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Sagnac effect of excitonic polaritons
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We theoretically treat the Sagnac effect of excitonic polaritons in bulk material and microcavity. Using the
coupling between the electromagnetic and excitonic waves, the rotational sensitivity per unit area of a Sagnac
loop can be tuned from light to exciton behavior by varying frequency. We also discuss the feasibility and the
difficulties of the hybrid light-exciton wave Sagnac interferometer. We show that the quasi-two-dimensional
microcavity excitonic polariton is a better candidate than the bulk one. Considering the short decoherence time
in semiconductors, we suggest using the degenerate four-wave mixing of the microcavity excitonic polaritons to
generate two intrinsically coherent conjugate waves.
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I. INTRODUCTION

In 1913, Sagnac demonstrated the feasibility of using a ring
interferometer to detect the rotation of a system, in which the
interferometer is at rest.1 The phase difference between two
counterpropagating light beams in a closed loop is

�� = 4η� · A, (1)

where � is the angular velocity of the system and A is the
vector of the loop area. The coefficient η is

η = ηp = ω

c2
, (2)

where ω is the frequency of the light and c is the velocity of
light in vacuum. Even if the light is propagating in a medium,
the coefficient is the same.2–4 A similar effect occurs in the
ring interferometer of matter wave, but the coefficient is5–8

η = ηm = m

h̄
, (3)

where m is the mass of the particle and h̄ is the reduced Planck
constant. The Sagnac phase shift per unit area in a matter-wave
device exceeds that of laser-based interferometers by the ratio
of mc2

h̄ ω
; taking the visible light and electrons as an example,

the ratio is about 105.
In order to combine the large loop area in the light system

and high rotational sensitivity per unit area in matter wave
devices, Zimmer and Fleischhauer have proposed a light-
matter wave Sagnac interferometer based on the slow-light
propagation in ultracold atomic vapor,9 in which the light
can be coupled to the atomic Raman resonance to form the
so-called dark-state polaritons. Following similar ideas, in
this paper we discuss the feasibility of the hybrid light-matter
wave Sagnac interferometer based on excitonic polaritons in
semiconductors, which are quasiparticles coupled by photons
and dipole active excitons.10–12

The Sagnac effect of the excitonic polaritons can be
expressed as follows. In a rotational system, the equations of
the electromagnetic wave and the excitonic wave have to take
some corrections. We calculate wave equations in a rotational
system to first order in |�|

c
and, compared with the result in

an inertial system, the wave vector of the electromagnetic
wave here has an additional term δk = ηp(vR · ek)ek , where

vR = � × R and ek is the unit vector of k; similarly, the
wave vector of the excitonic wave has an additional term
δk = ηm(vR · ek)ek , which is the same as the matter wave with
an effective mass m. Next, when we consider the coupling
between an electromagnetic wave and an excitonic wave, a
new type of quasiparticles called polaritons appear. The wave
vector of the polariton also has an additional term in the
rotational system,

δk = ηeff,i(vR · ek). (4)

Here i indicates the energy branches of the polariton (as it will
be stated in the following) and ηeff,i is the effective coefficient.
Therefore, the Sagnac effect of the excitonic polariton is

�� = 4ηeff,i� · A. (5)

We hope to obtain a big ηeff,i to get a high sensitivity and
simultaneously we want to have a large photon proportion so
that the shot-noise level is low. Therefore, we calculate the
coefficient ηeff,i and the photon proportion of the excitonic
polaritons as functions of frequency ω. It appears that when ω

approaches to the exciton frequency, ηeff,i gradually increases
from ω

c2 to m
h̄

, while the photon proportion decreases from 1
to 0; here, m is the effective mass of the exciton. Therefore, it
is possible to choose a suitable frequency so that the excitonic
polariton wave can possess a large value of ηeff,i and a moderate
proportion of photon simultaneously. This is a favorable factor
for constructing the Sagnac interferometer based on excitonic
polaritons.

Owing to momentum conservation, direct transition from
photons to the bulk excitonic polaritons is prohibited. As
a result, keeping the phase relations in the bulk hybrid
light-exciton interferometer is very difficult. Moreover, the
decoherence time of the bulk excitonic polaritons is usually
very short, which is another serious problem for the Sagnac
interferometer based on bulk excitonic polaritons. A better
candidate is the excitonic polaritons in semiconductor mi-
crocavity with one or a few quantum wells embedded at the
antinodes of its intracavity mode. These are two-dimensional
quasiparticles and the direct transition from the external
photons to such two-dimensional quasiparticles is possible
because momentum conservation in the optical transition
needs to be satisfied only in the quantum well plane but
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not along the confinement direction. In addition, scattering
of the lower branch microcavity excitonic polaritons by
phonons is suppressed remarkably in the neighborhood of the
origin of the two-dimensional Brillouin zone. Therefore, the
decoherence time of the lower branch microcavity excitonic
polaritons is much longer than that of the bulk excitonic
polaritons. However, even using a high quality semiconductor
microcavity, measurement of the decoherence time is shorter
than 10 ps, which is also very short.

Therefore, in order to solve this problem, we use the
degenerate four-wave mixing (DFWM) of the microcavity
excitonic polaritons. Due to the exciton-exciton interaction,
third-order nonlinear effects are strengthened remarkably.
Many theoretical and experimental works have reported the
third-order nonlinear effects of the excitonic polaritons.13–19

During the DFWM process, two conjugate waves with coun-
terpropagating directions are generated and those two waves
are intrinsically coherent. We also demonstrate that the phase
difference between the two conjugate wave has a form similar
to the Sagnac phase difference obtained from the excitonic
polariton. Therefore, we can use this process in our hybrid
interferometer.

The paper is organized as follows. In Sec. II, we discuss the
Sagnac effect of the bulk excitonic polariton and the difficulties
of the Sagnac interferometer based on it. Then the Sagnac
effect of microcavity excitonic polaritons and their advantages
are discussed in Sec. III. The Sagnac effect for the DFWM of
microcavity excitonic polaritons is discussed in Sec. IV. Some
brief conclusions are made in Sec. V.

II. SAGNAC EFFECT OF THE EXCITONIC POLARITONS

A. Electromagnetic wave and excitonic wave
in a rotational system

In a rotational system, which is not inertial, the Maxwell
equations should make some changes. We obtain the Maxwell
equations to first order in |�|

c
; the first pair is

∇ · B = 0,
(6)

∇ × E = −1

c

∂B
∂t

.

It is the same as in the inertial system and the second pair is

∇ ·
(

E − 1

c
vR × B

)
= 4πρ,

(7)

∇ ×
(

B − 1

c
vR × E

)
= 1

c

∂

∂t

(
E − 1

c
vR × B

)
+ 4π

c
j.

Here E and B are the electric field and the magnetic field; ρ
and j are the charge density and the electric current density. In
dielectric,

ρ = −∇ · P,

j = ∂P
∂t

. (8)

Here P is the dielectric polarization. Then we have

1

c2

∂2E
∂t2

− ∇2E − 2
vR

c
· ∇

(
1

c

∂E
∂t

)
= −4π

c2

∂2P
∂t2

, (9)

∇ · (E + 4πP) = −vR

c2
· ∂(E + 4πP)

∂t
. (10)

The third term on the left-hand side of Eq. (9) and the
right-hand side of Eq. (10) are correction terms that do not exist
in inertial systems. In the usual dielectric, if frequency of the
electromagnetic field is far away from the exciton resonance
frequency, the polarization is linear with the electric field and
their relation is local; that is,

Pc = κcE. (11)

Therefore, Eq. (9) becomes

εc

c2

∂2E
∂t2

− ∇2E − 2
vR

c
· ∇

(
1

c

∂E
∂t

)
= 0. (12)

Here εc = 1 + 4πκc.
Using a quasiclassical approximation, we can write the

electric field as

E = A exp(−jωt + k · r). (13)

Inserting it into Eq. (12),

k2 − 2
ω

c2
(vR · ek)k − εω2

c2
= 0, (14)

we get

k ≈ √
ε
ω

c
+ ω

c2
(vR · ek). (15)

After integrating over the Sagnac loop, we can have Eq. (1) and
Eq. (2). The Sagnac effect only results from the additional term
δk = ω

c2 (vR · ek)ek , and it has nothing to do with the medium
property.

When the frequency of the propagating light in a semicon-
ductor approaches the α-exciton state resonance frequency ωα ,
the dipole active exciton contributes to the polarization in the
semiconductor. Also, the polarization includes two parts:

P = Pc + Pα. (16)

Here Pc is the same as that in Eq. (11). It is contributions from
all the other excited states that are far away from resonance;
Pα is a contribution from the resonant α-exciton state. Now
Eq. (9) becomes

εc

c2

∂2E
∂t2

− ∇2E − 2
vR

c
· ∇

(
1

c

∂E
∂t

)
= −4π

c2

∂2Pα

∂t2
. (17)

In order to make the discussion specifically, we only
consider the Mott-Wannier exciton, which can be regarded
as an electron-hole pair and its motion can be divided into
two parts. One is the relative motion between the electron
and the hole; the eigenvalue of this Hamiltonian determines
its resonance frequency ωα . Another part is the motion of the
exciton mass center and the Hamiltonian of this part can be
written as

HM,α = h̄ωα − h̄2

2M
∇2. (18)

Here M is the total mass of the α exciton. If the exciton
interparticle spacing is much larger than its Bohr radius, the
excitons can be regarded as bosons and the wave function
of the mass center can be regarded as the excitonic wave
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function.20–22 Therefore, we can write that the polarization
induced by the α exciton is

Pα = lα(�α + �α
∗). (19)

Here �α is the wave equation of the α exciton and lα is the
matrix element between the ground state and the α-exciton
state. Interaction between this polarization and the electric
field is −Pα · E; then we can get the wave equation of the
exciton,

∂2Pα

∂t2
+

(
HM,α

h̄

)2

Pα − HM,α

h̄

lαlα
h̄

· E = 0. (20)

Next we consider the exciton wave equation in a rotational
system. In that case, the electron-hole Hamiltonian will
have extra terms related to the rotational velocity. For the
relative motion between electron and hole, the additional
term turns out to be (� × rr ) · pr , where rr and pr are the
relative coordinate and momentum of the electron-hole pair,
respectively, while for the mass center Hamiltonian, there is an
additional term (� × rM ) · pM , where rM and pM are the mass
center coordinate and momentum accordingly. While the term
(� × rr ) · pr only changes the resonance frequency ωα , the
change is so small that we can neglect it. Therefore, we only
consider the mass center part and assume the matrix element
is isotropic, and Eq. (20) becomes

∂2Pα

∂t2
+

(
ωα − h̄

2M
∇2 + jvR · ∇

)2

Pα

−2l2
α

h̄

(
ωα − h̄

2M
∇2 + jvR · ∇

)
E = 0. (21)

In the extreme case E = 0, using a quasiclassical approxi-

mation, we get k =
√

2M(ω−ωα )
h̄

+ M
h̄

(vR · ek); that is, Sagnac
behavior of the exciton wave is the same as a matter wave with
its effective mass M .

Therefore, we have obtained the coupling wave equations
between the light wave and the exciton wave—Eq. (12) and
Eq. (21). In inertial system � = 0, by solving these two
equations, we get two branches of the excitonic polaritons
with different eigenenergies; in the following, we consider the
rotational system and will use these coupling wave equations
to discuss the Sagnac effect of the excitonic polaritons.

B. Excitonic polariton and its Sagnac effect

Again, we use the quasiclassical approximation,

(E,Pα) = (Ek,Pα,k) exp (−jωt + jk · r). (22)

Then, Eq. (12) and Eq. (21) become[
k2 − εc

ω2

c2
− 2

ω

c2
(vR · ek)k

]
Ek − 4πω2

c2
Pα,k = 0, (23)

{[ωα,k − (vR · ek)k]2 − ω2}Pα,k − εcωα,k

2π
�LTEk = 0, (24)

where ωα,k = ωα + h̄k2

2M
and �LT = 4πl2

α

h̄εc
. It is reasonable to

take the approximation

ωα,k − (vR · ek)k + ω ≈ 2ωα,k. (25)

Then the coupling wave equations become[
Q(k) − 2ηp(vR · ek)k − 4π

c2 ω2

− εc

4π
2M�LT

h̄
R(k) − 2ηM (vR · ek)k

] [
Ek

Pα,k

]
= 0.

(26)

In deriving the above result, we introduced the following
notations:

k2
c = εc

ω2

c2
,ηp = ω

c2
, ηM = M

h̄
,

Q(k) = k2 − kc
2,R(k) = k2 + 2M

h̄
(ωα − ω). (27)

From this equation, we can obtain k as a function of ω,
that is, the dispersion relation of the excitonic polariton wave.
We solve this equation by expanding k in powers of ( vR

c
); the

zeroth-order equation is

Q(k)R(k) = 2M

h̄
kc

2�LT. (28)

There are two branches of solutions for Eq. (28),

kL,U
2 = 1

2

[
kc

2 − 2M

h̄
(ωα − ω)

]

±
√[

kc
2 + 2M

h̄
(ωα − ω)

]2

+ 8M

h̄
kc

2�LT, (29)

where “+”corresponds to the dispersion of the lower branch
of the excitonic polaritons (LPB), and “−”corresponds to the
upper branch of the excitonic polaritons (UPB).11,12

The first-order solution is

δki = ηp + DiηM

1 + Di

(vR · ek). (30)

Here i = L or U and

Di(ω) = h̄

2M

Q2(ki)

kc
2�LT

, (31)

Defining the effective coefficient as

ηeff,i = ηp + Di(ω)ηM

1 + Di(ω)
, (32)

we have the phase difference between the clockwise and
counterclockwise wave as

�� = 2
∮

δki · dl

= 4ηeff,i� · A. (33)

Therefore, the effective Sagnac coefficient of the i-branch
excitonic polariton with frequency ω is ηeff,i .

In order to build a hybrid Sagnac interferometer, we also
have to guarantee that the photon flux is large enough to
get a lower shot-noise level. Now we calculate the photon
proportion of the excitonic polariton. The method is that, first,
we transform the equations of Ek and Pα,k into equations of
the amplitude of the photon wave Ak and the amplitude of
exciton wave Fα,k . Second, we write the annihilation operator
of the i-branch excitonic polariton as cph,iak + cex,ibα,k; here,
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ak and bα,k are the annihilation operators of photon and the α

exciton, respectively. Finally, we get the coefficient

cph,i = j
ω2

√
2�LT/ωk,i√

(ω2 − ωk,i
2)2 + ω4(2�LT/ωk,i)

,

(34)

cex,i = ω2 − ωk,i
2√

(ω2 − ωk,i
2)2 + ω4(2�LT/ωk,i)

,

where ωk,i = cki√
εc

.
We use the following notations for simplification and

change all the quantities into dimensionless ones:

kc,α =
√

εc

c
ωα, x = ω

ωα

, q = k

kc,α

, δLT = �LT

ωα

,

rα = h̄ωα

2Mc2
, A = 1

εcrα

, B = 4AδLT. (35)

Using these notations, Eqs. (29), (31), and (34) can be rewritten
as

q2
i = 1

2
[x2 − A(1 − x)] ±

√
[x2 + A(1 − x)]2 + Bx2,

Di = 4

B

(qi
2 − x2)2

x2
, (36)

cph,i = j

√
2δLT(x4/qi)

(qi
2 − x2)2 + 2δLT(x4/qi)

,

cex,i =
√

x2 − qi
2

(qi
2 − x2)2 + 2δLT(x4/qi)

,

and ηp = ωα

c2 x, ηp

ηM
= 2rαx.

C. An example: Excitonic polaritons in GaN

GaN is a kind of III-V compound; it has large exciton
binding energy (≈50 meV) and oscillation strength, and it
had been demonstrated that excitons in it are stable at room
temperature. AAlso, due to the progress of material technology
in the past few years, lasing and Bose-Einstein condensation
of the excitonic polariton have been demonstrated in the
GaN cavity at room temperature. Therefore, we choose it as
an example to calculate the Sagnac effect of bulk excitonic
polaritons. The parameters of the A exciton of GaN are23,24

h̄ωα = 3.487 eV,�LT = 3.0 meV,

M = 1.3me,εc = 8.75. (37)

Because the upper polariton branch suffers more serious
scattering than the lower polariton branch, it has a much shorter
decoherence time and shorter radiative lifetime. As a result,
we mainly discuss the results of the lower polariton branch.
The dispersion relations are shown in Fig. 1. We can find that
the dispersion curve qL(x) deviates from the dispersion curve
of photon qp(x) = x remarkably from the beginning point
x = 0.990, and then gradually approaches the dispersion curve
of exciton qex(x) = √

A(x − 1). Also, at large wave vectors,
dispersion of the LPB and UPB converge to the exciton and
photon dispersions, respectively.

Figure 2 shows the effective coefficient ηeff,L as a function
of x. At the beginning, ηeff,L(x) is close to ηp = ωα

c2 x. Then
it increases very quickly within a narrow interval around

0 1 2 3 4 5
0.9

0.95

1

1.05

1.1

q

x

UPB

LPB

Exciton

Photon

(a)

FIG. 1. (Color online) Dispersion curves of the excitonic polari-
tons (solid line). LPB represents the lower polariton branch and
UPB represents the upper polariton branch. The dashed lines are
the dispersion curves of the photons and excitons, respectively.

x = 1. As is shown in Fig. 2, at x = 0.990, ηeff,L increases
to 2.1884 s m−2, which is approximatedly 35 times the value
of ηp, while at x = 0.999, ηeff,L(x) rises to 197.5422 s m−2,
which is 3700 times of the value of ηp. Finally, ηeff,L(x) ap-
proaches ηM = M

h̄
≈ 1.1 × 104 s m−2. In Fig. 3, the proportion

of the photon is shown as a function of x. We can find that
the value of nph,L(x) begins at less than 1 and then drops
very quickly in the small interval next to x = 1. As it has
been shown in this figure, at x = 0.990, nph,L ≈ 0.19, and at
x = 0.995, nph,L drops to 0.002.

In order to evaluate the influence of the material parameters
on these results, we make the calculation using the same
parameters with Eq. (37), except that the effective mass of
the exciton M = 13me; the values of ηeff,L(x) and nph,L(x)
are shown in Figs. 4 and 5, respectively. It is clear that the
behaviors are similar to the case with M = 1.3me.

Therefore, it is evident that at suitable x, the excitonic
polariton wave can provide us with a large value of ηeff,L(x) and
a moderate value of nph,L(x) simultaneously. If we construct
a hybrid light-exciton wave interferometer just like Fig. 6,

0.9 0.95 1 1.05 1.1
−2

−1

0

1

2

3

4

5

x

lo
g 10

[η
(s

/m
2 )]

η
eff,L

η
p

FIG. 2. (Color online) Effective Sagnac coefficient of bulk GaN
excitonic polaritons (solid line) and Sagnac coefficient of the photons
(dashed line); M = 1.3me.
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0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

x

n ph

FIG. 3. (Color online) Photon proportion of bulk GaN excitonic
polaritons; M = 1.3me.

the phase difference between the two counterpropagating
beams is

�� = 4
l1ηp + l2ηeff

l1 + l2
�l1l2. (38)

If light frequency ω is close to the resonance frequency of the
α-exciton ωα , the sensitivity of the hybrid interferometer can
be enhanced by a factor of 1

l1+l2
(l1 + l2

ηeff

ηp
) than the common

laser interferometer.

D. Some intrinsical difficulties of the bulk excitonic polariton

Nevertheless, there are some intrinsical difficulties for such
a hybrid interferometer. First of all, conservation of energy
and momentum prohibits direct transition from photons to the
bulk excitonic polaritons unless some higher-order processes
occur, for example, the scattering of the photons or excitons
by interface, phonons, or defects in the crystal. However, these
higher-order processes are complicated and may destroy the
phase relations of these waves, so Eq. (38) is not correct in this
case and has to make some corrections. It is a very complicated
problem to calculate, so keeping a stable phase relation in such
an interferometer is very difficult.

The second difficulty is that the decoherence time of the
bulk excitonic polariton wave is usually very short, much
shorter than 1 ps at room temperature. The dominant deco-
herent processes of the excitonic polaritons are the scattering

0.9 0.95 1 1.05 1.1
−2

0

2

4

6

x

lo
g 10

[η
(s

/m
2 )]

η
eff,L

η
p

FIG. 4. (Color online) Effective Sagnac coefficient of bulk GaN
excitonic polaritons (solid line) and Sagnac coefficient of the photons
(dashed line); M = 13me.

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

x

n ph

FIG. 5. (Color online) Photon proportion of bulk GaN excitonic
polaritons; M = 13me.

processes of the excitons by other excitons, photons, or various
defects in the crystal. A phenomenological description of the
decoherence of excitons can be given by inserting a relaxation
term into Eq. (20). Then it becomes

∂2Pα

∂t2
+

(
HM,α − vR · p

h̄

)2

Pα + �α

∂Pα

∂t

− 2
lαlα
h̄

·
(

HM,α − vR · p
h̄

)
E = 0. (39)

Here the coefficient �α
−1 can be understood as the decoher-

ence time of the excitonic wave.
The decoherent processes also occur in light waves;

similarly, the effects of these processes can be described by
inserting an extra imaginary part in the dielectric constant. In
that case, Eq. (12) changes into

εc + jγc

c2

∂2E
∂t2

−∇2E − 2
vR

c2
·∇

(
1

c

∂E
∂t

)
=−4π

c2

∂2Pα

∂t2
. (40)

In the quasiclassical approximation, Eqs. (39) and (40) become[
k2 − εc

ω2

c2
− 2

ω

c2
(vR · ek) − jγc

ω2

c2

]
Ek − 4πω2

c2
Pα,k =0,

(41)

{[(ωα,k − vR · ek)k]2 − ω2 − j�αω}Pα,k− εcωα,k

2π
�LTEk =0.

(42)

R 

BS 

 

 

S 

l 

l 

D 

FIG. 6. Schematic of the hybrid light-exciton wave interferome-
ter. S: laser source; D: detector; BS: beam splitter; R: reflect mirror.
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Using the same method in Sec. II B to deal with these
imaginary terms, we can obtain the first-order corrections
for ki :

δki = ηeff,i(vR · ek) + j
ηpωγc + DiηM�α

2ki(1 + Di)
. (43)

When ηeff,i � ηp, Eq. (43) changes into

δki ≈ ηeff,i

[
(vR · ek) + j

�α

2ki

]
. (44)

We can find that the sensitivity of the Sagnac interferometer
based on the excitonic polariton wave is limited to l2

l1+l2

�α

2ki l1
.

As the decoherent time of excitons is approximately 1 ps
or shorter, it really is a serious difficulty for such a Sagnac
interferometer.

III. SAGNAC EFFECT OF THE MICROCAVITY
EXCITONIC POLARITONS

A. Excitonic polaritons in microcavity and its Sagnac effect

A typical semiconductor microcavity consists of a pair
of distributed Bragg reflectors with one or several quantum
wells (QWs) embedded at the antinodes of the intracavity
light field.25–27 When the exciton resonance energy coincides
with that of a cavity eigenmode, they couple with each other
and lead to the generation of excitonic polaritons. As the
excitonic polariton is in quasi-two-dimensional propagating
mode, momentum conservation needs only to be satisfied in
the QW plane but not the confinement direction. This is one
reason why we choose the microcavity excitonic polariton
rather than the bulk system.

The propagation equation of the excitonic polariton in the
cavity is similar to Eq. (12):

εc

c2

∂2E2D

∂t2
+ (

k2
0 − ∇2

2D

)
E2D

− 2

c2
(vR · ∇2D)

∂E2D

∂t
= −4π

c2
ξ
∂2Pα,2D

∂t2
. (45)

Here the electric field E2D = e2Dφ0(z)E2D(x,y,t) is propa-
gating in the x-y plane, φ0(z) is the longitudinal component
of the cavity mode function, ∇2D = ( ∂

∂x
, ∂
∂y

,0), k0 is the
longitudinal wave vector, and e2D is the polarization direction
of the wave. Therefore, the cavity mode can be written as
e2DEAφ0(z) exp [j (kxx + kyy) − jω0,kt] and its frequency as

ω0,k =
√

c2

εc
(k2

x + k2
y + k2

0).

In Eq. (45), Pα,2D is the QW α-exciton polarization; it
can be written as fα(z)Fα(x,y,t). The quasi-two-dimensional
propagation function of the exciton is similar to Eq. (20):

∂2Pα,2D

∂t2
+

(
Hex

h̄

)2

Pα,2D − 2ξ
Hex

h̄

lαlα
h̄

· E2D = 0. (46)

Here Hex = h̄ωα − h̄2

2M
∇2

2D + jh̄vR · ∇2D, h̄ωα is the energy
of the α exciton, and the parameter ξ = ∫

fα(z)φ0(z)dz. If
we introduce P2D = ξPα,2D and suppose the dipoles lα are
isotropic, then with �LT = 4π(ξ lα )2

h̄εc
, Eqs. (45) and (46) can be

transformed into

εc

c2

∂2E2D

∂t2
+ (

k0
2 − ∇2

2D

)
E2D

− 2

c2
(vR · ∇2D)

∂E2D

∂t
= −4π

c2

∂2P2D

∂t2
, (47)

∂2P2D

∂t2
+

(
ωα − h̄

2M
∇2

2D + jvR · ∇2D

)2

P2D

− εc�LT

2π

(
ωα− h̄

2M
∇2

2D+jvR · ∇
)

E2D =0. (48)

Analogous to the calculations in the preceding section, we
can obtain

kL,U
2 = 1

2

[
kd

2 − 2M

h̄
(ωα − ω)

]

±
√[

kd
2 + 2M

h̄
(ωα − ω)

]2

+ 8M

h̄
kc

2�LT. (49)

Here k2
c = εc

ω2

c2 , k2
d = k2

c − k2
0, and L and U are labeled as

the lower and upper branches of the microcavity excitonic
polaritons.

Then we get the first-order approximation of the wave
vector of the microcavity excitonic polaritons,

δkeff,i = ηeff,i(vR · ek). (50)

Here

ηeff,i = ηp + Di(ω)ηM

1 + Di(ω)
, Di(ω) = h̄

2M

Q2
d (ki)

kc
2�LT

,

Qd (k) = k2 − kd
2. (51)

We can further simplify the above results that

q2
L,U = 1

2

[
x2

d − A(1 − x)
] ±

√[
x2

d + A(1 − x)
]2 + Bx2,

cph,i = j

√√√√√√ 2δLTx4/

√
q2

i + x2
0(

q2
i − x2

d

)2 + 2δLTx4/

√
q2

i + x2
0

. (52)

Here, except for the parameters x2
d = x2 − x2

0 and x0 = ck0
ωα

√
εc

,
the other parameters have all been defined in the previous
section.

B. An example: Microcavity GaN excitonic polaritons

In order to show the properties of microcavity excitonic
polaritons, we use the GaN quantum wells embedded in a
microcavity as an example. If we ignore the difference between
the parameters of the bulk exciton and QW exciton of GaN and
also ignore the dielectric constant difference between GaN and
the medium in the cavity, then we can calculate the dispersion
curves of the lower and upper branch using Eq. (52).

The calculation results are plotted in Fig. 7. It is very hard
to illustrate qL(x) and qU (x) simultaneously in one figure
because, compared with qL in the region x ∈ [0.9,1.1], qU (x)
increases very quickly, but its value is very small. What we are
concerned about and going to use is the LPB, so in Fig. 7 (a),
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FIG. 7. (Color online) Dispersion curves: (a) the lower polariton branch (LPB) for x0 = 1.00; (b) the upper polariton branch (UPB) and
LPB for x0 = 1.00; (c) same as (b) but with x0 = 0.98; (d) same as (b) but with x0 = 1.01.

we show the dispersion curve of the LPB and, in Fig. 7 (b),
we illustrate the UPB and LPB simultaneously in the small
region 0 < q < 1. We notice that there is a “pit”around q = 0
in the LPB; it acts like the dispersion of the 2D quasiparticle
with a very small effective mass. However, in the following,
when it approaches x = 1, its behavior becomes nonparabolic.
It is well known that such a region possesses the so-called
bottleneck effect and the scattering by phonons is strongly
depressed, so the decoherence time is much longer for the
excitonic polaritons in this region.28,29 In Fig. 7(b), we have
x0 = 1.00, while in Figs. 7(c) and 7(d), we have x0 = 0.98
and x0 = 1.01, respectively. The three figures show similar
properties, except that the pit depths are different. The depth
is deeper at x0 = 0.98 than in the case that x0 = 1.00 and
x0 = 1.01.

The effective Sagnac coefficient ηeff,L and the proportion
of photon nph,L as functions of x are illustrated in Figs. 8 and
9. It is also clear that, at suitable frequency, the microcavity
excitonic polaritons can provide us with large values of ηeff,L

and moderate values of nph,L simultaneously.
The major advantage of the microcavity excitonic polari-

tons is that momentum conservation in an optical transition
needs only to be satisfied in the QW plane but not along
the confinement direction. The excitons in a QW couple to
light with the same in-plane wave number k‖ and arbitrary
transverse number k⊥. Therefore, QWs microcavity is more
optically accessible than bulk materials and the first difficulty
discussed in Sec. II can be solved in microcavity.

The second difficulty discussed in Sec. II can also be
improved in microcavity. In the bottleneck region, scattering
of the polaritons by phonons is strongly depressed.28,29 As
a result, the excitonic polaritons in this region have longer
decoherence time (some experimental works estimate it as
about 10 ps). Nevertheless, it is also too short and, in order
to obtain very high sensitivity, we suggest the degenerate
four-wave mixing of the microcavity excitonic polariton as
a better method.

0.9 0.95 1 1.05 1.1
−2

0

2

4

6

x

lo
g 10

[η
(s

/m
2 )]

η
p

η
eff,L

FIG. 8. (Color online) Effective Sagnac coefficient of microcavity
GaN excitonic polaritons (solid line) and Sagnac coefficient of the
photons (dashed line).
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FIG. 9. (Color online) Photon proportion of microcavity GaN
excitonic polaritons.

IV. SAGNAC EFFECT IN THE FOUR-WAVE MIXING
PROCESS OF MICROCAVITY POLARITON

Due to the excitonic component of the excitonic polaritons
and strong confinement in the microcavity, the excitonic
polaritons can have strong nonlinear interactions. The third-
order nonlinear effects of the microcavity excitonic polari-
tons, like parametric amplification and degenerate four-wave
mixing (DFWM), had been demonstrated in experiments and
discussed by theoretical works.13–15 Among those nonlinear
interactions, DWFM is rather important, because it can
generate two conjugate waves with opposite directions and
these two waves are intrinsically correlative.16–19 If we can
prove that the two conjugate waves can provide us with the
Sagnac phase information, they can be used to overcome the
problem caused by the short decoherence time of the excitonic
polariton. Therefore, in this section, we make a theoretical
description of the Sagnac effect of these two conjugate waves
and prove that their phase difference is analog with the one we
get from the usual Sagnac effect.

A. Nonlinear interaction between the excitonic polaritons

The exciton-exciton interaction in the inertial system can
be described by (see Fig. 10)

Hint =
∑
12,34

(
V12,34bk1

†bk2
†bk3bk4 + c.c.

)
δ(k1 + k2 − k3 − k4).

(53)

Here bki
and bki

† are the annihilation and creation operators
of the exciton with wave vector ki .13,14 Then taking this

4k 1k

3k 2k

FIG. 10. (Color online) Exciton-exciton interaction in which two
excitons k3 and k4 are scattered into k1 and k2.

interaction into account, the polarization equation of the
excitonic wave with wave vector ki is similar to Eq. (20),
but with an extra term on the right-hand side of the equation,

∂2Pi

∂t2
+

(
HM

h̄

)2

Pi − 2HM

h̄

lαlα
h̄

Ei = −2
HM

h̄

V12,34

lα
2

∏
j 
=i

Pj .

(54)

In this equation, i,j = 1,2,3,4. Pi is the exciton-induced
polarization and HM is the Hamiltonian of the exciton mass
center in an inertial system. We can find that the left-hand
side of this equation is the propagation of Pi and the right-
hand side is to describe the creation of Pi by a third-order
nonlinear effect. If we neglect photon-exciton and photon-
photon nonlinear interactions, the coupled equations of the
exciton and light wave now become(

−∇2 − εc

ω2
i

c2

)
Ei − 4πω2

i

c2
Pi = 0,[

−∇2 + 2M

h̄
(ωα − ωi)

]
Pi (55)

− εc

4π

2M�LT

h̄
Ei = −2M

h̄

V12,34

l2
α

∏
j 
=i

Pj .

As we have discussed in Sec. III, if we ignore the nonlinear
term, the homogeneous part of Eq. (55) has two branches
of solutions corresponding to the lower and upper polariton
branch. We combine the electric field and the polarization into
a matrix and normalize it; that is,

Fi,μ =
(

Ei,μ

Pi,μ

)
=fi,μ

(
cE,μ

cP,μ

)
exp [−jωit + jkμ(ωi)ek,i · r].

(56)

Here μ = L or U , |cE,μ|2 + |cP,μ|2 = 1, ek,i is the propagating
direction of the ith wave, and kμ(ωi) has been obtained in
Eq. (29). Also, in this case, we can consider that the μ-branch
excitonic polariton is the solution of the equation[∇2 + k2

μ(ωi)
]
fi,μ(r) = 0. (57)

Then we take the nonlinear interactions into account. From
the preceding section, we know that when ω � ωα + �LT,
kU (ω) becomes imaginary, so in the strong coupling regime,
where �LT is large enough to fulfill this condition, we only
need to consider the lower branch polaritons and rewrite
Eq. (55) as[∇2 + k2

L(ωi)
]
fi,L(ωi,r) = χ

(3)
L

∏
j 
=i

fj,L. (58)

Here the third-order nonlinear coefficient χ
(3)
L =

2M
h̄

V12,34

lα
2

∏
j 
=i

cP,L(ωj ).

Besides, it has to satisfy the following conditions:

ω1 + ω2 − ω3 − ω4 = 0,

kL(ω1)ek1 + kL(ω2)ek2 − kL(ω3)ek3 − kL(ω4)ek4 = 0. (59)

This result is similar to four-wave interaction in nonlinear
optics, so the third-order nonlinear interaction process between
light waves can be applied to the excitonic polaritons. Some
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experimental results have shown that the third-order nonlinear
coefficient χ

(3)
L of an excitonic polariton is much larger than

that of the light wave.
Next we consider the nonlinear interaction of the excitonic

polariton in a rotational system and take the decoherence
process into account. Discussed in the preceding section, in
a rotational system the left-hand side of Eq. (55) has to add
terms that are proportional to |vR |

c
, and these terms result in the

propagating constant kL(ω) changes to kL(ω) + δkL(ω) and
δkL(ω) = ηeff,L(ω)(vR · ek). As for the decoherence process,
we showed that when ηeff,L � ηp, the influence of the
decoherence process is that it generates an imaginary part in the
propagating constant and makes it change into kL(ω) + jγ (ω)
and γ (ω) ≈ ηeff,L

�α

2kL(ω) . Therefore, Eq. (58) becomes

[∇2 + (kL + �kL)2]fi,L = χ
(3)
L

∏
j 
=i

fj,L (60)

and �kL = δkL + jγL ≈ ηeff,L

[
(vR · ek,i) + j�α

2kL

]
.

B. DFWM of microcavity excitonic polaritons

In this section, we discuss the DFWM of the lower branch
of the excitonic polariton waves (Fig. 11). The sample is on the
x-y plane, and the two pump waves are propagating along the
y axis, while the signal wave 1 propagates along the +x axis,
so the idler 2 propagates in its opposite direction. We assume
that the angular velocity of the system � = �ez and the size
of the interferometer is large enough that the velocity vR can
be approximated as an invariant vector parallel to x direction.
Therefore, we have

ω1 = ω2 = ω3 = ω4 = ω,

δkL,1 = ηeff,L(vR · ex)ex = δkex,
(61)

δkL,2 = ηeff,L[vR · (−ex)](−ex) = δkex,

δkL,3 = δkL,4 = 0.

Assume that the pump waves are strong enough and their
amplitude variation can be neglected. Therefore, the coupling
equations of the signal and idler wave can be dealt with by the
slowly varying amplitude approximation,

f1(x,t) = fs(x) exp(−jωt + jkLx) + c.c.,

f2(x,t) = fc(x) exp(−jωt − jkLx) + c.c. (62)

yke

yke    

( )
x

k k e( )
x

k k e

FIG. 11. (Color online) Degenerate four-wave mixing.

If we use the notations κs = χ (3)f3f4

kL+�k+jγ
and κc = χ (3)f3f4

kL−�k+jγ
,

the coupling wave equations become

dfs

dx
= (jδk − γ )fs − jκsf

∗
c ,

df ∗
c

dx
= −(jδk − γ )fc

∗ − jκ∗
c fs. (63)

The solutions of the above equations have the following
form:

fs = Aejqx + Be−jqx,

fc = Cejqx + De−jqx . (64)

Here

q =
√

κsκ∗
c + (δk + jγ )2 (65)

and

κsκ
∗
c = |χ (3)f3f4|2

kL
2 − δk2 + γ 2 − 2jγ δk

≈ |χ (3)f3f4|2
kL

2 − δk2 + γ 2
. (66)

Let κ2 = |χ (3)f3f4|2
kL

2−�k2+γ 2 , so

q2 = (κ̄2 + �k2 − γ 2) + 2jγ�k. (67)

If the intensities of the pump pulse are strong enough that
κ̄2 + �k2 − γ 2 > 0, then neglecting the imaginary term γ�k,
we get

q ≈
√

κ̄2 + �k2 − γ 2 (68)

as a real quantity.
Here we can obtain the coefficients A, B, C, and D by

the boundary conditions of the signal and its conjugate waves.
As is illustrated in Fig. 12, the boundary conditions can be
expressed as

fs(0) = Fs,0,

fc(l) = 0. (69)

Then

fs(x) = Fs,0
q cos q(l − x) + (γ − j�k) sin q(l − x)

q cos ql + (γ − j�k) sin ql
,

fc(x) = F ∗
s,0

jκ∗ sin q∗(l − x)

q∗ cos q∗l + (γ + j�k) sin q∗l
. (70)

  
  

 

 
X=0 X=l 

f l
lf

f

f

f

f

FIG. 12. (Color online) Boundary conditions.
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Now we write the solutions of the coupling wave equations
into the following form:

fs(x) = Fs,0
cos [q(l − x) − β]

cos(ql − β)

S(x)

S(0)
exp[jθs(0) − jθs(x)],

fc(x) = F ∗
s,0

jκ√
q2 + γ 2

sin q(l − x)

cos(ql − β)S(0)
exp[−jθs(0)]. (71)

Here we neglect the imaginary part of q and

cos β = q√
q2 + γ 2

,

S(x) =
√

1 +
[

cos β

cos(ql − β)

δk sin q(l − x)

q

]2

, (72)

θs(x) = tan−1

[
cos β

cos(ql − β)

δk sin q(l − x)

q

]
.

If we rewrite Eq. (70) in the form

fs(x) = Fs(x)exp{j [θs(0) − θs(x)]},
fc(x) = jFc(x)exp[−jθs(0)], (73)

and inset the above equation into Eq. (62), we can get the
signal wave and the idler wave,

f1(x,t) = 2Fs(x)cos[ωt − kLx + θs(x) − θs(0)],

f2(x,t) = 2Fc(x)sin[ωt + kLx + θs(0)]. (74)

We can get the outgoing signal wave at x = l and the idler
wave exit at x = 0; therefore, the phase difference between
the signal and the idler at the two boundaries of the medium is

�θ = 2θs(0) − π

2
, (75)

and θs(0) = tan−1( cos β

cos(ql−β)
sinql

q
δk). If we take the approxima-

tion sinql

q
δk ≈ δkl, then

θs(0) = tan−1

(
cos β

cos(ql − β)
δkl

)

≈ cos β

cos(ql − β)
δkl. (76)

So the phase difference between the outgoing signal wave
at x = l and the outgoing idler wave at x = 0 is similar to

the Sagnac phase difference between two counterpropagating
waves at the same interval. It can thus provide the information
of the angular velocity of the system. However, we shall em-
phasize that the two counterpropagating waves are intrinsically
coherent and so DFWM can be used to construct the hybrid
interferometer.

V. CONCLUSION

In Secs. II–IV, we have presented the theoretical treatments
for the Sagnac effect of the excitonic polaritons. It has been
shown that the excitonic polariton wave is the coupling of the
light wave and excitonic wave, so its Sagnac coefficient ηeff,i

is the function of the frequency of ω. The dependence of ηeff,i

on ω is very sensitive at the neighborhood of the resonant
frequency of photon and exciton. By choosing the frequency
appropriately, the excitonic polaritons wave can provide us
with a large value of ηeff,i (for example, ≈ 103 times of the
ηp) and a moderate photon proportion simultaneously. It is
also clarified that the excitonic polaritons in the microcavity
with one or a few quantum wells embedded in it are 2D
quasiparticles, and the direct transitions from photons to the
microcavity excitonic polaritons and its inverse process are
permitted. In addition, the excitonic state can be manipulated
by some methods, for example, applying external electric or
magnetic field, so the value of ηeff,i can be manipulated to
bigger values. However, an intrinsical difficulty still exists
that the decoherence time of the excitonic polaritons is very
short, even though this time is much larger than that of bulk
excitonic polaritons. As a result, we discuss the Sagnac effect
of degenerate four-wave mixing of the excitonic polaritons.
We find that the two counterpropagating waves, the signal
wave and its conjugate wave, have a phase difference that
has a form similar to the value we get from the original
Sagnac effect and can thus provide the information about
the angular velocity of the system. More importantly, these
two waves are coherent intrinsically and so are helpful for
achieving a high sensitivity. Since the polariton degenerate
four-wave mixing has been measured by experiments, we
believe that the Sagnac interferometer based on the ex-
citonic polariton wave in a semiconductor microcavity is
feasible.
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