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Quantum thermal Hall effect in graphene
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The quantum thermal Hall effect in a six-terminal graphene device subjected to a thermal gradient and a
perpendicular magnetic field is theoretically studied. We find that, when the Dirac-point energy is far away from
the Fermi energy, the Hall thermal resistance has well-quantized plateaus and the longitudinal thermal resistance
is zero at low temperature. On the other hand, when the Dirac-point energy is near the Fermi energy, a fine
structure with a negative Hall-Lorentz number is exhibited in which the Wiedemann-Franz law is violated. This
fine structure has a good scaling behavior and the analytical scaling functions are also obtained.
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I. INTRODUCTION

Since first discovered in 1879, the Hall-type effect1–4 has
always been a fascinating topic in condensed matter physics.
It describes the phenomenon of a transverse bias induced by
a longitudinal current. The Hall effect is the generation of
transverse voltage from the longitudinal electric current in the
presence of a magnetic field. Since then, a series of Hall related
effects have been discovered including the quantum Hall effect
(QHE),1 spin Hall effect,2 anomalous Hall effect,3 quantum
spin Hall effect,4 etc., and many fascinating properties were
revealed. Taking QHE as an example, the conductance is
quantized with integer plateaus due to the Landau levels in
the presence of a magnetic field.1 Apart from the electric
charge transport, the thermal transport has received more and
more attention in recent years. Generally speaking, the thermal
conductance and thermoelectric coefficient are more sensitive
to details of device such as the density of states, etc.,5,6 so
they can provide more information such as the derivative of
transmission coefficient with respect to energy. But in the early
days, they were paid little attention to and even often neglected
because of the experimental difficulties. With the development
of microfabrication technology and low-temperature measure-
ment technology, however, the thermal transport becomes
feasible nowadays.7–9 For instance, the Nernst effect, a Hall-
type effect in which a transverse voltage is generated by
a longitudinal thermal current, has been observed in many
systems, including high-Tc superconductivity,7 graphite,8

etc., and the spin Seebeck effect10 was also discovered
recently.

In recent years, another research topic that has been
extensively investigated is the graphene.11 The graphene is
an ideal two-dimensional material of monolayer hexagonal
lattice of carbon atoms,12 and has a unique linear dispersion
of low-lying energy leading to many peculiar properties. For
instance, its quasi-particles show a relativistic-like behavior
and its Hall plateaus locate at the half-integer values.11

In this paper, we study the thermal Hall effect (THE) in
graphene. Similar to the Hall effect, THE is the generation
of transverse temperature difference resulting from a lon-
gitudinal thermal current.13–17 In general, for the classical
case, Wiedemann-Franz (WF) law is obeyed in which the
ratio of thermal conductivity κ to electrical conductivity σ

remains a constant: Lxy = κxy/(σxyT ) = π2k2
B/(3e2)(≡ L0),

where T is absolute temperature, subscript {xy} indicates the
transverse direction, and Lxy is named Hall-Lorentz number.
But in the quantum system or in the presence of various
interactions, the WF law may not be held. Recently, THE
and quantum THE (QTHE) have generated a great deal of
interest, and have been widely studied within various systems
including high-Tc superconductivity,15 impurity-doped iron16,
doped graphene,17 etc. In this paper, we consider a six-terminal
graphene Hall bar subjected to a perpendicular magnetic field
and a longitudinal thermal gradient [see the inset in Fig. 1(d)].
Due to the thermal gradient, a longitudinal thermal current
flows through the device, in which high energy carriers flow
from left to right while the low energy ones flow in the opposite
direction. So, the high and low energy carriers are deflected
toward the opposite transverse edges in this case, accordingly
a transverse temperature difference is exhibited. The results
clearly show that the QTHE emerges at low temperature
and the Hall thermal resistance has quantized plateaus with
the plateaus values being at half integer, which are robust
against the disorder. Moreover, while the Dirac point is near
the Fermi energy, both the Hall and longitudinal thermal
resistances exhibit a fine structure with a negative Hall-Lorentz
number.

The rest of this paper is organized as follows. In Sec. II, we
describe the model and give the details of our calculation. In
Sec. III, we show the numerical results of QTHE along with
discussions. Finally, the conclusion is presented in Sec. IV.

II. MODEL AND METHOD

In the tight-binding representation, the six-terminal
graphene device [see inset of Fig. 1(d)] can be described
by the Hamiltonian:18,19 H = ∑

i εia
†
i ai − ∑

〈ij〉 te
iφij a

†
i aj ,

where a
†
i (ai) denotes the creation (annihilation) operator at

the site i and εi is the on-site energy (i.e., the energy of
Dirac point). While in the absence of disorder, we set εi ≡ E0

for any site i. The second term in Hamiltonian describes the
nearest neighbor hopping with t being the hopping energy. In
the presence of magnetic field B, a phase φij is added in the
hopping term.18,19 In the calculation, we used the zigzag edge
graphene ribbon. We point that the results are the same for the
armchair edge (see Fig. 4) and other chiral edges.
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FIG. 1. (Color online) (a) is the Hall thermal resistance
Rxy(h/kB ) vs the Dirac-point energy E0. (b)–(d), respectively,
show the dimensionless thermal resistance Rxy , Rxx , and thermal
conductance κxy vs E0 at different temperatures. The parameters
are N = 50, L = 50, φ = 0.007, and the legend is for all panels.
The inset of panel (d) is the schematic diagram for the six-terminal
graphene device.

The heat flux flowing to the terminal n can be calculated
from the Landauer-Büttiker-type formula:20

Qn = (1/h)
∑
m

∫
(E − eVn)Tnm(E)[fn(E) − fm(E)]dE,

(1)

where Tnm(E) represents the transmission coefficient of
electron from terminal m to terminal n at energy E, and it can
be calculated through the equation Tnm(E) = Tr[�nGr�mGa],
where �n(E) = i[�r

n(E) − �a
n(E)] and Green’s function

Gr (E) = [Ga(E)]† = {EI − HC − ∑
n �r

n}−1. Here, HC is
the Hamiltonian of the central region [see the dotted box in
inset of Fig. 1(d)] and �r,a

n is the self-energy due to the coupling
of the terminal n. The size of central region is specified by
the width N and length 2N + L. In Fig. 1(d), the schematic
diagram of graphene device has N = 3 and L = 3. Besides,
fn(E) = 1/{exp[(E − eVn)/kB(T + Tn)] + 1} is the Fermi
distribution function in terminal n with chemical potential eVn

and temperature (T + Tn). In the linear response regime, it can
be expanded around the Fermi energy EF = 0 and temperature
T as

fn(E) = f0(E) − e
∂f0

∂E
Vn + ∂f0

∂T
Tn, (2)

where f0 = 1/{exp[E/kBT ] + 1} is the Fermi distribution
under zero bias and zero thermal gradient. The charge current
flowing to the terminal n can also be obtained from the
Landauer-Büttiker formula:21

In = (e/h)
∑
m

∫
Tnm(E)[fn(E) − fm(E)]dE. (3)

In our simulation, a thermal gradient 
T is applied between
terminals 1 and 4, so that T1/4 = ±
T/2, and a longitudinal
thermal current flows via the chiral edge modes. The boundary
conditions for the transverse terminals are Qn = 0 (n =
2, 3, 5, 6) because they are the temperature probes. We assume
there is no net charge current existing in the device, thus
In = 0 (n = 1, . . . ,6). Finally, by using Eqs. (1)–(3) combined
with these boundary conditions, all thermal-gradient-induced
voltages Vn and temperature Tn as well as longitudinal thermal
current Q can be obtained. Specifically, the longitudinal and
Hall thermal resistances are defined as Rxx = (T2 − T3)/Q and
Rxy = (T2 − T6)/Q with Q ≡ Q1 = −Q4. Furthermore, the
Hall thermal conductance reads κxy = Rxy/(R2

xx + R2
xy). In

the following calculation, we use t ≈ 2.75 eV as energy unit,
and 3h/(π2k2

BT ) as dimensionless thermal resistance unit. The
size N and L are chosen to be N = 50 and L = 50 with the
central region being approximately 21.2 × 37 nm2. In fact, all
results are insensitive to the size, except when it is very small.
The magnetic field is represented by the parameter 2φ which
is the magnetic flux in a honeycomb lattice.18,19

III. NUMERICAL RESULTS AND DISCUSSIONS

We first study the Hall and longitudinal thermal resistances,
Rxy and Rxx , at different temperatures T . Three features
are clearly revealed from Figs. 1(a) to 1(c). First, when
|E0 − EF | > 5kBT at low temperatures, Rxy is well quantized
exhibiting QTHE due to the Landau levels and chiral edge
states. Second, when E0 is near the Fermi energy EF = 0,
both Rxy and Rxx have fine structures which will be discussed
in detail in the next paragraph. Third, with the increase of
temperature, Rxy reduces monotonously and the quantized
plateaus become smeared. The plateaus finally disappear
when kBT reaches room temperature (e.g., kBT = 0.01t).
This can be seen more clearly in Fig. 1(b) where Rxy is
in the unit of 3h/(π2k2

BT ) so that it is dimensionless. In
the low temperature regime, due to the linear low-lying
energy dispersion Rxy has quantized plateaus at half-integer
values instead of integer values in the usual two-dimensional
electron gas (2DEG).13 In particular, at these plateaus the WF
law is satisfied that Lxy = L0,14 because of the absence of
backscattering. In the high temperature regime, however, the
quantization characteristics vanishes and no plateaus can be
observed any more. Besides, due to particle-hole symmetry,
we have Rxy(−E0) = −Rxy(E0) regardless of T , magnetic
flux φ, and the device size. For the longitudinal thermal
resistance Rxx , on the other hand, the symmetry becomes
even, i.e., Rxx(E0) = Rxx(−E0). From Fig. 1(c), we see
that Rxx exhibits a symmetric double peak structure and
Rxx �= 0 at E0 = 0. At low temperatures, the sharp peak is
located in the vicinity of E0 = 0. It becomes broadened with
the peak position shifted away from E0 = 0 as temperature
increases. The peak value is a constant up to kBT = 0.01t
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(corresponding to room temperature). Upon further increasing
the temperature, the peak value starts to decrease. Next, let
us examine the behavior of Hall thermal conductance κxy at
different temperatures [see Fig. 1(d)]. Similar to Rxy , at low T ,
κxy also exhibits quantized plateau that is eventually destroyed
as the temperature approaching to room temperature. We note
that although the quantized plateaus disappear, the values of
κxy do not change much indicating the fact that the THE
still exists although QTHE has been completely destroyed.
Furthermore, in the high T regime, we have the asymptotic
behavior κxy ∝ E2

0 . This is because the thermal conductance
is sensitive to the occupied particle number n and for graphene
we have n ∝ E2

0 due to linear low-lying energy dispersion.
Let us further examine the fine structure of the Hall and

longitudinal resistances in detail. For this purpose, we zoom in
Figs. 1(b) and 1(c) and plot them in Figs. 2(a) and 2(b), respec-
tively. We can see clearly that Rxy does not drop monotonously
from 1 to −1 when E0 passes through EF = 0 with the carriers
changing from the electrons to holes. Specifically, with the
increase of E0, Rxy first increases and then drops after reaching
a maximum value. It then quickly drops to a negative value
in the region E0 < 0. Finally, Rxy increases again and reaches
Rxy = 0 at E0 = 0. For E0 > 0, the behavior of Rxy obeys the
relation Rxy(−E0) = −Rxy(E0). In particular, Rxy is positive
in the vicinity of origin. Within this regime, the WF law is
clearly violated with its Hall-Lorentz number Lxy < 0. Here,
the negative Lxy originates from the electron- and hole-like
edge states propagating in opposite directions,14 and the
unique zeroth Landau level which has both electron- and
hole-like behaviors. This feature shows essential difference

π
π

FIG. 2. (Color online) (a) and (b) are, respectively, the magnifica-
tions of Figs. 1(b) and 1(c) around the origin E0 = 0. (c) is the result
of (a) after scaling using kBT as dimensionless parameter (i.e., Rxy vs
E0/kBT ), while (d) is the same scaling result of (b). The parameters
and legend are the same as in Fig. 1. The dotted curves in (c) and (b)
are the scaling functions.

in comparison with the usual 2DEG, in which Lxy is always
positive,13 even if the system has both electron and hole.
This fine structure indicates that non-interaction graphene
resembles the interaction two-dimensional electron gas in the
fractional quantum Hall regime. For Rxx , as seen in Fig. 2(b),
two peaks emerge regardless of temperature. This double peak
structure seems to be analogous to that in the disorder 2DEG.13

But now the double peak structure can survive in the clean
graphene device due to the upstream propagating electron-
and hole-like edge states. Of more importance, Rxx still has
non-zero value even at E0 = 0 in which the density of state is
actually 0.

In the following, we shall give detailed explanation of such
negative Hall-Lorentz number. At first, let us consider the
region of E0 < 0 with E0 is very close to 0. In this region, at the
finite temperature, the system has both electron- and hole-like
carriers with the filling factor νe of electron-like carriers larger
than that of hole-like carriers νh. Although the electron- and
hole-like carriers propagate in the opposite directions, the Hall
electrical conductivity σxy is always positive because of νe >

νh. However, due to the counter-propagating electron- and
hole-like carriers in graphene, the Hall thermal conductivity
κxy can be negative. In order to see the negative κxy clearly,
we show the thermal-gradient-induced terminal bias Vn as
well as terminal temperature Tn versus E0 in Fig. 3. When a
temperature difference 
T is added between the longitudinal
terminals 1 and 4, it can induce both temperature difference
and also electrical bias between the transverse terminals. In
order to satisfy the boundary conditions In = 0, the bias V2

(V3) needs to be higher than the bias V6 (V5) [see Fig. 3(a)],
which is the Nernst effect (a transverse voltage generated by a
longitudinal thermal current).6–8 As a consequence of V2 > V6

(V3 > V5) and the counter-propagating hole-like carriers with
the energy E < E0, the temperature T2 (T3) has to be lower

Δ
Δ

FIG. 3. (Color online) (a) shows the thermal-gradient-induced
terminal bias Vn vs Dirac-point energy E0, while (b) is the terminal
temperature Tn as a function of E0. kBT = 0.002t and other
parameters are the same as in Fig. 1.
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than T6 (T5) [see Fig. 3(b)] to keep the zero thermal current
in all transverse terminals leading to the negative Hall thermal
conductivity κxy and negative Hall-Lorentz number. For the
E0 > 0 case, on the other hand, situation of κxy reverses due
to the symmetry of Rxy , but the Hall-Lorentz number remains
negative in the vicinity of 0.

Next, we study the scaling of fine structure of Rxy and
Rxx . The results are shown in Figs. 2(c) and 2(d). After
renormalization of Rxy(Rxx) by using kBT as a dimensionless
unit, all curves (i.e., Rxy(Rxx) vs E0/kBT ) almost collapse
together. In particular, at low T the thermal resistance scales
perfectly, while it deviates the scaling law at large |E0| in the
high T case [see Figs. 2(c) and 2(d)]. The general scaling
functions can be analytically obtained as follows. When EF

is near the Dirac point at low temperature, Tnm can well
approximately be T12(E) = T23(E) = T34(E) = T45(E) =
T56(E) = T61(E) = 2θ (E − E0),T21(E) = T32(E) =
T43(E) = T54(E) = T65(E) = T16(E) = 2θ (E0 − E),
and others are zero. This is because for E > E0 and E < E0

the carriers are, respectively, electron- and hole-like which
moves in the clockwise and anti-clockwise direction. Here,
the factor 2 is the spin degeneracy. Then, by substituting these
transmission coefficients Tnm and Eq. (2) into Eqs. (1) and (3),
one can straightforwardly obtain the scaling functions as

R̃xx(E0/kBT ) = 3
{
9F 4

1 + (
1 − 3F0 + 3F 2

0

)
F2(3F2 − π2)

+F 2
1 [9(1 − 2F0)F2 + (−2 + 3F0)π2]

}/
A,

(4)

R̃xy(E0/kBT ) = π2
{
9(−1 + 2F0)F 2

1

+(
1 − 3F0 + 3F 2

0

)
(−6F2 + π2)

}/
A, (5)

in which A = −81F 4
1 + 9F 2

1 [9(2F0 − 1)F2 + (1 − 3F0)π2]
−(1 − 3F0 + 3F 2

0 )(27F 2
2 − 9F2π

2 + π4),Fi ≡ Fi(E0/kBT ),
and Fi(x) = ∫ ∞

x
xi/[(ex + 1)(e−x + 1)]dx,(i = 0,1,2). Here,

both R̃xx and R̃xy are dimensionless, i.e., in the unit of
3h/π2k2

BT . By using such scaling functions, many features
can be obtained quantitatively. For instance, the maximum
value of Rxx(≈ 0.77187) lies at E0/kBT ≈ ±0.23462,
and at E0 = 0, it is Rxx ≈ 0.15108. The minimum value
of Rxy on the side E0 < 0 is about −0.36709 located at
E0/kBT ≈ −1.0817.

Here, we wish to emphasize that, due to the presence
of strong magnetic field, the carriers move only along the
boundaries of sample, so that our results are independent
of the orientation of the edges of the graphene ribbon. As
an example, in Fig. 4, we show the Hall thermal resistance
Rxy for the armchair edge case [see the device schematically
shown in Fig. 4(a)]. Rxy , in this case, also exhibits the Hall
plateaus and the fine structure [see Figs. 4(b) and 4(c)]. For
comparison, the results of zigzag edge case are also shown in
Figs. 4(b) and 4(c). Now it can be clearly seen that the curves
collapse perfectly, including both the Hall plateaus and the fine
structure.

In Fig. 5, we examine the influence of magnetic fields φ on
the Hall thermal resistance Rxy . At zero magnetic field (φ = 0),
we have Rxy = 0 everywhere since there is no edge state. With
the increase of φ from 0, Rxy first emerges in the vicinity of
E0 = 0 and then it gradually spreads to the whole region. For
the small φ, only THE (no QTHE) can be observed as seen in

π

FIG. 4. (Color online) (a) is the schematic diagram for the
six-terminal armchair edge graphene ribbon device. In such a
schematic diagram, the size is N = 3 and L = 3. (b) shows Rxy

for both armchair edge and zigzag edge cases together and (c) is its
magnification around the origin E0 = 0. For the armchair edge case,
the parameters are N = 70, L = 50, φ = 0.007, and for the zigzag
edge case they are the same as in Fig. 1(b).

Fig. 5(a). But for the large φ, Hall plateaus occur due to the
formation of Landau levels and edge states. Figure 5(b) shows
Rxy versus the magnetic field φ, in which similar behaviors
are observed. In another word, we have Rxy ∝ φ at small φ,
and the plateaus of Rxy finally occur at the half-integer values
when φ is large enough.

ϕ

π
π

FIG. 5. (Color online) (a) shows Rxy vs E0 for φ = 0.0001,
0.0002, 0.0003, 0.0005, 0.001, 0.002, 0.004, and 0.007 (along the
arrow direction), while (b) is Rxy vs φ for E0 = −0.1t , −0.15t ,
−0.2t , 0.2t , 0.15t , and 0.1t from bottom to top. The parameters are
kBT = 0.001t, N = 50, and L = 50. (c) is Rxy vs E0 at different
disorder strengths W with the parameters being N = 40, L =
40, φ = 0.007, and kBT = 0.002t .
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FIG. 6. (Color online) Rxy (a) and κxy (b) vs energy E0 at different
temperatures for the square lattice system. The parameters are N =
80, L = 80, and φ = 0.03.

Next, we shall examine the disorder effect on Rxy . Here,
the disorder is assumed to exist only in the central region [see
the dotted box in the inset of Fig. 1(d)]. In the presence of
disorder, the on-site energy E0 at site i in the central region
becomes E0 + wi , where wi is uniformly distributed in the
range [−W/2, W/2] with W being the disorder strength.
In Fig. 5(c), we present the influence of disorder on Rxy at
different disorder strengths W , from which the results clearly
show that, the quantized plateaus of Rxy are very robust against
disorder effect owing to the topological feature of system.
In particular, the lowest plateau 3h/(π2k2

BT ) remains intact
even when the disorder strength reaches up to W = 2t , and its
fluctuation is nearly 0. When W increases further the plateaus
start to deteriorate, but the values of Rxy do not decrease very
much. In other words, although QTHE is completely destroyed
due to the large disorder, the THE still exists. This is due to the
following reason. Although the disorder strongly reduces the
Hall temperature difference T2 − T6, the longitudinal thermal

current Q is also strongly weakened at the same time, giving
rise to a finite value of THE even at W → ∞. On the other
hand, the fine structure of Rxy with the negative Hall-Lorentz
number Lxy in the vicinity of E0 = 0 is sensitive to the
disorder, and it will be weakened as well. In particular, at
a certain disorder strength W , Rxy and Lxy can change sign,
and accordingly the WF law gradually recovers again. In this
case, the carriers behave much more like classical carriers due
to the strong scattering as a result of disorders.

Finally, for comparison, Rxy and κxy in a usual 2DEG
(square lattice) instead of the graphene system (hexagonal
lattice) are shown in Fig. 6. Similarly, Rxy and κxy also
have quantized plateaus at low temperature, and they become
gradually destroyed with the increase of kBT . On the other
hand, two main differences are observed. First, the Hall
plateaus are at integer values rather than half integers. Second,
no fine structure occurs and Lxy always remains positive.13

IV. CONCLUSION

In summary, the QTHE in graphene system is theoretically
investigated. The quantized thermal Hall plateaus at the
half-integer values are exhibited at low temperature and they
are robust against disorders. Besides, a fine structure with a
negative Hall-Lorentz number is found when Fermi energy is
near the Dirac point. Finally, all results are insensitive to the
orientation of edge and also size of the graphene.
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