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Surface roughness and thermal conductivity of semiconductor nanowires:
Going below the Casimir limit
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By explicitly considering surface roughness at the atomic level, we quantitatively show that the thermal
conductivity of Si nanowires can be lower than Casimir’s classical limit. However, this violation only occurs
for deep surface degradation. For shallow surface roughness, the Casimir formula is shown to yield a good
approximation to the phonon mean free paths and conductivity, even for nanowire diameters as thin as 2.22 nm.
Our exact treatment of roughness scattering is in stark contrast with a previously proposed perturbative
approach, which is found to overpredict scattering rates by an order of magnitude. The obtained results
suggest that a complete theoretical understanding of some previously published experimental results is still
lacking.
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I. INTRODUCTION

Good thermal insulation is much harder to achieve than
electrical insulation. Whereas electrical conductivity can be
tuned by 14 orders of magnitude,1 the achieved range of
thermal conductivities among all known materials only spans
4 orders of magnitude.2 Heat leaks easily, and a great deal
of research activity is devoted to finding new ways of
effectively blocking phonons.3,4 Thus, the astonishingly low
thermal conductivities recently reported on Si nanowires came
as a surprise,5 since the displayed values are an order of
magnitude lower than predicted by the diffuse boundary limit
of Casimir’s theory. Recent theoretical work has employed the
Born approximation to predict a very much enhanced boundary
scattering rate that would lead to a thermal conductivity well
below the Casimir limit.6 However, the Born approximation
is known to break down at wavelengths comparable to the
size of the scatterers, so an atomic level investigation is
crucial to assess whether such enhanced scattering rates
are possible or not. In this paper we present a Green’s
function calculation that answers the question of whether
the Casimir limit to the phonon mean free path (MFP) can
be overcome by large roughness. Our results show that the
MFP and the thermal conductivity of a nanowire are very
close to the Casimir limit if the roughness depth is less
than about 20% of the nanowire diameter. We show that the
conductivity and MFP can indeed be pushed below Casimir’s
diffuse scattering limit, but this requires a very large surface
roughening far beyond previous estimates. The interpretation
of previous experimental results is revised in the light of these
findings.

The layout of this paper is as follows. In Sec. II we describe
the theoretical method and the computational procedure used
in this work. In Sec. III we present and discuss our results.
Finally, the main conclusions of our study are summarized in
Sec. IV.

II. THEORETICAL BACKGROUND AND
COMPUTATIONAL PROCEDURE

In 1938, H. Casimir theoretically derived the MFP for
particlelike carriers in thin wires under diffuse boundary
conditions.7 For a cylindrical wire, the direction-averaged
MFP is λCasimir = D, where D is the wire diameter. This
approach was extended by Ziman8 to consider the effect of
partly specular surfaces, yielding λCasimir = 1+p

1−p
D, where p

is the coefficient of specularity, ranging from 0 for diffusive
scattering to 1 for mirrorlike reflection. Work by Dingle8,9

showed that when some intrinsic bulk scattering mechanism
acts together with boundary scattering, the exact solution
of the Boltzmann transport equation yields nearly the same
conductivity as if one used an effective MFP given by
Mathiessen’s approximated rule, λ−1 � λ−1

intrinsic + λ−1
Casimir. For

thin wires the boundary term dominates, and thus Casimir’s
diffuse boundary MFP determines a lower bound for the
thermal conductivity.

The phonon thermal conductivity of a nanowire in the
diffusive regime can be expressed10 as

κ = kBωT

2πA

∫ ∞

0

( χ

2

sinh χ

2

)2 ∑
α(ω)

τα (ω) vα (ω) dχ, (1)

where kB is Boltzmann’s constant, A the cross-sectional area
of the wire, ωT = kBT /h̄, χ = ω/ωT , α runs over all the
allowed phonon modes for each angular frequency ω, and
τα and vα are the relaxation time and group velocity of each
mode, respectively (the product vατα being its MFP, λα). The
phononic behavior of the perfect nanowire is determined, in
the harmonic approximation, by its interatomic force constant
(IFC) matrix, whose spatial Fourier transform is the dynamical
matrix, D. In particular, the eigenvectors and eigenvalues of D
are the vibrational modes of the system and their frequencies
squared, respectively, and the group velocities can be obtained

075403-11098-0121/2011/84(7)/075403(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.075403


J. CARRETE, L. J. GALLEGO, L. M. VARELA, AND N. MINGO PHYSICAL REVIEW B 84, 075403 (2011)

from the identity 2ωvα = 〈α| ∂D
∂k

|α〉. Likewise, a particular
arrangement of defects can be characterized by its perturbation
matrix V, defined as the difference between the IFC matrices
of the defective and the perfect nanowires. Its total elastic
scattering cross section for an incident phonon of mode
|α〉 is11

σα(ω) = 2π�∣∣〈α| ∂D
∂k

|α〉∣∣
∑
αf

|〈αf |t+|α〉|2, (2)

where � is the volume used for normalizing the wave function,
k the wave number, and t+ is the causal t matrix. This
can, in turn, be calculated from V and the causal Green’s
function of the perfect system, g+, using12 the relation
t+ = (1 − Vg+)−1V. Cross sections and MFPs are inversely
proportional through the expression λ−1

α = σαV −1
d , where

V −1
d is the volumic density of defects. This completes the

description of the theoretical approach used in this paper,
which can be summed up as follows: Obtain the Green’s
function of a perfect nanowire, use it in conjunction with
V to calculate the scattering cross section of any defect of
interest for all possible frequencies and modes, convert this
set of values to MFPs and substitute them in Eq. (1) in order
to obtain the thermal conductivity.

In this work, interactions between the atoms in the system
were described by means of the well-known Stillinger-Weber
potential. This model has been used to describe the crystalline
and liquid phases of bulk Si,13 and recently to investigate
the structures, nanomechanics, phonon spectra, and thermal
conductivities of thin Si nanowires (see, e.g., Refs. 14 and 15
and those cited therein). The Green’s function g+ was obtained
using 36 iterations of the decimation method,16,17 an iterative
renormalization-group approach which, operating with the
basic building blocks of the IFC matrix for the periodic
nanowire, yields at its j th step the relevant submatrices of
the Green’s function of a finite system with 2j unit cells,
thus quickly reaching a macroscopical, practically infinite,
system. This calculation was fully converged with respect to
the number of steps and was insensitive to the precise value of
the imaginary part of ω2, which was taken as (10−5 THz)ω.
All the systems for which IFC matrices were calculated
were relaxed to their minimum-energy configurations. The D3

symmetry of the perfect system was used in determining the
normal modes at each frequency, as well as in the decimation
process, by employing the incomplete projection operators18

associated with the three irreducible representations of D3 to
build a symmetry-adapted basis in which the IFC, dynamical,
and Green’s function matrices are block diagonal. However,
this symmetry is broken by the introduction of defects, and thus
the sparse LU (lower-upper triangular) decomposition used to
calculate the matrix elements of t+ is, by a large margin, the
most time-consuming part of the calculation.

Critical in obtaining the results in Ref. 6 is the Born approx-
imation t+ � V. This first-order perturbative approximation
lowers the computational costs of the calculation dramatically
and was also tried in this work in order to compare its results
with the exact ones obtained using the t matrix.

Experimentally, the first measurements on Si nanowires19

were shown to be rather close to the diffuse boundary limit,
seemingly confirming the validity of the Casimir formula.10

FIG. 1. (Color online) D = 2.22 nm Si nanowire: perfect (left),
with shallow surface roughness (middle), and with deeper surface
cavities (right)

However, since the latter is based on a semiclassical picture
of phonon propagation in the structure, the question remains
whether the true atomic configuration of surface imperfections
might lead to different results. In order to find the answer, we
have considered atomically described thin Si nanowires like
the ones shown in Fig. 1. We used a nanowire with a diameter
D = 2.22 nm (four atomic layers in the radial direction, 182
atoms in the unit cell) as the starting perfect system. In order
to simulate the effect of surface roughness, two scenarios
have been investigated: shallow roughness, where only atoms
from the outermost layer are removed at random, with 50%
probability; and deep roughness, where, on top of the existing
shallow roughness, we dig deep semispherical cavities along
the wire surface. The associated scattering cross sections were
then computed using Eq. (2), and the MFPs and relaxation
times were derived from them.

III. RESULTS AND DISCUSSION

The average relaxation times for each frequency are shown
in Fig. 2. Both the exact results and those obtained using
the Born approximation diverge at low frequencies, indicating
quasiballistic transmission. At higher frequencies, the exact

FIG. 2. (Color online) Relaxation times, averaged over all the
available modes for each frequency, in a D = 2.22 nm wire with
half of its outermost atoms removed, calculated using the exact
t+ matrix and the Born approximation. The Casimir limit is also
plotted for comparison. The shadowed area corresponds to the part
of the spectrum for which the resistance of the contacts would be the
dominating factor, as explained in the text.
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relaxation times suggest that the Casimir approximation is
adequate. There is, however, a striking difference of one to
two orders of magnitude between the solid (red) and dashed
(green) curves, with the Born approximation resulting in an
unrealistically high estimate of the scattering cross section.
This is a general feature of the approximation in this context
and becomes even worse when larger defects are introduced.

Further evidence of this failure is the fact that if the total
reflectance of a single defective segment is calculated using20

R(ω) =
∑

α(ω),αf (ω)

|〈α∗
f |t+|α〉|2∣∣〈αf | ∂D

∂k
|αf 〉∣∣ ∣∣〈α| ∂D

∂k
|α〉∣∣ , (3)

and again introducing the perturbative approximation t+ � V ,
for most frequencies this reflectance is much larger than the
transmission of the perfect system. This is a clearly absurd
result which, if substituted into the Landauer formula21 and
integrated, would yield a negative value for the thermal
conductivity.

Surface roughness with a characteristic size larger than the
size of the simulation cell (1.9 nm) is not included in the
simulation and thus the scattering of longer-wavelength/lower-
frequency phonons is Rayleigh-like, nearly ballistic. The
contribution of this part of the spectrum to the thermal
conductivity is, however, negligible if we take into account the
frequency dependence of the transmission probability between
the contacts used for measuring the thermal conductance and
the nanowire itself, which is proportional to ω2, as shown
in Ref. 22. This probability was included in our thermal
conductivity calculation using a composition rule for the
transmission of the wire plus contact system.23 The region
where contact scattering dominates the composition, causing
the results from t-matrix calculations alone to be insufficient,
is shown shadowed in Fig. 2.

Figure 3 compares the thermal conductivities calculated
from Eq. (1) using MFPs predicted by Eq. (2) (solid red
line), the Born approximation (dashed green line), and the
Casimir formula24 (dotted blue line) for the system discussed
in the preceding paragraph. The exact MFPs afford a ther-
mal conductivity in reasonable agreement with the Casimir
approximation, whereas the perturbative result is qualitatively

FIG. 3. (Color online) Thermal conductivity of a D = 2.22 nm
nanowire with half of its outermost atoms removed, as a function
of temperature, calculated using Eq. (1) with the exact t matrix, the
Born approximation, or the Casimir MFP.

FIG. 4. (Color online) (Bottom) Thermal conductivity at T =
1000 K, relative to the Casimir value, of a D = 2.22 nm nanowire
with half of its outermost atoms and an additional cluster of atoms
removed, as a function of temperature, calculated using Eq. (1) with
the exact t matrix (solid line) or the Born approximation (dashed
line). (Top) Minimum cross-sectional area of each nanowire, relative
to the perfect system.

and quantitatively different, reaching saturation at much lower
temperature and conductivity. The values shown here agree in
order of magnitude with those obtained in Ref. 25 for rough Si
nanowires using molecular dynamics simulations. There could
be some overestimation of the conductivities due to the fact
that the Stillinger-Weber potential yields phonon frequencies
above their true values, but this would affect the three curves in
Fig. 3 and thus not undermine our conclusions. As a check on
this hypothesis, we repeated a subset of the calculations using
the Tersoff potential for Si,26 as well as a parametrization of the
Stillinger-Weber potential for germanium,27 with comparable
conclusions. Since very thin nanowires are those most removed
from the context of the derivation of Casimir’s formula (which
is known to be valid for thick ones), our results suggest that
this formula should be a good approximation also for all larger
thicknesses. The role of the contact-nanowire transmission
(less important for thick wires) in suppressing the divergence at
low frequencies would be played in that case by the vanishing,
bulklike number of available states for each frequency.10

It is possible to go well below the Casimir value by blocking
the phonons using defects which penetrate deeper into the
nanowire. Figure 4 shows the effect on the conductivity (com-
puted at T = 1000 K) of removing an almost semispherical
cluster of up to 100 atoms from each 1.9-nm-long segment of
the wire. The conductivity is normalized to the value obtained
by the Casimir formula. As before, the Born approximation
overestimates the thermal resistance by an order of magnitude.
We can conclude from the t-matrix results that the reduction in
conductivity resulting from further removal of atoms is rather
slow once about a quarter of the cross-sectional area of the wire
has been removed. Thus, it is difficult to achieve a reduction in
conductivity of more than one order of magnitude with respect
to the Casimir limit without compromising other desirable
properties or even the structural stability of the system.

The progressively smaller efficiency of further removal
of atoms is to be expected if we compare the situation,
qualitatively, to the scattering of phonons by spherical nanopar-
ticles studied by Kim and Majumdar,28 who suggest the
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interpolation formula σ−1 = σ−1
Rayleigh + σ−1

near gometrical, result-
ing in a scattering efficiency that increases quickly with the
radius of the sphere when it is small, but simply oscillates
around the geometrical limit for larger radii.

The possibility of reducing wire conductivity below
the Casimir limit had been investigated in the past using
nonatomistic approaches. The Monte Carlo work by Moore
et al.29 introduced deep boundary roughness in the form of
sawtooth boundaries. They found that phonon backscattering
can cause the coefficients of specularity to become negative,
indicating MFPs below Casimir’s limit. However, neither
their predictions nor the ones reported in this paper match the
extremely low experimental conductivities found in Ref. 5.
This is especially surprising since the depth of the disordered
layers in the experimental nanowires is smaller (relative
to their diameter) than in the simulations. All of this and
the difference in order of magnitude between the exact and
approximate curves in Fig. 4 suggest that the interpretation of
experimental data in Ref. 6 may be just an artifact caused by
the Born approximation.

IV. CONCLUSIONS

In summary, starting with an atomistic model and per-
forming exact t-matrix calculations, we have found that the
Casimir limit can be overcome. However, by quantifying the

magnitude of this violation in terms of surface roughness,
we have shown that in most feasible situations the Casimir
formula still constitutes a good approximation to the effect of
boundary scattering on phonon transport in thin semiconductor
nanowires with surface disorder and that, as a result, achieving
a reduction in conductivity of more than one order of
magnitude below Casimir’s limit might involve such a strong
surface distortion so as to compromise the structural stability
of the nanowire. In particular, our results indicate that surface
roughness cannot be the only cause for the extremely low
thermal conductivity that has been experimentally reported
for Si nanowires.5
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