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Density of states anomalies in multichannel quantum wires
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We reformulate the Tomonaga–Luttinger liquid theory for quasi-one-dimensional Fermion systems with many
subbands across the Fermi energy. Our theory enables us to obtain a rigorous expression of the local density of
states (LDOS) for general multichannel quantum wires, describing how the power-law anomalies of the LDOS
depend on inter- and intra-subbands couplings as well as the Fermi velocity of each band. The resulting formula
for the exponents is valid in the cases of both bulk contact and edge contact, and thus plays a fundamental role
in the physical properties of multicomponent Tomonaga–Luttinger liquid systems.
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I. INTRODUCTION

Bosonization is one of the most powerful techniques
for describing the properties of one-dimensional (1D) in-
teracting electron systems. In 1D systems, even a slight
interaction between electrons strongly affects the quantum
nature, resulting in the occurrence of Tomonaga–Luttinger
liquid (TLL) states.1–4 TLL states exhibit power-law anomalies
in physical quantities, as predicted by the bosonization
theory.5 A prominent example is the power-law singularity
of the single-particle density of states D(E,T ) near the
Fermi energy EF, represented by D(E,0) ∝ |E − EF|λ and
D(EF,T ) ∝ T λ, with E and T being the energy and the
temperature, respectively. The value of λ, called the TLL
exponent, is dependent on the interaction strength5 and other
parameters characterizing the 1D system.6–13 Recently, it
has been suggested that a continuous variation in λ can be
produced by an external field;14–16 this implies artificial control
of the transport properties of quasi-1D conductors, since λ

governs the power-law behaviors of the differential tunneling
conductance9 dI/dV ∝ |V |λ at high bias voltages (eV �
kBT ) and the temperature-dependent conductance G(T ) ∝ T λ

at low voltages (eV � kBT ).
Experimental realizations of TLL states encompass

various systems showing highly anisotropic conductivity:
metallic,17,18 semiconducting,19–25 and organic nanowires26–30

and carbon nanotubes9,10,31–34 are a few examples. These
actual quasi-1D conductors possess a finite cross section, thus
exhibiting a finite number of transmission channels in the
transverse direction (except for a limited case in which EF

is small enough for only the lowest subband to be involved).
The presence of multiple channels at EF causes intersubband
scatterings. Furthermore, different channels can have different
Fermi velocities, i.e., the slope of the dispersion curve at
EF (see Fig. 1), and thus contributions from each channel
to the TLL exponent differ from each other. Theories of
a multichannel TLL have been developed for the Hubbard
model in the presence of an external magnetic field,35–37

where the discrepancies in the Fermi velocity between up
and down spins are taken into account. A similar issue was
also discussed in the study of quasi-1D Bose gases.38 The
effect of intersubband scattering on the TLL exponent has
been investigated in connection with the TLL behavior of

multiwall carbon nanotubes.39 However, to the best of our
knowledge, singular behavior in D(E,T ) remains unresolved
for multichannel TLL systems with the coexistence of in-
tersubband scatterings and Fermi-velocity variations. Hence,
the rigorous expression of D(E,T ) in multichannel TLL
systems is desirable for describing the transport properties and
photoemission spectra that will be experimentally observed in
actual quasi-1D conductors.

In this paper, we reformulate the multichannel TLL theory
in order to derive the anomalous energy- and temperature-
dependences of the local density of states of quasi-1D Fermion
systems. Cases of locations both far from the boundary and
close to it, which correspond to bulk contact and end contact
of the transport properties, respectively, are discussed. We
demonstrate clearly how the TLL exponents of multichannel
systems depend on mutual interaction and Fermi velocities.
The resulting formula for the exponents, as well as the
theoretical framework we have established, will provide clues
to exploiting the effects of subband couplings and Fermi
velocity variations on the nature of TLLs in real 1D systems.

The paper is organized as follows. In Sec. II, the mul-
tichannel TLL theory is developed for N -channel quasi-
1D Fermionic systems with different Fermi velocities. The
local densities of states far from and close to the bound-
ary are calculated in Sec. III. As a simple example, in
Sec. IV, the theory is applied to two-channel spinless Fermion
systems in the long-range interaction limit, by which effects
of discrepancy in the Fermi velocity on the exponents are
clarified. The paper closes with a summary in Sec. V. In the
following, the unit h̄ = kB = 1 is used, unless explicitly stated
otherwise.

II. MULTICOMPONENT TOMONAGA-LUTTINGER
LIQUIDS

A. Bosonization

We consider a quasi-1D Fermion system where N 1D
energy bands cross EF. The band structure close to EF is
schematically shown in Fig. 1. Here, the Fermi velocity and
the Fermi wave number of the νth band (ν = 1, . . . ,N) are
denoted by vFν and kFν , respectively, and the one-particle state
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FIG. 1. Sketch of the energy dispersion of the present system,
where N energy bands cross EF. The Fermi velocity and the Fermi
wave number of the νth band (ν = 1, . . . ,N ) are denoted by vFν and
kFν , respectively. The symbol p = + (−) indicates a one-particle state
moving toward the right (left).

moving to the right (left) is indicated by p = + (−). The
kinetic energy of the Hamiltonian, Hk, is expressed by

Hk =
N∑

ν=1

∑
p=±

∑
k

pvFνkc
†
k,p,νck,p,ν, (1)

where the one-particle energy and the wave number k are
measured from EF and pkFν , respectively. In Eq. (1), c

†
k,p,ν

denotes the creation operator of the Fermion with wave number
k, branch p, and band index ν.

Let us introduce the density operator of the p branch of the
ν th band, defined as

ρp,ν(q) ≡
{∑

k c
†
k+q,p,νck,p,ν · · · q �= 0

Np,ν = ∑
k : c

†
k,p,νck,p,ν : · · · q = 0

, (2)

which satisfies the commutation relation
[ρp,ν(−q),ρp′,ν ′(q ′)] = δpp′δνν ′δqq ′pqL/(2π ). In terms
of ρp,ν(q), Hk is expressed by3,4

Hk =
N∑

ν=1

πvFν

L

∑
p,q

ρp,ν(q)ρp,ν(−q), (3)

where L is the length of the system. The most general form
of the mutual interaction between Fermions leading to the
N -component TLL is written as35

Hint = 1

2L

N∑
ν,ν ′=1

∑
p,q

{g̃2(ν,ν ′)ρp,ν(q)ρ−p,ν ′ (−q)

+ g̃4(ν,ν ′)ρp,ν(q)ρp,ν ′ (−q)}. (4)

The matrix elements g̃2(ν,ν ′) and g̃4(ν,ν ′) depend on the
details of the model we consider. Specifically, the case
with g̃2 ≡ g̃4 corresponds to the model for multiwall carbon
nanotubes considered in Ref. 39. As an example, we will
discuss the case of the spinless Fermion in Sec. IV.

We introduce the phase variables θν(x) and φν(x) (ν =
1, · · · ,N ), defined as

θν(x) = − 1√
2

∑
p

p

{
Qp,ν − 2πpx

L
Np,ν

− 2πi

L

∑
q �=0

p
e−iqx

q
ρp,ν(q) − p

π

2
N−p,ν

}
, (5)

φν(x) = − 1√
2

∑
p

{
Qp,ν − 2πpx

L
Np,ν

− 2πi

L

∑
q �=0

p
e−iqx

q
ρp,ν(q) − p

π

2
N−p,ν

}
, (6)

where [Qp,ν,Np′,ν ′ ] = iδpp′δνν ′ . In the summation in terms
of q, the ultraviolet cutoff exp(−α|q|/2) is implicitly in-
cluded. The phase variables satisfy the commutation relation
[θν(x),φν ′ (x ′)] = i2πδνν ′θ (x − x ′) for L → ∞, with θ (x)
being the conventional step function. In terms of the above
phase variables, the Hamiltonian is written as

H = 1

2

N∑
ν,ν ′=1

∫
dx{
ν(K−1)νν ′
ν ′ + ∂xθνVνν ′∂xθν ′ }, (7)

where 
ν = −∂xφν/(2π ). This is the general form of the
phase Hamiltonian expressing the N -component TLL. The
symmetric matrices K and V are defined as follows:

(K−1)νν ′ = 2πvFνδνν ′ + g̃4(ν,ν ′) − g̃2(ν,ν ′), (8)

Vνν ′ = vFν

2π
δνν ′ + g̃4(ν,ν ′) + g̃2(ν,ν ′)

4π2
. (9)

The Fermion operator, defined by ψp,ν(x) =
(1/

√
L)

∑
k eikxck,p,ν , is related to the phase variables

as

ψp,ν(x) = ην√
2πα

exp

{
i

p√
2

[θν(x) + pφν(x)]

}
, (10)

where ην expresses the Majorana Fermion operator satisfying
ην = η†

ν and {ην,ην ′ } = 2δνν ′ .

B. Diagonalization

The Hamiltonian given by Eq. (7) has a bilinear form with
respect to ∂xφν and ∂xθν , and thus can be diagonalized by the
standard unitary transformation, as shown below.

The equations of motion of the phase variables derived from
Eq. (7) read as

∂

∂t
� = V

∂2

∂x2
θ , (11)

∂

∂t
θ = K−1�, (12)

with θ = (θ1,θ2, · · · ,θN )T and � = (
1,
2, . . . ,
N )T. Here,
the energy eigenvalue ω = v|k| and the eigenvector X corre-
sponding to it are determined by

(v2K − V )X = 0, (13)

whose solutions are denoted by vj and Xj (j = 1,2, . . . ,N ).
The eigenvectors are normalized as (X i ,K Xj ) = δij .

To obtain a concise representation of H, we define the
unitary transformation as

θ = X�, (14)

� = KX�, (15)

where � = (�1,�2, . . . ,�N )T and � = (�1,�2, . . . ,�N )T.
The N × N matrix X consists of the set of eigenvectors Xj as
X = (X1,X2, . . . ,XN ), and satisfies XTKX = 1. Under the
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transformation, [�j (x),�j ′ (x ′)] = iδjj ′δ(x − x ′). By using
the new variables, we obtain an alternative form of H given by

H = 1

2

N∑
j=1

∫
dx

{
�2

j + v2
j (∂x�j )2

}
, (16)

and that of the field operator defined in Eq. (10)

ψp,ν(x) = ην√
2πα

× exp

(
i

p√
2

N∑
j=1

{Xνj�j (x) + p(KX)νj�j (x)}
)

,

(17)

where φν = ∑N
j=1(KX)νj�j .

III. DENSITY OF STATES

In this section, we discuss the local density of states
D(ω,T ,x) with ω ≡ E − EF for ω � EF, where x denotes
the position along the 1D direction. As noted earlier, the TLL
exponent that characterizes the singularity of D(ω,T ,x) near
EF is x dependent. From a practical view, it is specifically
interesting to study the semi-infinite system with its end at
the origin6–8 and discuss the cases with x → 0 and x → ∞,
which correspond to the end contact and the bulk contact,
respectively. In the following argument, we therefore derive
the TLL exponent for both cases, as well as the explicit forms
of D(ω,T ,x) as functions of ω and T .

The local density of states is given by the summation of the
contribution from each band: D(ω,T ,x) = ∑N

ν=1 Dν(ω,T ,x).
The contribution from the νth band, Dν(ω,T ,x), is given by

Dν(ω,T ,x) = 1

2π

∫ ∞

−∞
dteiωt 〈{ψ†

ν (x,0),ψν(x,t)}〉, (18)

where ψν(x,t) = eikFνxψ+,ν(x,t) + e−ikFνxψ−,ν(x,t). Here,
{A,B} ≡ AB + BA and 〈· · · 〉 means the thermal average. The
quantity in the integrand in Eq. (18) for x → ∞ is proved to
be

〈{ψ†
ν (x → ∞,0),ψν(x → ∞,t)}〉 = 1

πα
[F (b)(t) + F (b)(−t)],

(19)

F (b)(t) =
(

πT t

sinh πT t

)∑N
j=1 Y

(b)
ν,j

×
N∏

j=1

1

(1 − ivj t/α)Y
(b)
ν,j

, (20)

Y
(b)
ν,j = 1

2

{
(Xν,j )2

2πvj

+ 2πvj [(KX)ν,j ]2

}
, (21)

where the superscript (b) means the case of a “bulk” contact.
Similarly, the counterpart for the “edge” contact case x → 0,
labeled by (e), obeys Eqs. (19)–(21) with Y

(b)
ν,j replaced by

Y
(e)
ν,j = 2πvj [(KX)ν,j ]2. (22)

The derivations of Eqs. (19)–(22) are shown in Appendix A.
We are ready to obtain the rigorous expression for

D
(b/e)
ν (ω,T ) ≡ Dν(ω,T ,x → ∞/0).8 Since D

(b/e)
ν (0,0) van-

ishes as long as
∑N

j=1 Y
(b/e)
ν,j > 1, we subtract it from the result

and take the limit α → 0. Eventually, we attain the desired

formulas:

D(b/e)
ν (ω,T )

= 1

2π2α

∫ ∞

−∞
dt

{
eiωt

(
πT t

sinh πT t

)∑N
j=1 Y

(b/e)
ν,j

− 1

}

×
{ N∏

j=1

1

(1 − ivj t/α)Y
(b/e)
ν,j

+
N∏

j=1

1

(1 + ivj t/α)Y
(b/e)
ν,j

}

= 2

π2α

N∏
j=1

(
α

vj

)Y
(b/e)
ν,j

cos

(
π

2

N∑
j=1

Y
(b/e)
ν,j

)

×
∫ ∞

0
dt

{
cos ωt

(
πT t

sinh πT t

)∑N
j=1 Y

(b/e)
ν,j

− 1

}
1

t
∑N

j=1 Y
(b/e)
ν,j

.

(23)

Equation (23) implies that the ω and T dependences of
D

(b/e)
ν (ω,T ) are given by

D(b/e)
ν (ω,0) = 1

πα

N∏
j=1

(
α

vj

)Y
(b/e)
ν,j

× 1

�
[ ∑N

j=1 Y
(b/e)
ν,j

]ω
∑N

j=1 Y
(b/e)
ν,j −1, (24)

D(b/e)
ν (0,T ) = 1

π2α

N∏
j=1

(
α

vj

)Y
(b/e)
ν,j

×
{
�

[∑N
j=1 Y

(b/e)
ν,j

/
2
]}2

�
[ ∑N

j=1 Y
(b/e)
ν,j

] (2πT )
∑N

j=1 Y
(b/e)
ν,j −1,

(25)

where �[z] is the gamma function. It thus follows that the TLL
exponent associated with the νth band reads as

λ(b)(ν) =
N∑

j=1

Y
(b)
ν,j − 1

=
N∑

j=1

1

2

{
(Xν,j )2

2πvj

+ 2πvj [(KX)ν,j ]2

}
− 1 (26)

for the bulk position, and

λ(e)(ν) =
N∑

j=1

Y
(e)
ν,j − 1 =

N∑
j=1

2πvj [(KX)ν,j ]2 − 1 (27)

for the edge. Equations (24) and (25) are the main findings of
this article; they give explicit functional forms of the power-
law density of states in N -channel TLL systems. We note that
the exponents Eqs. (26) and (27) can be directly read off from
the expression of the electron operators Eq. (17) together with
Eqs. (A1)–(A3).40

Our results indicate that D(ω,T ,x) is given by the sum-
mation of the contributions from each of the bands whose
powers differ. Therefore, the smallest value would be observed
in actual experiments, such as photoemissions and transport
properties, because the band with the smallest value of power
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has the largest contribution to the local density of states
(LDOS).

Specifically, if N = 2 with vF1 = vF2 = vF, the present
model is reduced to the conventional 1D electron system,
where the backward scattering between the different spins and
the Umklapp scattering are ignored. In fact, by parameterizing
as

g̃2(1,1) = g̃2(2,2) = g2‖ − g1‖, (28)

g̃2(1,2) = g̃2(2,1) = g2⊥, (29)

g̃4(1,1) = g̃4(2,2) = g4‖, (30)

g̃4(1,2) = g̃4(2,1) = g4⊥, (31)

Eqs. (26) and (27) lead to the familiar forms

λ(b)(1) = λ(b)(2) = 1
4

(
Kρ + K−1

ρ + Kσ + K−1
σ

) − 1, (32)

λ(e)(1) = λ(e)(2) = 1
2

(
K−1

ρ + K−1
σ

) − 1, (33)

with

Kρ =
√

2πvF + g4‖ + g4⊥ − g2‖ − g2⊥ + g1‖
2πvF + g4‖ + g4⊥ + g2‖ + g2⊥ − g1‖

, (34)

Kσ =
√

2πvF + g4‖ − g4⊥ − g2‖ + g2⊥ + g1‖
2πvF + g4‖ − g4⊥ + g2‖ − g2⊥ − g1‖

. (35)

IV. N-CHANNEL SPINLESS FERMIONS

In this section, we derive the matrix elements of the mutual
interactions, which are included in the matrices K and V in
Eqs. (8) and (9). As a simple example, we consider a quasi-1D
spinless Fermion system where N 1D energy bands cross EF.
In addition, in order to clarify the effects of the Fermi velocity
difference on the exponents, those for the N = 2 case with a
long-range mutual interaction are derived.

The mutual interaction Hint of the spinless Fermion can be
expressed generally as

Hint = 1

2

∫∫
dxdx ′ψ†(x)ψ†(x ′)V (|x − x ′|)ψ(x ′)ψ(x), (36)

with ψ(x) being the annihilation operator of the spinless
Fermion. Since we are discussing low-energy physics, the
interaction processes among the particles close to EF are
necessary. In order to obtain such interaction processes, the
operator ψ(x) is expanded, using the eigenfunctions of the
states across EF, φν,K (x), as

ψ(x) =
N∑

ν=1

∑
K

aν,Kφν,K (x), (37)

where aν,K is the operator of the spinless Fermion with the
eigenstate (ν,K). By inserting Eq. (37) into Eq. (36), Hint is
expressed as

Hint = 1

2

∑
ν1,ν2,ν3,ν4

∑
K1,K2,K3,K4

Vν1K1,ν2K2;ν3K3,ν4K4

× a
†
ν1,K1

a
†
ν2,K2

aν3,K3aν4,K4 , (38)

where the matrix element of the mutual interaction is written
as

Vν1K1,ν2K2;ν3K3,ν4K4 =
∫∫

dxdyV (|x − y|)
×φ∗

ν1,K1
(x)φ∗

ν2,K2
(y)φν3,K3 (y)φν4,K4 (x).

(39)

We note that as a result of momentum conservation, the relation
K1 + K2 − K3 − K4 = nG holds, where G is the reciprocal
lattice vector and n is an integer. In the following, we discuss
the case where the filling of each band is incommensurate.
Then, only the normal processes satisfying n = 0 are taken
into account as

Vν1K1,ν2K2;ν3K3,ν4K4

= δK1+K2,K3+K4 × Vν1,ν2;ν3,ν4 (K1,K2; K3,K4). (40)

In this case, Hint is expressed by

Hint = 1

2

∑
ν1,ν2,ν3,ν4

∑
p1,p2,p3,p4

∑
k1,k2,k3,k4

× δp1kFν1 +p2kFν2 ,p3kFν3 +p4kFν4
δk1+k2,k3+k4

×Vν1,ν2;ν3,ν4 (p1kFν1,p2kFν2 ; p3kFν3,p4kFν4 )

× c
†
k1,p1,ν1

c
†
k2,p2,ν2

ck3,p3,ν3ck4,p4,ν4 , (41)

where cp,k,ν = aν,pkFν +k and we set Ki = pikFνi
+ ki , with

|ki | � kFνj
(i,j = 1, . . . ,N). Assuming kFν �= kFν ′ for ν �= ν ′,

Eq. (41) is written as Hint = Hint,1 + Hint,2 + Hint,4, where

Hint,1 = 1

2

∑
k,k′,q

∑
p=±

N∑
ν,ν ′=1

Vν,ν ′;ν,ν ′

× (pkFν, − pkFν ′ ; pkFν, − pkFν ′)

× c
†
k+q,p,νc

†
k′−q,−p,ν ′ck′,p,νck,−p,ν ′ , (42)

Hint,2 = 1

2

∑
k,k′,q

∑
p=±

N∑
ν,ν ′=1

Vν,ν ′;ν ′,ν

× (pkFν, − pkFν ′ ; −pkFν ′ ,pkFν)

× c
†
k+q,p,νc

†
k′−q,−p,ν ′ck′,−p,ν ′ck,p,ν, (43)

Hint,4 = 1

2

∑
k,k′,q

∑
p=±

N∑
ν=1

Vν,ν;ν,ν(pkFν,pkFν ; pkFν,pkFν)

× c
†
k+q,p,νc

†
k′−q,p,νck′,p,νck,p,ν + 1

2

∑
k,k′,q

∑
p=±

N∑
ν �=ν ′

× {Vν,ν ′;ν ′,ν(pkFν,pkFν ′ ; pkFν ′ ,pkFν)

× c
†
k+q,p,νc

†
k′−q,p,ν ′ck′,p,ν ′ck,p,ν

+Vν,ν ′;ν,ν ′(pkFν,pkFν ′ ; pkFν,pkFν ′)

× c
†
k+q,p,νc

†
k′−q,p,ν ′ck′,p,νck,p,ν ′ }. (44)

Here, Hint,1 represents the backward scattering, Hint,2 denotes
the forward scattering among the different branches, and
Hint,4 expresses the forward scattering between the same
branches. It should be noted that we neglect accidental
situations in the momentum conservation, for example,
kFν1 − kFν2 = −kFν3 + kFν4 with kFν1 �= kFν4 and kFν2 �= kFν3 ,
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in the forward scattering among different branches. Equations
(42), (43), and (44) are reduced to

Hint = 1

2L

∑
k,k′,q

∑
p=±

N∑
ν,ν ′=1

×{g1(ν,ν ′)c†k+q,p,νc
†
k′−q,−p,ν ′ck′,p,ν ′ck,−p,ν

+ g2(ν,ν ′)c†k+q,p,νc
†
k′−q,−p,ν ′ck′,−p,ν ′ck,p,ν

+ g4(ν,ν ′)c†k+q,p,νc
†
k′−q,p,ν ′ck′,p,ν ′ck,p,ν}, (45)

where

g1(ν,ν ′) = LVν,ν ′;ν,ν ′(kFν, − kFν ′ ; kFν, − kFν ′), (46)

g2(ν,ν ′) = LVν,ν ′;ν ′,ν(kFν, − kFν ′ ; −kFν ′ ,kFν), (47)

g4(ν,ν ′) = L{Vν,ν;ν,ν(kFν,kFν ; kFν,kFν)δν,ν ′

+ [Vν,ν ′;ν ′,ν(kFν,kFν ′ ; kFν ′ ,kFν)

−Vν,ν ′;ν,ν ′(kFν,kFν ′ ; kFν,kFν ′)](1 − δν,ν ′)}. (48)

We have used the relation φ∗
ν,K (x) = φν,−K (x), which is a

result of time-reversal symmetry. Note that g1(ν,ν ′), g2(ν,ν ′),
and g4(ν,ν ′) are the real symmetric matrices. By comparing
Eq. (45) with Eq. (4), we obtain g̃2(ν,ν ′) = g2(ν,ν ′) − g1(ν,ν ′)
and g̃4(ν,ν ′) = g4(ν,ν ′).

The following discussion makes clear how the discrepancy
in the Fermi velocity components (i.e., vF1 �= vF2 �= · · · �= vFN

)
causes a variety in the values of the exponents λ(b/e)(ν). For
simplicity, we consider the N = 2 case, in which g2(ν,ν ′) =
g4(ν,ν ′) = g and g1(ν,ν ′) = 0 that are effective approxima-
tions for long-range interactions.39 The velocities of the two
excitations are obtained as

v± =
√

1

2
{ξ+ ±

√
ξ 2− + η2}, (49)

with

ξ± = v2
F1

± v2
F2

+ g

π
(vF1 ± vF2 ), (50)

η = 2g

π

√
vF1vF2 , (51)

and the corresponding eigenvectors are given by

X± = (√
2πvF1 cos θ±, ± √

2πvF2 sin θ±
)T

, (52)

with

tan θ± =
√

ξ 2− + η2 ∓ ξ−

η
. (53)

It then follows from Eqs. (26) and (27) that the TLL exponents
read as

λ(b)(1) = 1

2

(
vF1

v+
+ v+

vF1

)
cos2 θ+

+ 1

2

(
vF1

v−
+ v−

vF1

)
cos2 θ− − 1, (54)

λ(b)(2) = 1

2

(
vF2

v+
+ v+

vF2

)
sin2 θ+

+ 1

2

(
vF2

v−
+ v−

vF2

)
sin2 θ− − 1, (55)

λ(e)(1) = v+
vF1

cos2 θ+ + v−
vF1

cos2 θ− − 1, (56)

λ(e)(2) = v+
vF2

sin2 θ+ + v−
vF2

sin2 θ− − 1. (57)

Figure 2 shows the exponents λ(b/e)(1) and λ(b/e)(2) as a
function of the Fermi velocity difference u; vF1 = vF(1 + u/2)
and vF2 = vF(1 − u/2) in the plot (a), vF1 = vF(1 + u) and
vF2 = vF in (b), and vF1 = vF and vF2 = vF(1 − u) in (c).
For all the plots, the quantity g/(πvF ) is fixed to be unity.
Difference in the values of λ(b/e)(1) and λ(b/e)(2) becomes
significant and grows monotonically with an increase in u.
Besides, it is commonly observed in Figs. 2(a)–2(c) that the
exponents are enhanced (reduced) with decreasing (increasing)
the associated Fermi velocity. The latter feature is because
decreasing Fermi velocity leads to effective enhancement of
the electronic correlation and vice versa. As previously noted,
the smallest λ(b/e) (i.e., the contribution from the largest-vFν

energy band) should take a primary role in determining
experimental observations for actual 1D multiband systems.

Finally, it should be noted that the present result for the
4N -channel systems with equal Fermi velocity and the matrix
elements g2(ν,ν ′) = g4(ν,ν ′) = g and g1(ν,ν ′) = 0 corre-
sponds to the multiwall carbon nanotubes composed of
N metallic graphene sheets studied in Ref. 39. In this
case, the velocities of the excitation are obtained as v1 =
vF

√
1 + 4Ng/(πvF) and vj = vF (j = 2, . . . ,4N ), and our

formulas lead to the same results, λ(b)(ν) = {(vF/v1 +
v1/vF)/2 − 1}/(4N ) and λ(e)(ν) = (v1/vF − 1)/(4N ), as those
in Ref. 39.

V. CONCLUSION

In the present paper, we reformulated the TLL theory
for multichannel 1D Fermion systems. The theory obtained
enables derivation of rigorous expressions for the local density
of states and the corresponding TLL exponents λ(b/e)(ν) with
respect to the νth band. The strategy for evaluating λ(b/e)(ν) is
summarized as follows:

(1) Define the functional forms of the 1D eigenfunction
φν,K (x) and the interaction V (|x − y|) appropriate for the
system being considered.

(2) Calculate Vν1K1,ν2K2;ν3K3,ν4K4 using Eq. (39).
(3) Using the above result, set the mutual interaction terms

g̃i(ν,ν ′) that are necessity to define the interaction Hint given
by Eq. (4). Particularly when considering spinless Fermions,
we can obtain gi(ν,ν ′) for i = 1,2,4 by substituting the results
of step 2 into Eqs. (46)–(48).

(4) Set (K−1)ν,ν ′ and Vν,ν ′ according to Eqs. (8) and (9).
(5) Solve the eigenvalue problem (13) to obtain vj and Xj

for j = 1, . . . ,N .
(6) Evaluate Y

(b)
ν,j and Y

(e)
ν,j from Eqs. (21) and (22).

(7) Finally, we obtain the exponents λ(b)(ν) and λ(e)(ν) from
Eqs. (26) and (27).

By applying the strategy to 2-channel spinless Fermion
systems with different Fermi velocities and long-range mutual
interaction, we have revealed the role of difference in the
Fermi velocities on the TLL exponent. The exponents become
enhanced (suppressed) for the band with a small (large)
Fermi velocity since the smaller the Fermi velocity is, the
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FIG. 2. TLL exponents λ(b/e)(ν) for g/(πvF) = 1.0 with N = 2 as a function of u for (a) vF1 = vF(1 + u/2) and vF2 = vF(1 − u/2),
(b) vF1 = vF(1 + u) and vF2 = vF, and (c) vF1 = vF and vF2 = vF(1 − u).

stronger the effective electronic correlation becomes. In the
1D multiband systems, the LDOS is given by the summation
of the contribution from each band, and the largest component
would be dominant in actual materials. Therefore, the smallest
value of the exponent, which results from the band with largest
Fermi velocity, would be observed in the actual experiments.

Before closing, we remark that the present theory began
with the electronic Hamiltonian of the mutual interaction in
Eq. (4), which leads to the bosonic Hamiltonian Eq. (7) that
contains no nonlinear terms. But there are possibilities that
some interaction terms ignored in our setting of Eq. (4) induce
nonlinear terms, and that those may be relevant to the nature
of the spinless Fermions under consideration. Relevance of
such terms may depend on the details of models, and thus it
is quite challenging to examine without loss of generality.
We can say that the present theory is useful even though
the nonlinear terms arise whenever they are renormalized
to zero. In such cases, it is necessary to take account of
the renormalization of the parameters K and V by the
diminishing nonlinear terms. We should also comment that the
present method can be applied to the strictly 1D systems with
multiple electron pockets, for example, 1D atomic nanowires

formed by Au on Ge(001) that have two metallic electron
pockets.41
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APPENDIX: DERIVATION OF EQS. (19)–(22)

We discuss a semi-infinite system with its end at the origin.
For convenience, we scale the bosonic fields as

�̃j (x,t) = √
vj�j (x,t), (A1)

�̃j (x,t) = 1

2π
√

vj

�j (x,t), (A2)
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where [�̃j (x,t),�̃j ′ (y,t)] = iδjj ′θ (x − y). By using field op-
erators, the Hamiltonian is written as

H =
N∑

j=1

vj

2

∫
dx

{
�̃2

j + (∂x�̃j )2
}
, (A3)

where �̃j = −∂x�̃j . The boundary condition at the origin
requires the Fermion field for the νth subband ψν(0) = 0, i.e.,
ψ−,ν(0) = −ψ+,ν(0). This condition leads to

1√
2

N∑
j=1

Xν,j√
vj

�̃j (0,t) =
(

n + 1

2

)
π, (A4)

with n being an arbitrary integer.
The mode expansion, together with the canonical quantiza-

tion, leads to

�̃j (x,t) = Cj + �̃′
j (x,t), (A5)

�̃′
j (x,t) = 1

π

∫ ∞

0
dq

sin qx√
q

{−ie−ivj qt bj (q) + ieivj qt b
†
j (q)},
(A6)

�̃j (x,t) = − 1

π

∫ ∞

0
dq

cos qx√
q

{e−ivj qt bj (q) + eivj qt b
†
j (q)},

(A7)

where Cj is the c number satisfying (1/
√

2)∑N
j=1(Xν,j /

√
vj )Cj = {n + (1/2)}π , and bj (q) is the

bosonic operator with [bj (q),b†j ′ (q ′)] = πδjj ′δ(q − q ′).
The ultraviolet cutoff exp(−αq/2) is inserted if
necessary in the q integral in Eqs. (A6) and (A7).
Note that ∂t �̃j (x,t) = −vj∂x�̃j (x,t). As a result of
Eqs. (A5)–(A7), the Fermion field of the νth band satisfies
ψ−,ν(x,t) = −ψ+,ν(−x,t). The Hamiltonian is written as

H =
N∑

j=1

1

π

∫ ∞

0
dqvjqb

†
j (q)bj (q). (A8)

The quantity 〈{ψ†
ν (x,0),ψν(x,t)}〉 is calculated as follows:

〈{ψ†
ν (x,0),ψν(x,t)}〉

� 〈{ψ†
+,ν(x,0),ψ+,ν(x,t)}〉+(x → −x)

= 1

2πα

{ N∏
j=1

Gν,j (x,t)Hν,j (x,t)

+
N∏

j=1

Gν,j (x,t)H−1
ν,j (x,t)

}
+(x → −x), (A9)

where

Gν,j (x,t) =
〈

exp

{
− i

1√
2

(fν,j (x,0) − fν,j (x,t))
}〉

= exp

{
− 1

4
〈(fν,j (x,0) − fν,j (x,t))2〉

}
, (A10)

Hν,j (x,t) = exp

{
1

4
[fν,j (x,0),fν,j (x,t)]

}
, (A11)

withfν,j (x,t) = Xν,j /
√

vj �̃
′
j (x,t) + 2π

√
vj (KX)ν,j �̃j (x,t).

Here, we ignore the rapidly oscillating terms proportional to

exp(±i2kFνx) because these contributions can probably not be
observed directly due to averaging over several lattice sites in
the experiments. From Eqs. (A6) and (A7), together with (A8),

Gν,j (x,t) = exp

{
− Aν,j

2

∫ ∞

0
dq

sin2 qx

q

× (1 − e−ivj qt )(1 − eivj qt )[1 + 2g(vjq)]

− Bν,j

2

∫ ∞

0
dq

cos2 qx

q
(1 − e−ivj qt )

× (1 − eivj qt )[1 + 2g(vjq)]

}
, (A12)

Hν,j (x,t) = exp

{
Aν,j

2

∫ ∞

0
dq

sin2 qx

q
(eivj qt − e−ivj qt )

+ Bν,j

2

∫ ∞

0
dq

cos2 qx

q
(eivj qt − e−ivj qt )

}
, (A13)

where

Aν,j = (Xν,j )2

2πvj

, Bν,j = 2πvj [(KX)ν,j ]2, (A14)

and g(ε) = (eε/T − 1)−1 is the Bose distribution function. As
a result,

〈{ψ†
ν (x,0),ψν(x,t)}〉

= 1

πα
exp

{
−

N∑
j=1

[C+Ij (0,t) + C−Ij (x,t)]

}

×
[

exp

{
−

N∑
j=1

[C+Jj (0,t) + C−Jj (x,t)]

}

+ (t → −t)

]
, (A15)

where C± ≡ (Bν,j ± Aν,j )/2 and

Ij (x,t) =
∫ ∞

0
dq

cos 2qx

q
(1 − e−ivj qt )(1 − eivj qt )g(vjq)

= 1

2

∞∑
n=1

{
log

[
1 + (vj t + 2x)2

(nvj/T )2

]

+ log

[
1 + (vj t − 2x)2

(nvj/T )2

]
− 2 log

[
1 + (2x)2

(nvj/T )2

]}

= 1

2

{
log

sinh πT (t + 2x/vj )

πT (t + 2x/vj )

2πT x/vj

sinh 2πT x/vj

+ log
sinh πT (t − 2x/vj )

πT (t − 2x/vj )

2πT x/vj

sinh 2πT x/vj

}
, (A16)

Jj (x,t) =
∫ ∞

0
dq

cos 2qx

q
(1 − eivj qt )

= 1

2

{
log

α − i(vj t + 2x)

α − i2x
+ log

α − i(vj t − 2x)

α + i2x

}
.

(A17)

Since Ij (∞,t) = Jj (∞,t) = 0, these results lead to Eqs. (19)–
(22).
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