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Magnetic impurities in graphene
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We used a quantum Monte Carlo method to study the magnetic impurity adatoms on graphene. We found
that by tuning the chemical potential we could switch the values of the impurity local magnet moment between
relatively large and small values. Our computations of the impurity spectral density found its behavior to differ
significantly from that of an impurity in a normal metal and our computations of the charge-charge and spin-spin
correlations between the impurity and the conduction-band electrons found them to be strongly suppressed. In
general, our results are consistent with those from poor man’s scaling and numerical renormalization group
methods.
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I. INTRODUCTION

Graphene is a two-dimensional fermionic material whose
band structure has a pseudo-gap created by a particular
arrangement of touching Dirac cones.1 In the vicinity of these
cones, the electronic density of states ρ(E) varies linearly
with the energy E measured relative to the Fermi energy
EF , that is, ρ(E) = α1|E − EF |. This functional behavior
and the corresponding low density of states open graphene
to the possibility of tailoring unconventional behavior. It is
well known, for example, that magnetic impurities behave
differently in a pseudo-gapped material than in a normal
metal.2,3

In a normal metal, the magnetic impurities induce many-
body correlations that at low temperatures quench the spin
fluctuations at the impurity site. This is the Kondo effect. For
this phenomena two impurity models, the Anderson and Kondo
models, have been particularly well studied by poor man’s
scaling and numerical renormalization group methods.4 Both
methods identify fixed-point Hamiltonians of the same form as
the original Hamiltonians but with renormalized parameters.
For the Anderson model, the original parameters are εd , U ,
and �, which are the impurity energy level, the Coulomb
interaction between two electrons simultaneously occupying
this level, and the level width. The renormalization mainly
affects εd , and all renormalizations flow to the only stable
fixed point, the strong coupling fixed point, accompanied by
T χimp → 0 and χimp → constant as the temperature T → 0.
The thermodynamic and transport properties of flows passing
in the vicinity of the unstable-local-moment fixed point
exhibit universality when their temperature and frequency
dependencies are scaled by the Kondo temperature TK .

The eigenvalues and eigenvectors of strong-coupling limit
of the Anderson model, when only one electron occupies the
impurity level, are equivalent to those of the Kondo model in
its weak-exchange limit.5 The equivalence establishes a well-
defined relation between the effective Anderson and the actual
Kondo exchange interactions between the impurity moment
and the conduction electrons. For the Kondo model with
an antiferromgnetic exchange J > 0, the renormalizations

always flow from its unstable J = 0 fixed point to its stable
J = ∞ fixed point at which its local moment is quenched.

Work on both models has typically assumed that the
conduction-band density of states ρ(E) is constant. There is
however now a well-established body of literature that shows
when ρ(E) = αr |E|r (setting EF = 0) and r > 0, the two
models have features with no counterparts in the constant ρ(E)
models.2,3,6–10 For the Kondo model, the J = 0 fixed point
becomes stable and a new unstable Jc fixed point appears.
The Kondo effect occurs only if J > Jc, but Jc can be very
large when r > 1

2 . For the Anderson model, as r increases, the
effective exchange interaction weakens and is very difficult
to boast above Jc. The once stable strong-coupling fixed
point becomes unstable and the the local-moment fixed point
becomes stable so at T = 0 partially quenched moments can
survive. Further, both εd and � are renormalized, and both spin
and charge fluctuations are suppressed. Also, the stability and
nature of some fixed points depend on whether particle-hole
symmetry exists. Thus for pseudo-gapped materials, Kondo
quenching of the magnet impurity often will not exist.

Clearly, the difficult Kondo case for r = 1, for which most
of the just stated phenomena occur, is relevant to graphene.
Indeed, several studies exist that focus on graphene as an
opportunity to study the Kondo effect and Kondo quantum
criticality in a pseudo-gapped material.11–16 There is also
considerable interest in exploiting the now well-established
experimental capability of shifting graphene chemical poten-
tial μ by an applied electric field to switch on and off this novel
physics.17–20

In this paper, we share the interest in using an electric
field to switch the properties of graphene. To this end, we
studied the Anderson impurity model for graphene as a
function of T and μ by using a determinant quantum Monte
Carlo method based on Hirsch-Fye algorithm.21 Instead of
using ρ(E) = α1|E|, we used the actual density of states
for a tight-binding expression of graphene conduction band.
We note that when μ �= 0, ρ(E) is replaced by ρ(E − μ),
destroying the symmetry ρ(E) = ρ(−E) assumed by scaling
and renormatization methods. Hence, besides exploring the
cases with variations from linearity, we are also exploring cases
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where the conduction-band density of states is not symmetric
about EF .

We find that over a reasonably wide range of parameters,
a local moment, in the sense of a nonzero expectation value
of S2

z , exists. As EF is gated to below zero, the renormalized
impurity level ε∗

d simultaneously shifts toward it. Eventually,
the two energies pass each other, transferring charge from the
impurity to the conduction band and in the process decreasing
the magnitude of the moment on the impurity. The process
thus “switches” the magnetic moment from a relatively large
value to a relatively small one as a function of the gating. In
fact, the switch is from a relatively well-developed moment
to one that is partially screened. Our computations of the
spectral density of the impurity support not only the shifting
of ε∗

d but also a significant reduction in the value of �. These
changes are consistent with the renormalization group results
of Ref. 22. We note, however, that the calculations there were
only for the μ = 0 case. We expect the μ needs to be moved
out of the linear-density-of-states region before we would
see the renormalization of � to cease. We also compute the
charge-charge and spin-spin correlations between the impurity
and conduction-band electrons and find them to have small
amplitude and to be short ranged.

II. FORMULATION

The Anderson impurity model with single impurity orbital
of energy εd and Coulomb repulsion U couples the conduction
electron states and impurity with hybridization V . The total
Hamiltonian is H = H0 + H1 + H2. Hamiltonian H0 is a
tight-binding one. For graphene, it is

H0 = −t
∑

<ij>,σ

(a†
iσ bjσ + b

†
jσ aiσ ) − μ

∑
iσ

(a†
iσ aiσ + b

†
iσ biσ ),

where a
†
iσ and b

†
iσ creates an electron with spin σ at sites Ria

and Rib on the A and B sublattices of graphene hexagonal
structure. In graphene, the hopping matrix element t > 0 is
about 2.8 eV (see Ref. 1) and μ is the chemical potential to
be tuned by a gate voltage. There are two bands, the π and π∗
bands, each of width of 3t , that touch each other at six Dirac
points in the first Brillouin zone of a hexagonal lattice. When
μ = 0, the density of states near EF = 0 is ρ(E) = α1|E| with
α1 = 4

√
3/3πt2. H1 is the impurity Hamiltonian

H1 =
∑

σ

(εd − μ)d†
σ dσ + Ud

†
↑d↑d

†
↓d↓.

Here, d†
σ creates an electron with spin σ at the impurity orbital.

Finally, H2 describes the hybridization between the impurity
adatom and a graphene atom

H2 = V
∑

σ

(a†
0σ dσ + d†

σ a0σ ).

We assume the impurity is on the top of the site R0a of
sublattice A.

As previously noted, we simulated this model with the
Hirsch-Fye quantum Monte Carlo algorithm. This algorithm21

naturally returns the imaginary-time Green’s function Gd (τ ) =∑
σ Gdσ (τ ) of the impurity. With this Green’s function we

determined its associated spectral density A(ω) = ∑
σ Aσ (ω)

by numerically solving

Gd (τ ) =
∫ ∞

−∞
dω

e−τωA(ω)

e−βω + 1
.

Specifically, we used the procedures detailed in Ref. 23 for
qualifying the data and qualifying the solution. We found
that the three different Bayesian methods for doing the
analytic continuation described in Ref. 23 produced only small
differences in computed A(ω) and the results were similarly
insensitive both to the use of Gaussian and flat default models
and to the use of a constant and Jeffery prior.

We also used an extension of the Hirsch-Fye algorithm24 to
compute the charge-charge correlation function

Ci = 〈ndni〉 − 〈nd〉〈ni〉,

and the spin-spin correlation function

Si = 〈mdmi〉,

where ni and mi are the charge and magnetic moment of the
graphene atom at site i.

III. RESULTS

A. Magnetic Moments

In Figs. 1(a)–1(c), we show various physical quantities
as a function of μ for different values of V . These are
the impurity level occupancy nd = 〈nd↑ + nd↓〉, its double
occupancy nupndown = 〈nd↑nd↓〉, and its local moment squared
m2

d = 〈(nd↑ − nd↓)2〉. To the accuracy of our simulation md =
〈nd↑ − nd↓〉 = 0, implying 〈nd↑〉 = 〈nd↓〉. All three quantities
“switch” their values as the chemical potential moves below
the Dirac point. For μ near this point, each case tends to
an average occupancy of one, but even for this case we
note that some double occupancy is present. Also noting
that m2

d = nd − 2nupndown, we see that the switching of m2
d is

driven by the switching in nd accompanied by some reduction
in nupndown. It is interesting that for different values of V

the tunable regions occur over different ranges of μ and
that the smaller values of V produce the bigger effects but
require larger values of μ. Below we will connect much of this
behavior with ε∗

d and �∗ shifts as V changes.
We also calculated the temperature-dependent impurity

spin susceptibility25

χ (T ) =
∫ β

0
dτ 〈md (τ )md (0)〉,

where β = T −1 and md (τ ) = eτH md (0)e−τH . In Fig. 1(d), we
show T χ versus μ. Clearly, its behavior correlates with that of
m2

d . Figure 2 shows χ as a function of T −1 for various values
of μ. Here, V = 1.0t , T −1 = 64t−1, U = 0.80t , and εd =
−0.40t . As μ moves below the Dirac point and T is lowered,
we see that χ crosses over from a Curie-Weiss behavior to the
behavior of a screened local moment.
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FIG. 1. (Color online) (a) Occupancy nd , (b) double occupancy nd↑nd↓, (c) local moment squared m2
d , and (d) the susceptibility T χ versus

the chemical potential μ. Variable V is the hybridization, εd = −U/2 = −0.40t , and the inverse temperature T −1 = 64t−1.

B. Spectral Densities

In Fig. 3 are the spectral densities A(ω) for an inverse
temperature 1/T = 12t−1 and εd = −U/2. In Fig. 3(a) we fix
μ at 0 and V at 1.0t and vary U . At μ = 0, the symmetry
of the bands and the choice εd = −U/2 places the Anderson
model in a state of particle-hole symmetry. This symmetry
implies A(ω) = A(−ω), which is evident. The pseudogap is
also evident. Additionally, we see that as U increases the two
peaks of A(ω) increase their separation and broaden. As the

FIG. 2. (Color online) The spin susceptibility χ versus the inverse
temperature T −1 for various values of chemical potential μ. In all
cases, V = 1.0t , U = 0.80t , and εd = −0.40t .

peaks broaden, their heights collapse to accommodate the sum
rule

∫
A(ω) dω = nd .

The features of the A(ω) in Fig. 3 differ markedly from
several general features of a Hartree-Fock solution for a normal
metal26 where the peak heights and widths are controlled by V ,
they are independent of U , and their separation D ≈ U . The
exact results, on the other hand, have peak heights and widths
varying with U and peak separations D at a given value of U

being much smaller than U .
Figure 3(b) shows A(ω) for different hybridizations V but

with μ still equal to 0 and εd still equal to −U/2. Here we see
additional differences from Hartree-Fock for a normal metal:
when V increases, the A(ω) peaks shift toward the Dirac point
and become sharper and higher. This behavior is consistent
with Hartree-Fock calculations using a linear density of states,
but oppositely trends the predicted behavior of Hartree-Fock
calculations with a constant density of states where increasing
V makes the peaks broader and lower. Additionally, for the
symmetric model, the peak positions do not shift.

In Fig. 3(c), we examine the case of gated impurity-doped
graphene, that is, we eliminate the particle-hole symmetry in
ρ(E) by having μ = −0.15t . We see that the asymmetric A(ω)
is enhanced when ω is negative, and both peaks display trends
similar to those found in Fig. 3(b) but the ω < 0 peaks are
sharper, higher, and closer to ω = 0.

Finally, in Fig. 3(d), we summarize the energy difference
D in detail. For a fixed εd = −U/2, increasing V decreases
D. Fixing V and increasing U (= −2εd ) decreases D. For
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FIG. 3. (Color online) (a) The spectral density A(ω) vs ω for V = 1.0t , μ = 0, and (from top to bottom) U = 0.80t , 1.2t , 1.6t , and 2.0t .
(b) A(ω) vs ω for U = 0.80t , μ = 0, and (from top to bottom) V = 1.0t , 0.75t , 0.60t ,and 0.50t . (c) A(ω) vs ω for μ = −0.15t , U = 0.80t ,
and (from top to bottom) V = 0.75t , 0.60t , and 0.50t . (d) The distance D between two peaks of A(ω) vs V/U and μ = 0. Here, T −1 = 12t−1.
In all cases, εd = −U/2.

example, when U = 0.80t and V = 0.40U , D is about
70% of U while U = 1.6t and D is only about 28%. The
bare εd differs so much from its renormalized value ε∗

d that the
impurity level may be detectable even if the εd seems outside
the experimentally accessible range.

We can loosely correlate the μ and V dependencies of
the A(ω) in Fig. 3(c) with those of nd , m2

d , and nupndown

in Fig. 1. In Fig. 1, we see that switching occurs well
before μ reaches εd = −0.40t . We also see that the V =
0.50t , 0.60t , and 0.75t cases at μ = −0.15t correspond
to unswitched, just-started-switching, and switching cases,
respectively. Comparing Fig. 4(c) with Fig. 1 reveals that at
V = 0.75t the system starts switching just as μ is dropped past
the A(ω) peak at ω ≈ −0.10t . At V = 0.60t , μ = −0.15t is
approximately the value of the frequency at the left edge of
A(ω), and at V = 0.50t , μ = −0.15t sits at the peak.

C. Spin and Charge Correlations

The linear energy dispersion and the vanishing of the
density of states at the Dirac points generate for impurities
an unusual Friedel sum rule,27 Friedel oscillations,28 and
RKKY interaction.29–33 The correlations of the impurity spin
and charge with those of the conduction electrons reflect

these behaviors. For example, when both μ = 0 and U = 0,
instead of a Fermi surface, graphene has two Fermi points at
the two nonequivalent Dirac points (that is, the Dirac points
not connected by a reciprocal lattice vector). Perfect nesting
exists between these points,29–31 leading to spin and charge
densities without oscillations. The magnitude of the nesting
wave vector is K = 4π/3

√
3a, where a is the carbon-carbon

spacing. Predicted for RKKY interactions, for example, are
short-ranged ferromagnetic correlations between the local
moment and the conduction electron spins instead of the
standard anti-ferromagnetic one and an oscillation pattern,
determined by K , such that if the impurity is at an A sublattice
site and so is i, the sign of these oscillations is negative, and if
i is at a B sublattice site, the sign is positive.

In Fig. 4, for V = 0.75t , we present examples of the
behavior of Ci and Si when U �= 0 for cases when μ is zero
and not zero. In these figures, the impurity adatom is located
on the top of the site i = 0. The subsequent labeling of the
lattice sites is shown in the inset to Fig. 4(a). When μ = 0,
we see that the charge correlations still lack oscillations, but
the formation of a local magnetic moment (Fig. 1) leads to
oscillating spin correlations29,31,33 on a length scale set by
K . The nearest-neighbor spin correlations are ferromagnetic
instead of the standard antiferromagnetic correlation.4 When

075414-4



MAGNETIC IMPURITIES IN GRAPHENE PHYSICAL REVIEW B 84, 075414 (2011)

0.00
(a)

0 10

-0.05
0.00

C
i

-0.15

-0.10

-0.04

-0.02

=0
=-0.20t

0.00

0 2 4 6 8 10
=-0.30t

(b)

-0.05
0.01

( )

S
i (b1) (b2)

-0 15

-0.10

-0.01

0.00

0 1 2 3 4 5 6 7 8 9 10 11
-0.20

-0.15
0 2 4 6 8 10

i0 1 2 3 4 5 6 7 8 9 10 11i

FIG. 4. (Color online) The charge-charge Ci and spin-spin Si

correlations vs site i, which is along the zigzag direction in
graphene. Here, V = 0.75t , T −1 = 64t , and εd = −U/2 = −0.40t .
The adatom is at i = 0 and the numbering of the other sites is given
in horizontal axis of (b). The insets of Ci and Si show the details
for curve tails. The inset (b2) shows the spin-spin correlation in
two-dimensional real space with μ = 0. The black ball represents the
impurity adatom at an A sublattice, and the filled red and open blue
circles represent lattice sites with negative and positive values of Si

at a distance i from the black ball, respectively.

μ �= 0, both the spin and charge correlation functions still
appear to oscillate on a scale set by K instead of twice the
Fermi wave number kF , where kF is defined by |μ| = vF kF ,
where vF = 3t/2a is the Fermi velocity. Predications have this
Fermi scale interfering29 or dominating32 the K scale. Figure 4
shows that the short-ranged correlations revert to the standard
antiferromagnetic ones. The μ �= 0 oscillation pattern appears
phase shifted relative to the particle-hole symmetric case. We
lack accuracy to identify interference with a 2kF scale.

In general, for the interacting problem the spatial extent of
both the spin and charge correlations is relatively short ranged,
and their amplitudes are small. Doping most clearly changes
the correlations in close proximity to the impurity. When μ is
in the region of linear electronic dispersion, the length scale
of the oscillations reflects the geometric length scale and not
the doping.

We can also loosely correlate the μ dependence of these
correlation functions with that of nd , m2

d , and nupndown in
Fig. 1. If we follow the μ dependence of the V = 0.75t

curve in Figs. 1(a) and 1(c), we see that near μ = 0 all three
quantities have their maximum values. When μ is near −0.20t

and −0.30t , all three values drop. Overall, the drops in nd and
m2

d lead to decreased correlations. The decrease in nupndown

creates a stronger on-site Fermi-hole effect and hence stronger
on-site anticorrelations. The drops between μ = −0.20t and
μ = −0.30t are relatively small and hence only create small
changes in the correlation functions at these values of μ.

IV. CONCLUSIONS

In summary, our calculations support prior suggestions that
it should be possible to switch the magnetic moment of an
impurity adatom on the surface of graphene from a relatively
high value to a relatively low one by shifting the chemical
potential by an electric field. Being shifted is a reasonably well-
defined local moment to one that is only partially screened.
We found unconventional behavior for the impurity spectral
densities and correlation functions that further highlight the
difference between an impurity in pseudo-gapped graphene
and one in a metal. We suggest that scanning tunneling
microscopy (STM) can measure the spectral densities and the
charge-charge correlation functions and a spin-polarized STM
can measure the spin-spin correlations.34–36

ACKNOWLEDGMENTS

We thank C. D. Batista for a helpful conversation. This
work was supported in part by CAEP and CUHK 402310. The
work of JEG was supported in part by the US DOE-BES.

1A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

2D. Withoff and E. Fradkin, Phys. Rev. Lett. 64, 1835 (1990).
3C. R. Cassanello and E. Fradkin, Phys. Rev. B 53, 15079 (1996).
4See, for example, A. C. Hewson, The Kondo Problem to Heavy
Fermions (Cambridge University Press, Cambridge, 1997).

5J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491 (1966).
6K. Chen and C. Jayaprakash, J. Phys. Condens. Matter 7, L491
(1995).

7C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 54, R15614
(1996).

8C. Gonzalez-Buxton and K. Ingersent, Phys. Rev. B 57, 14254
(1998).

9L. Fritz and M. Vojta, Phys. Rev. B 70, 214427 (2004).

10Lars Fritz, Serge Florens, and Matthias Vojta, Phys. Rev. B 74,
144410 (2006).

11K. Sengupta and G. Baskaran, Phys. Rev. B 77, 045417 (2008).
12P. S. Cornaglia, Gonzalo Usaj, and C. A. Balseiro, Phys. Rev. Lett.

102, 046801 (2009).
13M. Vojta, L. Fritz, and R. Bulla, Europhys. Lett. 90, 27006

(2010).
14Jian-Hao Chen, Liang Li, William G. Cullen, Ellen D. Williams,

and Michael S. Fuhrer, Nat. Phys. 7, 535 (2011).
15Bruno Uchoa, T. G. Rappoport, and A. H. Castro Neto, Phys. Rev.

Lett. 106, 016801 (2011).
16Sung-Po Chao and Vivek Aji, Phys. Rev. B 83, 165449 (2011).
17Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, and Philip Kim,

Nature (London) 438, 201 (2005).

075414-5

http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.64.1835
http://dx.doi.org/10.1103/PhysRevB.53.15079
http://dx.doi.org/10.1103/PhysRev.149.491
http://dx.doi.org/10.1088/0953-8984/7/37/003
http://dx.doi.org/10.1088/0953-8984/7/37/003
http://dx.doi.org/10.1103/PhysRevB.54.R15614
http://dx.doi.org/10.1103/PhysRevB.54.R15614
http://dx.doi.org/10.1103/PhysRevB.57.14254
http://dx.doi.org/10.1103/PhysRevB.57.14254
http://dx.doi.org/10.1103/PhysRevB.70.214427
http://dx.doi.org/10.1103/PhysRevB.74.144410
http://dx.doi.org/10.1103/PhysRevB.74.144410
http://dx.doi.org/10.1103/PhysRevB.77.045417
http://dx.doi.org/10.1103/PhysRevLett.102.046801
http://dx.doi.org/10.1103/PhysRevLett.102.046801
http://dx.doi.org/10.1209/0295-5075/90/27006
http://dx.doi.org/10.1209/0295-5075/90/27006
http://dx.doi.org/10.1038/nphys1962
http://dx.doi.org/10.1103/PhysRevLett.106.016801
http://dx.doi.org/10.1103/PhysRevLett.106.016801
http://dx.doi.org/10.1103/PhysRevB.83.165449
http://dx.doi.org/10.1038/nature04235


HU, MA, LIN, AND GUBERNATIS PHYSICAL REVIEW B 84, 075414 (2011)

18F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I.
Katsnelson, and K. S. Novoselov, Nat. Mater. 6, 652 (2007).

19A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V.
Waghmare, K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim,
A. C. Ferrari, and A. K. Sood, Nat. Nanotechnol. 3, 210 (2008).

20Guohong Li, A. Luican, J. M. B. Lopes dos Santos, A. H. Castro
Neto, A. Reina, J. Kong, and E. Y. Andrei, Nat. Phys. 6, 109
(2010).

21J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
22K. Ingersent, Phys. Rev. B 54, 11936 (1996).
23M. Jarrell and J. E. Gubernatis, Phys. Rep. 269, 133 (1996).
24J. E. Gubernatis, J. E. Hirsch, and D. J. Scalapino, Phys. Rev. B 35,

8478 (1987).
25χ is not the same as χimp, which is the difference between 〈S2

z 〉
computed for H and H0.

26P. W. Anderson, Phys. Rev. 124, 41 (1961).

27D.-H. Lin, Phys. Rev. A 73, 044701 (2006).
28Vadim V. Cheianov and Vladimir I. Fal̄ko, Phys. Rev. Lett. 97,

226801 (2006).
29M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber, and

F. Guinea, Phys. Rev. B 72, 155121 (2005).
30D. J. Priour and S. Das Sarma, Phys. Rev. Lett. 97, 127201 (2006).
31V. K. Dugaev, V. I. Litvinov, and J. Barnas, Phys. Rev. B 74, 224438

(2006).
32L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99, 116802

(2007).
33S. Saremi, Phys. Rev. B 76, 184430 (2007).
34Huai-Bin Zhuang, Qing-feng Sun, and X. C. Xie, Europhys. Lett.

86, 58004 (2009).
35B. Uchoa, Ling Yang, S.-W. Tsai, N. M. R. Peres, and A. H. Castro

Neto, Phys. Rev. Lett. 103, 206804 (2009).
36K. Saha, I. Paul, and K. Sengupta, Phys. Rev. B 81, 165446 (2010).

075414-6

http://dx.doi.org/10.1038/nmat1967
http://dx.doi.org/10.1038/nnano.2008.67
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1038/nphys1463
http://dx.doi.org/10.1103/PhysRevLett.56.2521
http://dx.doi.org/10.1103/PhysRevB.54.11936
http://dx.doi.org/10.1016/0370-1573(95)00074-7
http://dx.doi.org/10.1103/PhysRevB.35.8478
http://dx.doi.org/10.1103/PhysRevB.35.8478
http://dx.doi.org/10.1103/PhysRev.124.41
http://dx.doi.org/10.1103/PhysRevA.73.044701
http://dx.doi.org/10.1103/PhysRevLett.97.226801
http://dx.doi.org/10.1103/PhysRevLett.97.226801
http://dx.doi.org/10.1103/PhysRevB.72.155121
http://dx.doi.org/10.1103/PhysRevLett.97.127201
http://dx.doi.org/10.1103/PhysRevB.74.224438
http://dx.doi.org/10.1103/PhysRevB.74.224438
http://dx.doi.org/10.1103/PhysRevLett.99.116802
http://dx.doi.org/10.1103/PhysRevLett.99.116802
http://dx.doi.org/10.1103/PhysRevB.76.184430
http://dx.doi.org/10.1209/0295-5075/86/57007
http://dx.doi.org/10.1209/0295-5075/86/57007
http://dx.doi.org/10.1103/PhysRevLett.103.206804
http://dx.doi.org/10.1103/PhysRevB.81.165446

