raman flux into a mode f

is assumed to be an outgoing photon flux from the system
into the mode resulting from coherent scattering process.
Bose (photon) flux from the molecular system into mode f

is (derivation is similar to the heat-flux derivation presented in
Appendix A of Ref. 42)

Jf (t) = −|Mf |2
νf

Re
∫ t

−∞
dt1

[
∂

∂t1
(D<

f (t,t1))G>(t1,t)

− ∂

∂t1
(D>

f (t,t1))G<(t1,t)

]
. (16)

Here, D
>(<)
f (t,t ′) is the greater (lesser) projection of the free-

photon Green’s function in a mode f :

Df (τ,τ ′) = −i〈Tc Q̂f (τ ) Q̂
†
f (τ ′)〉, (17)

where Q̂f = âf + â
†
f , and G>(<)(t,t ′) is a greater (lesser)

projection of the two-particle (two-time) electron Green’s
function

G(τ,τ ′) = −〈Tc n̂(τ ) n̂(τ ′)〉, (18)

where n̂ = d̂†d̂. Since the radiation bath is a set of free empty
modes, i.e.,

D<
f (t,t ′) = −ie+iνf (t−t ′), (19)

D>
f (t,t ′) = −ie−iνf (t−t ′), (20)

and

G>(t,t ′) = G<(t ′,t) = [G<(t,t ′)]∗. (21)

Equation (16) leads to

Jf (t) = 2|Mf |2Re
∫ t

−∞
dt ′ eiνf (t−t ′)G<(t,t ′). (22)

Note that Eq. (22) yields time-dependent Raman flux when
only coherent electron scattering events are considered in
G<(t,t ′).

Time-dependent current [Eq. (9)] and Raman flux [Eq. (22)]
can be calculated when the single-electron [Eq. (15)] and
the two-electron [Eq. (18)] Green’s functions are known.
These Green’s functions should take into account interactions
with incident field E(t), contacts L and R, radiation bath
{f }, and molecular vibration v. Within the models (1)–(8),
the interaction with the pumping field is taken into account
nonperturbatively: E(t) enters the molecular time-dependent
Hamiltonian (6) explicitly as a driving force. We assume that,
in the absence of the laser pulse, the molecular junction is in a
bias-induced steady state, and consider the coupling to contacts
included into “zeroth-order Hamiltonian.” Thus, interactions
with the radiation bath and molecular vibration are treated as
perturbations to the unperturbed molecular junction. Taking
into account that the radiation bath represents a measuring
device for outgoing photon flux, i.e., it counts and absorbs
photons, second order in coupling to the bath is adequate to
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represent the physics. Coupling to the molecular vibration
can be treated at different levels of sophistication, including
the dressed-states picture with Hubbard NEGF (Ref. 40) or
generalized QME (Refs. 31 and 32) approaches. Below (for
illustration purposes only and to keep discussion simple), we
restrict this treatment to second order in electron-vibration
coupling. It was shown in Ref. 30 that the main contribution to
the Raman process in this case comes from the particle-particle
(or particle-hole) scattering processes [see example of a
diagram in Fig. 1(a)]. This leads to the expression for the
time-dependent Raman flux in the form

Jf (t) = 2|Mf |2|Mv|2Im
∫ t

−∞
dt ′eiνf (t−t ′) (23)

×
∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 P r (t,t1) D<

v (t1,t2) P a(t2,t
′),

where r , <, and a stand for retarded, lesser, and advanced
projection, respectively, of the electron bubble diagram

P (τ1,τ2) = −iG(τ1,τ2) G(τ2,τ1), (24)

and the phonon Green’s function

Dv(τ1,τ2) = −i〈Tc Q̂v(τ1) Q̂v(τ2)〉. (25)

Here, Q̂v = v̂ + v̂†. Below, for simplicity we treat vibration
as a free phonon. The lesser projection of the free-phonon
Green’s function is

D<
v (t1,t2) = −i(Nve

−iωv (t1−t2) + [1 + Nv]eiωv (t1−t2)), (26)

where Nv = [eh̄ωv/T − 1]−1 is the Bose-Einstein thermal
distribution.

Raman spectroscopy measures the flux of outgoing photons
resulting from the electron scattering. It is reasonable to expect
that the energetics (spectrum) of the former may be at least
partially similar to the energetics (spectrum) of the latter.
Indeed, inelastic electron tunneling spectroscopy is an example
of obtaining information on vibrational degrees of freedom
through electric current measurements. For example, recently,
a similar argument was used to show that phonon spectroscopy
for a double quantum dot locally coupled to the molecular
vibration can be measured by the electric conductance.43

The electron participating in the Raman scattering event
may contribute to the current (conductance) in the molecular
junction. Clearly, the current has contributions also from
electrons undergoing other scattering events (elastic scattering,
inelastic scattering on molecular vibration, scattering by
pumping mode only), however, with appropriate choice of
the molecular level position relative to Fermi energy in the
contacts, one may hope to observe contribution to current
mostly from Raman scattered electrons.

Experimental data on simultaneous measurements of
Raman scattering and conductance show correlation between
optical and transport properties in molecular junctions.15

Explanation of the effect used in Ref. 15 is based on the
assumption that the molecule changes its conformation under
laser pulse. While such a scenario is reasonable and indeed may
explain the effect, here we propose an alternative explanation,
which may also be relevant.

Electron-electron (electron-hole) scattering events con-
tributing to the Raman diagram [Fig. 1(a)] are presented in

FIG. 1. Feynman diagrams for (a) Raman scattering, (b) related
two-particle scattering process, and (c) fourth-order perturbation
terms for electronic self-energy. Solid, dashed, and wavy lines
describe electron propagation associated with an incident light field
and coupling to contacts, propagation of outgoing photon, and phonon
of the molecular vibration, respectively.

Fig. 1(b). One can obtain those three scattering diagrams by
cutting two of four electron lines in Fig. 1(a). These scattering
events contribute to single-particle self-energy terms shown in
Fig. 1(c). The self-energies provide information on energetics
of the Raman scattering process in the electric current. Among
four diagrams presented in Fig. 1(c), the dominant contribution
for the electric current is given by two rainbow diagrams (top
row), while the others (diagrams in parentheses) are negligible.
Corresponding contributions to the electron self-energy on the
Keldysh contour are

�ivf (τ1,τ2) = −|Mv|2
∫ ∞

0
dνf ρ(νf )|Mf |2

×[Fivf (τ1,τ2) + Fif v(τ1,τ2)], (27)

where

Fivf (if v)(τ1,τ2) ≡ Dv(f )(τ1,τ2)
∫

c

dτ3

∫
c

dτ4 Df (v)(τ3,τ4)

×G(τ1,τ3)G(τ3,τ4)G(τ4,τ2). (28)

Here, G(τ,τ ′) is the single-particle Green’s function defined
in Eq. (15), Df (τ,τ ′) and Dv(τ,τ ′) are photon and phonon
Green’s functions defined in Eqs. (17) and (25), respectively,
and

ρ(νf ) = ν2
f

π2c3
e−νf /νc (29)

is the optical density of the radiation bath (c is the speed
of light and νc is the cutoff frequency). Note that the
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single-particle Green’s function G(τ,τ ′) in (28) takes into
account coupling between molecule and contacts, and external
driving by construction.

Additional (lower order in interaction) contributions to the
current (not related to Raman spectroscopy) that we consider
are elastic, inelastic, and Rayleigh scatterings. Self-energy
corresponding to the elastic scattering is defined in Eq. (10),
Rayleigh scattering yields

�if (τ1,τ2) = i

∫ ∞

0
dνf ρ(νf )|Mf |2G(τ1,τ2)Df (τ1,τ2),

(30)

and inelastic effects are treated within the second Born
approximation

�iv(τ1,τ2) = i|Mv|2G(τ1,τ2)Dv(τ1,τ2) (31)

to be consistent with the level of theory (second-order
perturbation theory) used in treating Raman process [see
Fig. 1(a)].

The total self-energy is

�(τ1,τ2) =
∑

K=L,R

�K (τ1,τ2) + �iv(τ1,τ2)

+�if (τ1,τ2) + �ivf (τ1,τ2). (32)

Lesser and greater projections of the single-electron Green’s
function needed to calculate the current [Eq. (9)] are obtained
from the Keldysh equation44

G≶(t,t ′) =
∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 Gr (t,t1) �≶(t1,t2) Ga(t2,t

′).

(33)

The additive structure of the self-energy [Eq. (32)] upon
substitution to Eqs. (33) and (9) leads to an additive expression
for the time-dependent current

IK (t) = I i
K (t) + I iv

K (t) + I
if

K (t) + I
ivf

K (t), (34)

where

I x
K (t) = 2 Re

∫ t

−∞
dt ′

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2

× [�<
K (t,t ′) Gr (t ′,t1) �>

x (t1,t2) Ga(t2,t) (35)

−�>
K (t,t ′) Gr (t ′,t1) �<

x (t1,t2) Ga(t2,t)]

with x ∈ {L + R,iv,if,ivf }. This concludes the description
of procedure to simulate time-dependent Raman and current
in the molecular junction for our model.

III. HARMONIC DRIVING

Electric field E(t) in molecular Hamiltonian ĤM [Eq. (6)] is
a local field formed by response of surface plasmons to an inci-
dent laser beam. Areas of high local field intensity (“hot spots”)
make detection of molecular optical response feasible.45 Tools
of classical electrodynamics may be employed to simulate
time dependency of a local field.38,39 By treating the latter as
a driving force, one can get the time-dependent Raman signal
and charge flux within the approach described above.

To make analytical progress possible, here we restrict our
consideration to harmonic driving

E(t) = E0 cos(νit), (36)

where νi is the frequency of the incident wave. In this
case, analytic expressions for projections of the single-particle
Green’s functions (15) are33

Gr (t,t ′) = −iθ (t − t ′) exp

{
−i

(
ε0 − i

�

2

)
(t − t ′)

− i
C

νi

[sin(νit) − sin(νit
′)]
}

, (37)

G≶(t,t ′) =
∞∑

k1,k2=−∞
Jk1

(
C

νi

)
Jk2

(
C

νi

)∫
dE

2π
�

≶
L+R(E)

× e
−i C

νi
[sin(νi t)−sin(νi t

′)]
e−i[E(t−t ′)−νi (k1t−k2t

′)][
E − ε0 − k1νi + i �

2

] [
E − ε0 − k2νi − i �

2

] ,
(38)

where � = �L + �R , C = μE0, θ (t − t ′) is the Heaviside
step function, and �

≶
L+R = �

≶
L + �

≶
R . Derivation of Eq. (38)

employed the identity

exp

[
i
C

νi

sin(νit)

]
=

+∞∑
k=−∞

eiνiktJk

(
C

νi

)
, (39)

where Jk is Bessel function of the first kind.46

Substituting (37) and (38) into (23), one gets for the time-
dependent Raman flux

Jf (t) = 2|Mf |2|Mv|2Im
∫ t

−∞
dt ′eiνf (t−t ′)[NvP

r (t,ωv)P a

× (ωv,t
′) + [Nv + 1]P r (t, − ωv)P a(−ωv,t

′)],
(40)

where

P r (t,ω) =
∫ +∞

−∞
dt ′P r (t,t ′)e−iωt ′ (41)

= −i

∞∑
k1,k2=−∞

Jk1

(
C

νi

)
Jk2

(
C

νi

)
e−i[ω+(k2−k1)νi ]t

∫
dE

2π

�<
L+R(E)[

E − ε0 − k1νi + i �
2

] [
E − ε0 − k2νi − i �

2

]
×

(
1

E − ε0 − k1νi + ω + i �
2

+ 1

E − ε0 − k2νi − ω − i �
2

)
(42)
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is the right-side Fourier transform of the retarded pro-
jection of the electron bubble diagram [Eq. (24)] and
P a(E,t ′) = [P r (t ′,E)]∗. Averaging (40) over a period of
the Raman-flux oscillation yields an energy conservation
condition.

Electric current is calculated substituting (37) and (38) into
lesser and greater projections of (27), (30), and (31), and
using resulting expressions in (34) and (35). This yields the
following expressions for time-averaged (over an oscillation
period) contributions to the current:

〈
I i
K (t)

〉 = 2
∑

ξ

∫
dE

2π

∣∣∣∣∣
∑

k

Jk

(
C
νi

)
Jk−ξ

(
C
νi

)
E − ε0 + (ξ − k)νi + i �

2

∣∣∣∣∣
2

[�<
K (E)�>

K̄
(E + ξνi) − �<

K̄
(E)�>

K (E + ξνi)], (43)

〈
I iv
K (t)

〉 = 2|Mv|2
∑

ξ

∫
dE

2π
{Nv�ξ (ωv,E)[�<

K (E)�>
K̄

(E + ωv + ξνi) − �<
K̄

(E)�>
K (E + ωv + ξνi)]

+ [Nv + 1] �ξ (−ωv,E)[�<
K (E)�>

K̄
(E − ωv + ξνi) − �<

K̄
(E)�>

K (E − ωv + ξνi)]}, (44)〈
I

if

K (t)
〉 = 2|Mf |2

∑
ξ

∫ ∞

0
dνf ρ(νf )

∫
dE

2π
�ξ (−νf ,E)[�<

K (E)�>
K̄

(E − νf + ξνi) − �<
K̄

(E)�>
K (E − νf + ξνi)], (45)

〈
I

ivf

K (t)
〉 = 2|Mv|2 |Mf |2Re

∑
ξ

∫ ∞

0
dνf ρ(νf )

∫
dE

2π
{Nv

[
�0

ξ (ωv, − ωv,E) + �0
ξ (ωv,νf ,E)

]
×[�<

K (E)�>
K̄

(E + ωv − νf + ξνi) − �<
K̄

(E)�>
K (E + ωv − νf + ξνi)]

+ [Nv + 1]
[
�0

ξ (−ωv,ωv,E) + �0
ξ (−ωv,νf ,E)

]
×[�<

K (E)�>
K̄

(E − ωv − νf + ξνi) − �<
K̄

(E)�>
K (E − ωv − νf + ξνi)]}, (46)

where K̄ stands for the alternative to the K choice of the the interface, and

�0
ξ (x,E) ≡

∣∣∣∣∣
∑

k

Jk

(
C
νi

)
Jk−ξ

(
C
νi

)
[
E − ε0 + x + (ξ − k)νi + i �

2

] [
E − ε0 + (ξ − k)νi + i �

2

]
∣∣∣∣∣
2

, (47)

�0
ξ (x,y,E) ≡

∣∣∣∣∣∣
∑

k

Jk

(
C
νi

)
Jk−ξ

(
C
νi

)
[
E − ε0 + x − νf + (ξ − k)νi + i �

2

] [
E − ε0 − y + (ξ − k)νi + i �

2

] [
E − ε0 + (ξ − k)νi + i �

2

]
∣∣∣∣∣∣
2

. (48)

As in the case of Raman scattering, time averaging yields
energy conservation conditions, which provide the enhance-
ment of a contribution at the resonance of corresponding
process. For example, I iv

K has resonances when energy of
the tunneling electron is detuned from ε0 by |νi − ωv| or
ωv , which corresponds to inelastic tunneling with or without
interaction with driving field. Below, we discuss results of
numerical simulations of Raman flux [Eq. (40)] and current
[Eqs. (43)–(46)] in the biased molecular junction subjected to
the harmonic driving.

IV. NUMERICAL RESULTS

We present results of simulations of Stokes response and
current for the models (1)–(8) under the harmonic driving
(36) averaged over the period of oscillation. Parameters of
the calculations (in units of �) are T = 0.1, νi = 20, ωv = 5,
Mf = Mv = √

2, and νc = 25. The positions of molecular
level ε0 and bias Vsd are indicated for each calculation. We
take Fermi energy EF = 0, and apply bias in a symmetric
way, i.e., μL,R = ±eVsd/2.

Figure 2 compares Stokes intensities calculated from
Eq. (40) to the expressions presented in Ref. 30. The latter is
based on perturbative treatment of coupling to driving mode,
contrary to our approach treating this coupling exactly. Figure
2(a) shows the dependence of Stokes signal on position of
molecular level. Both our approach and that of Ref. 30 give
here similar results. The Stokes signal is symmetric around
Fermi energy due to particle-hole symmetry preserved by the
model.

Positions of the Stokes signal peaks at ε0 − EF = ±ωv ,
±(νi − ωv), and ±νi [see Fig. 2(a)] can be explained using the
sketches in Fig. 3. Coupling between molecule and contact(s)
leads to broadening of the molecular level, represented within
the model as a Lorentzian centered at the position of the
level. One can consider the Lorentzian as a continuum of
independent levels. Presence of the molecular vibrational
degree of freedom allows us to dress each molecular electronic
level from this continuum with vibrational states. The latter
are indicated by parabolas in Fig. 3 as states of harmonic
oscillator. Electron Stokes scattering is a coherent process
starting, say, at vibrationally ground state and ending at the
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FIG. 2. (Color online) Stokes intensity averaged over period of
oscillation of the photon flux [Eq. (40)] shown as a function of
(a) the molecular level ε0 position at Vsd = 1 (solid line, black) and 3
(dashed-dotted line, red) and (b) frequency of the incident laser field
νi at the level position ε0 = 10 (solid line, black), 15 (dashed-dotted
line, red), and 20 (dashed-double dotted line, blue). Results of Eq. (40)
are compared with the perturbative method of Ref. 30 (dotted lines).
See text for parameters.

first vibrationally excited state of some filled level from the
continuum. The intermediate state of the scattering process is a
level (or several levels) from the empty part of the continuum.
For EF − ε0 > νi , Raman scattering is impossible since an
intermediate state is not empty. At EF − ε0 ∼ νi [around −20

ν ν

ω ω−

→ →

ν ν

ω

→ →

ν ν

ω

→ →

(a) (b) (c)

FIG. 3. (Color online) Sketches of the processes responsible for
peaks in the Stokes intensity [Fig. 2(a)], located at (a) EF − ε0 = ±νi

(±20), (b) ±(νi − ωv) (±15), and (c) ±ωv (±5).

in Fig. 2(a)], the Stokes scattering becomes possible. The
corresponding threshold is illustrated in a sketch in Fig. 3(a).

After crossing this threshold, two processes compete for the
electron at the intermediate (excited) level: Raman scattering
and electron transfer from molecule into contacts. As a result,
the intensity of Raman signal due to this process should go
down. However, an additional channel for Raman scattering
opens at this point. This channel is a scattering process
where electron returning back into the ground state comes
from a different (not initially excited) intermediate level,
which is ωv lower in energy in the Lorentzian than the
initially excited one [see sketch in Fig. 3(b)]. For the Stokes
signal, this transition comes from a vibrationally excited state.
This additional process leads to an increase in Stokes signal
in the range of EF − ε0 from νi to νi − ωv . At the latter point,
the channel closes since the level returning the electron to the
ground state crosses the Fermi energy, becoming unpopulated.
This leads to a decrease in Stokes signal for positions of ε0

closer to EF , which results in a peak in Fig. 2(a) at ∼ −15.
A similar process occurs with involvement of a level shifted

by ωv from the initial level at ε0 [see sketch in Fig. 3(c)].
Threshold behavior of the former leads to a peak at EF − ε0 =
ωv [∼ −5 in Fig. 2(a)]. Note that peaks for level positions
above Fermi energy ε0 > EF can be explained along the same
lines, considering the hole in place of particle transport. Note
also that bias (two different chemical potentials on the two
sides of the junction) smears and (at higher biases, Vsd > �)
splits the peaks.

The difference between results of our approach from those
of Ref. 30 are more pronounced in Fig. 2(b), where the Stokes
signal is plotted as a function of incident field frequency. Our
approach takes into account multiphoton processes absent in
the perturbative treatment of original Persson’s model8 and its
generalization.30

Figure 4 presents current [Eqs. (34) and (43)–(46)] as a
function of level position ε0 (a) and incident frequency νi (b)
under harmonic driving. Due to the presence of a driving force,
the central (ε0 = EF ) peak in the current versus level position
dependence [see Fig. 4(a)] may come from any of the (43)–(46)
contributions since elastic and inelastic (in vibrational degree
of freedom or in outgoing photon) channels are always open
in this case (note νi > ωv and most of νf ). Other peaks are
mostly due to inelastic processes of I i

K and I iv
K [Eqs. (43)

and (44)] and contributions to the current from the processes
that determine similar structure in Stokes intensity versus the
ε0 plot [see Fig. 2(a)]. The latter comes from the I

ivf

K term
[Eq. (46)].

There is an important difference between contributions of
the Raman scattering processes into the Stokes intensity and
charge flux. This difference is illustrated with the sketches
presented in Fig. 5. Here, the Raman scattering process of
Fig. 3(b) is shown for two different positions of ε0 relative
to contact Fermi energy. Both situations will contribute to
Stokes intensity as is discussed above. However, only one
of them will increase the charge flux through the junction.
This difference in contributions explains the difference in peak
structure in the Stokes and current. By comparing solid lines
in Figs. 2(a) and 4(a), one sees the absence versus presence
of the two-peak structure in the region from −20 to −15 at
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Γ
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FIG. 4. (Color online) Electric current averaged over period of
oscillation [Eqs. (43)–(46)] shown as function of (a) molecular level
position ε0 at bias Vsd = 1 (solid line, black) and 3 (dashed-dotted
line, red), and (b) incident laser filled frequency νi at level position
ε0 = 10 (solid line, black), 15 (dashed-dotted line, red), and 20
(dashed-double dotted line, blue). Dotted line (green) in panel (a)
shows current without I i

K contribution [Eq. (43)] at Vsd = 1. See text
for parameters.

low biases Vsd < � [for convenience, also the current without
dominant contribution I i

K is presented in Fig. 4(a) as dotted
line].

Figure 4(b) demonstrates the dependence of the current on
frequency of the incident laser field. The structure is similar
to the usual resonant inelastic conductance plots with two
peaks representing elastic (ε0 crosses chemical potential) and

ν

ν

ν

ν

ν

ν

ν

ν

FIG. 5. (Color online) Sketches of Raman scattering process of
the type presented in Fig. 3(b) (a) with and (b) without contribution
to current through the junction.

Γ

(ε
0

Γ

ν  ρ ν 

 ε
0

Γ

ν  ρ ν 

 Γ

FIG. 6. (Color online) Stokes intensity averaged over period of
oscillation of the photon flux (red) [Eq. (40)] and time-averaged
current (blue) [Eqs. (43)–(46)] as functions of (a) position of
the molecular level ε0 at Vsd = 1 (Stokes: dashed-dotted line;
current: solid line) and (b) bias Vsd at the level positions ε0 = 15
(Stokes: dashed-dotted line; current: solid line) and 20 (Stokes:
dashed-double-dotted line; current: dashed line). Vertical dashed
lines in panel (a) are used as a guide to the eye. See text for
parameters.

first vibrational sideband (ε0 + ωv crosses chemical potential)
contributions. This figure is similar to the Stokes intensity
plot in Fig. 2(b). Once more, the difference in contributions
to the Stokes signal and current sketched in Fig. 5 explain
the difference in structure of the peaks in Figs. 2(b) and 4(b),
respectively.

Finally, we discuss the possible fluctuations of the Stokes
and current resulting from fluctuations of underlying driving
parameters: position of the level and bias. Note that since
the conductance in experiments is measured as the current at
low bias, we can use our results for qualitative comparison
to correlation between conductance and Stokes presented in
Ref. 15. The latter work explains this temporal behavior by
molecular geometry reorganization. While such an explanation
is very reasonable, and indeed might be the main source of
the observed correlated behavior, we propose an alternative
mechanism for the effect.

Figure 6(a) compares the dependence of Stokes and current
on position of the level [see Figs. 2(a) and 4(a)]. Since the
problem is particle-hole symmetric, we show only half of the
energy region (ε0 < EF ). As is discussed above, processes
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shown in Fig. 5 contribute differently to current and Stokes,
which results in a valley in the current curve (solid line, blue)
around ε0 = −17.5 and the absence of such a valley in the
Stokes curve (dashed-dotted line, red). Consequently, fluctua-
tions of position of molecular level in this region may lead to
a different response in measured Stokes and conductance. In
Fig. 6(a), vertical dashed lines are used as a guide to the eye
to show two possibilities: shift of the molecular level closer to
Fermi energy may lead to either a decrease in both Stokes and
conductance signals or a decrease in Stokes with simultaneous
increase in conductance. Therefore, we can speculate that,
for highest occupied molecular orbital (HOMO) residing
around EF − νi + ωv (or LUMO around EF + νi − ωv), for
weak molecule-contact coupling, one may expect observing
correlated (and anticorrelated) response of Stokes intensity
and conductance caused by environmental fluctuations.

Similarly, a different response of Stokes and conductance
may stem from bias fluctuations. Figure 6(b) shows depen-
dence of Stokes and current versus bias for two positions
of molecular level. Regions of (anti)correlations of the two
signals resulting from bias fluctuations are easily identifiable
in this plot.

Figure 7 shows correlation (a) and anticorrelation (b) of
Stokes and current as functions of time. We calculate time
dependence of Stokes intensity and current (both averaged

Γ 

ν  ρ ν 
ν  ρ ν 

FIG. 7. (Color online) Response of Stokes intensity (dashed-
dotted line, red) and current (solid line, blue), both averaged over
period of oscillation of the corresponding flux, to instant shift of the
molecular level shown as function of time. The molecular level is
shifted (a) from ① (−15) to ② (−17.5) at t = 0 (correlation), and
(b) from ② (−17.5) to ③ (−20) at t = 0 (anticorrelation). The three
molecular level positions ①, ②, and ③ are denoted as vertical dashed
lines in Fig. 6(a).

over the period of oscillation) resulting from instantaneous
shifts of molecular levels at t = 0. Three different molecular
level positions at −15, −17.5, and −20 are denoted by ①, ②,
and ③, respectively, in Fig. 6(a). The same notation is used in
Fig. 7. For the molecular level shift ① → ②, both Stokes and
current signals decrease together [see Fig. 7(a)], while shift
② → ③ leads to the anticorrelated response [see Fig. 7(b)].
Analytical forms for the time-dependent Stokes intensity and
current due to the molecular level shift are presented in the
Appendix. Thus, our simple model provides a specific mecha-
nism for temporal (anti)correlation between Stokes signal and
conductance, which may be responsible for at least part of the
experimentally observed temporal correlation phenomena.15

V. CONCLUSION

We consider a time-dependent variant of the charge-
transfer SERS model8 previously generalized to steady-state
situations.30 Contrary to previous considerations, our approach
treats coupling to incident laser field nonperturbatively, which
(together with the possibility of consideration of arbitrary
time dependence of incident pulse) paves a way to realistic
simulations of Raman spectroscopy experiments in molecular
junctions. After formulating general theory, we restrict our
consideration to harmonic driving. This allows us to derive
expressions for Raman flux and current analytically.

Since both electrons and photons are involved in the
same Raman scattering process, characteristic features of the
two fluxes (Raman photon flux and conductance) should at
least partially resemble each other. We use this argument to
demonstrate within the model similarity of dependence of
the two fluxes on external parameters (position of molecular
level, applied bias, and incident field frequency). The Feynman
diagrams responsible for the proposed similarity are identified.

We demonstrate that, due to the presence of Fermi pop-
ulations in the contacts, the charge flux resulting from elec-
trons participating in the Raman scattering has characteristic
features specific to the electron flux only. In particular, for
weak coupling (� < Vsd ), current dependence on position of
the molecular level has a two-peak structure in the region
ε0 − EF ∼ ±(νi − ωv). Absence of such a structure for Stokes
signal in the same region allows for the same (or opposite)
response to fluctuations in the position of the molecular
level. Similarly, correlated (or anticorrelated) behavior can
be found in response to bias fluctuations. These findings may
serve as an alternative (to configurational change in molecular
structure) explanation to at least part of (anti)correlated
temporal behavior of Stokes signal and conductance reported
in Ref. 15.

Extension of the theory to description of molecular junction
responses in the language of molecular states, incorporation
of local fields (e.g., simulated for junction geometry within
a finite-difference time-domain approach) as realistic driving
force, and application of the theory to realistic simulations is
the goal of future research.
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APPENDIX: INSTANT LEVEL SHIFT WITH EXTERNAL
HARMONIC DRIVING

Analytical expressions for current within the resonant level
model were derived in Ref. 33 for two separate cases: (i)

instant level shift and (ii) harmonic driving. Here, we present
a similar derivation for the case when both effects are present
simultaneously.

Analytic expressions for projections of the single-particle
Green’s function [Eq. (15)] for instantaneous shift of the
molecular level from ε0 to ε0 + � at t = 0 driven by harmonic
incident field are

Gr (t,t ′) = −iθ (t − t ′) exp

[
−i

(
ε0 − i

�

2

)
(t − t ′) − i�[θ (t)t − θ (t ′)t ′] − i

C

νi

[sin(νit) − sin(νit
′)]
]

, (A1)

G≶(t,t ′) =
∞∑

k1,k2=−∞
Jk1

(
C

νi

)
Jk2

(
C

νi

)∫
dE

2π
�

≶
L+R(E) exp

(
−iE(t − t ′) − i

C

νi

[sin(νit) − sin(νit
′)]
)

× eiνik1t

E − ε0 − θ (t)� − k1νi + i �
2

[
1 − θ (t)

�ei(E−ε0−�−νik1+i�/2)t

E − ε0 − νik1 + i �
2

]

× e−iνi k2t
′

E − ε0 − θ (t ′)� − k2νi − i �
2

[
1 − θ (t ′)

�e−i(E−ε0−�−νik2−i�/2)t ′

E − ε0 − νik2 − i �
2

]
. (A2)

For t,t ′ < 0, Eqs. (A1) and (A2) reduce to (37) and (38), respectively.
Substituting (A1) and (A2) into the retarded projection of (24), and performing right-side Fourier transform (41) of the resulting

expression leads to Eq. (42) for t < 0 and to

P r (t,ω) = −i

+∞∑
k1,k2=−∞

Jk1

(
C

νi

)
Jk2

(
C

νi

)∫
dE

2π
�<

L+R(E)

(
1 − �

e−i(E−ε0−�−νik2−i�/2)t

E − ε0 − νik2 − i �
2

)

× exp {i [νi(k1 − k2) − ω] t}[
E − ε0 − � − νik1 + i �

2

] [
E − ε0 − � − νik2 − i �

2

] [
E − ε0 − � − νik1 + ω + i �

2

]
×

{
1 − ei(E−ε0−�−νik1+ω+i�/2)t

[
1 − 1 − e−iωt

ω
�

(
1 + ω − �

E − ε0 − νik1 + i �
2

)

× − e−i�t

(
1 − �

E − ε0 − νik1 + i �
2

)(
1 − �

E − ε0 − νik1 + ω + i �
2

)]}
+ (ω → −ω)∗ (A3)

for t > 0. Note that Eq.(A3) reduces to the form of Eq. (42) with ε0 → ε0 + � when t → +∞. Time-dependent Raman flux can
be obtained from Eq. (40) substituting (42) and (A3) for t < 0 and t > 0, respectively. As the time-dependent Raman is averaged
over the period of oscillation at asymptote t → +∞, transient time dependency of the resulting expression still remains. It decays
on a time scale of 1/�.

Time-dependent current is obtained by substituting (A1) into (35), changed for t > 0 from Eqs. (43)–(46). By neglecting fast
oscillating terms, current components averaged over period of oscillation at asymptote are

〈
I i
K (t)

〉 = 2
∑

ξ

∫
dE

2π

⎧⎨
⎩e− �

2 t

∣∣∣∣∣
∑

k

Jk

(
C
νi

)
Jk−ξ

(
C
νi

)
E − ε0 + (ξ − k)νi + i �

2

∣∣∣∣∣
2

+ (
1 − e− �

2 t
) ∣∣∣∣∣
∑

k

Jk

(
C
νi

)
Jk−ξ

(
C
νi

)
E − ε0 − � + (ξ − k)νi + i �

2

∣∣∣∣∣
2
⎫⎬
⎭

×[�<
K (E)�>

K̄
(E + ξνi) − �<

K̄
(E)�>

K (E + ξνi)], (A4)〈
I iv
K (t)

〉 = 2|Mv|2
∑

ξ

∫
dE

2π

{
Nv

[
e− �

2 t�0
ξ (ωv,E) + (

1 − eiωvt e− �
2 t
)
��

ξ (ωv,E)
]

×[�<
K (E)�>

K̄
(E + ωv + ξνi) − �<

K̄
(E)�>

K (E + ωv + ξνi)]

+ [Nv + 1]
[
e− �

2 t�0
ξ (−ωv,E) + (1 − e−iωvt e− �

2 t )��
ξ (−ωv,E)

]
×[�<

K (E)�>
K̄

(E − ωv + ξνi) − �<
K̄

(E)�>
K (E − ωv + ξνi)]

}
, (A5)
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〈
I

if

K (t)
〉 = 2|Mf |2

∑
ξ

∫ ∞

0
dνf ρ(νf )

∫
dE

2π

[
e− �

2 t�0
ξ (−νf ,E) + (

1 − e−iνf t e− �
2 t
)
��

ξ (−νf ,E)
]

×[�<
K (E)�>

K̄
(E − νf + ξνi) − �<

K̄
(E)�>

K (E − νf + ξνi)], (A6)〈
I

ivf

K (t)
〉 = 2|Mv|2 |Mf |2Re

∑
ξ

∫ ∞

0
dνf ρ(νf )

×
∫

dE

2π

{
Nv

[
e− �

2 t�0
ξ (ωv, − ωv,E) + (

1 − ei(2ωv−νf )t e− �
2 t
)
��

ξ (ωv, − ωv,E)

+e− �
2 t�0

ξ (ωv,νf ,E) + (
1 − ei(ωv−2νf )t e− �

2 t
)
��

ξ (ωv,νf ,E)
]

×[�<
K (E)�>

K̄
(E + ωv − νf + ξνi) − �<

K̄
(E)�>

K (E + ωv − νf + ξνi)]

+ [Nv + 1]
[
e− �

2 t�0
ξ (−ωv,ωv,E) + (

1 − e−i(2ωv+νf )t e− �
2 t
)
��

ξ (−ωv,ωv,E)

+ e− �
2 t�0

ξ (−ωv,νf ,E) + (
1 − e−i(ωv+2νf )t e− �

2 t
)
��

ξ (−ωv,νf ,E)
]

×[�<
K (E)�>

K̄
(E − ωv − νf + ξνi) − �<

K̄
(E)�>

K (E − ωv − νf + ξνi)]

}
, (A7)

where K̄ stands for the alternative to the K choice of the interface, �0
ξ (x,E) and �0

ξ (x,y,E) are defined in Eqs. (47) and (48),
respectively. Definition of ��

ξ (x,E) and ��
ξ (x,y,E) is similar with ε0 → ε0 + �.
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