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We report a detailed study of the influence of the electron-electron interaction on physical observables
(conductance, etc.) of a disordered electron liquid in double quantum well heterostructure. We find that even in
the case of common elastic scattering off electrons in both quantum wells, the asymmetry in the electron-electron
interaction across and within quantum wells decouples them at low temperatures. Our results are in quantitative
agreement with recent transport experiments on the gated double quantum well AlxGa1−xAs/GaAs/AlxGa1−xAs
heterostructures.
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I. INTRODUCTION

Disordered two-dimensional (2D) electronic systems have
remained the focus of experimental and theoretical research
for more than 3 decades.1 The experimental discovery2,3

of the metal-insulator transition (MIT) in a high-mobility
silicon metal-oxide-semiconductor field-effect transistor (Si-
MOSFET) in 1994 became a challenge to a theory. Although
during past decade the behavior of resistivity similar to that
of Refs. 2 and 3 has been found experimentally in a wide
variety of two-dimensional electron systems,4 the MIT in two
dimensions still calls for deeper theoretical and experimental
understanding.

Very likely, the most promising theoretical framework for
studying the 2D MIT is provided by the effective low-energy
theory, initially developed by Finkelstein, that combines
the diffusive dynamics due to disorder and strong electron-
electron interaction.5 Moreover, it is the Finkelstein theory that
suggested metallic behavior at low temperatures long before
the experimental discovery of the MIT in a Si-MOSFET.5,6

Recently, Punnoose and Finkelstein7 have shown a possibility
for the existence of the MIT in the special model of 2D
electron system with SU(N ) degrees of freedom in the limit of
the large number of multiplets, N → ∞. On the other hand,
the current theoretical results8,9 do not support the existence
of MIT for electrons interacting in the singlet channel only
(N = 1). Therefore, the presence of additional degrees of
freedom (spins, valley isospins, etc.) plays a crucial role for
the existence of the MIT in 2D disordered electron systems.
In fact, the importance of the multiplet channels of the
interaction has been confirmed experimentally in Si-MOSFET
where a weak magnetic field applied parallel to the 2D plane
changes the behavior of resistivity from metallic to insulating
at low temperatures.10–12 These experimental findings have
been explained in the framework of the Finkelstein theory in
the presence of Zeeman and valley splitting.13 The effect of
intervalley scattering has been taken into account as well.14

Recently, the Finkelstein theory for disordered electron
liquid in Si-MOSFET has been subjected to a detailed

experimental check. In particular, the metallic behavior of
resistivity not far away from the MIT,15 the increase of
interaction parameter in the multiplet channels,16–18 and the
two-parameter scaling near MIT19 have been observed in
experiments. Such the analysis in Si-MOSFET is complicated
by the presence of (uncontrolled) large valley splitting and
intervalley scattering rate, �v ≈ 1/τv ≈ 1K .20,21

As known,22 in n-AlAs quantum wells, 2D electrons can
also populate two valleys. In addition to Si-MOSFETs this
system offers opportunity for an experimental investigation of
the interplay between the spin and valley degrees of freedom.
Using a symmetry breaking strain to tune the valley occupation
of the 2D electron system in the n-AlAs quantum well, as well
as a parallel magnetic field to adjust the spin polarization,
the spin-valley interplay has been experimentally studied.23,24

However, the electron concentrations in the experiment were
at least 3 times larger than the critical one corresponding to the
MIT.22 Therefore, the spin-valley interplay in n-AlAs quantum
well has been studied only in the region of a good metal, very
far from the MIT.

Disordered electron liquid in double quantum well het-
erostructures represents a 2D system in which electrons in
addition to spin have the other degree of freedom: the isospin
associated with a quantum well. In spite of a number of
interesting physical phenomena observed in electron liquids
in double quantum well heterostructures without and under
strong magnetic field, e.g., Coulomb drag,25 Bose-Einstein
condensation of excitons,26 and ferromagnetic27 and canted
antiferromagnetic phases,28 the metal-insulator transition has
not been yet addressed experimentally. Transport of electrons
in double quantum well heterostuctures has been studied
experimentally29,30 only in the metallic regime far from the
region in which MIT is expected.

Recently, detailed experimental research on the interference
and interaction corrections to conductance of electrons in a
double quantum well heterostructure has been performed.31,32

In particular, two very distinct physical situations have been
investigated: (i) both quantum wells have equal electron
concentrations and mobilities and (ii) one quantum well
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remains with almost the same electron concentration as in
case (i), whereas the other is empty by applying the gate
voltage. Surprisingly, it was found that the dephasing rate and
interaction correction to the conductance are almost the same
for cases (i) and (ii).

In the present paper, motivated by the experiments of
Refs. 31 and 32, we develop the theory of the disordered
electron liquid formed in a heterostructure with two almost
identical quantum wells. We concentrate on the case of equal
electron concentrations and mobilities in both quantum wells
[corresponding to the case (i) of Refs. 31 and 32.] This case
will be termed balance in what follows.

We restrict our study to temperatures (T ) satisfying the fol-
lowing condition: 1/τ+−,�s,�SAS � T � 1/τtr. Here 1/τ+−
stands for the rate of elastic scattering between symmetric and
antisymmetric states in the double quantum well structure,
�SAS the splitting of these symmetric and antisymmetric
states, �s the Zeeman splitting, and τtr the elastic transport
mean free time. The temperature behavior of the interaction
correction to the total conductance is governed by one singlet
and 15 multiplet diffusive modes. We find that the latter splits
into three inequivalent groups of one, six, and eight modes.
This grouping occurs due to asymmetry in electron-electron
interactions across and within quantum wells which breaks
the rotational symmetry in the combined spin and isospin
spaces [SU(4)]. This reduced symmetry is a distinctive feature
of double quantum well heterostructures at the balance and
is absent in two-valley systems in Si-MOSFETs and n-AlAs
quantum wells. We identify all relevant interaction parameters
and estimate their dependence on the distance between the
quantum wells. To describe the system at low temperatures
and beyond interaction corrections to conductance, we derive
the nonlinear σ model and study its renormalization in the one-
loop approximation. As we demonstrate, the renormalization
group equations describing the length-scale dependence of
the total conductance and interaction parameters drive the
system toward the fixed point corresponding to two separate
quatum wells. In spite of the symmetry breaking between 15
multiplet modes, the renormalization group equations predict
the metallic behavior of the conductance at low temperatures.
Finally, we generalize the expression for the dephasing rate of
electrons due to the presence of electron-electron interaction
known33,34 for a single quantum well to the case of double
quantum well heterostructures. We find that our results are
in good quantitative agreement with experimental data of
Refs. 31 and 32.

The paper is organized as follows. In Sec. II we introduce
the microscopic Hamiltonian, identify relevant interaction
parameters, study its dependence on the distance between
quantum wells and introduce the nonlinear σ model that
describes the low-energy excitations in the disordered in-
teracting electron system. In Sec. III, we then consider the
renormalization of the nonlinear σ model in the one-loop
approximation, derive corresponding renormalization group
equations, and discuss renormalization group flow. We derive
expressions for the dephasing rate due to electron-electron
interactions in Sec. IV. In Sec. V, we then perform detailed
comparison between our theory and recent experimental data
on transport in double quantum well heterostructures. We end
the paper with conclusions (Sec. VI).

II. FORMALISM

A. Microscopic Hamiltonian

We consider 2D interacting electrons in double quantum
well heterostructures in the presence of quenched disorder at
low temperatures T � τ−1

tr . In the case of two almost identical
quantum wells an electron annihilation operator can be written
as a linear combination of symmetric and antisymmetric states:

ψσ (R) = ψσ
τ (r)ϕτ (z), ϕτ (z) = ϕl(z) + τϕr (z)√

2
. (1)

Here electron motion along z axis is confined by the quantum
wells, r denotes a vector in plane perpendicular to the
z axis, and R = r + zez. The superscript σ = ± denotes
electron spin projection, τ = ± enumerates symmetric (+) and
antisymmetric (−) states in the double quantum well structure,
and ψσ

τ is the annihilation operator of an electron with the
spin and isospin projections equal σ/2 and τ/2, respectively.
The normalized envelope function ϕl,r (z) = ϕ(z ± d/2) cor-
responds to the wave function of an electron localized in a
single left/right well. In what follows, we assume a negligible
overlap between the states in two quantum wells: the width of
an electron state in a quantum well [

∫
dz ϕ4(z)]−1 � d, where

d is the distance between the centers of the quantum wells.
In the path-integral formulation, interacting electrons in the

presence of the random potential V (R) are described by the
following grand partition function

Z =
∫

D[ψ̄,ψ]eS[ψ̄,ψ] (2)

with the imaginary time action (β = 1/T )

S = −
∫ β

0
dt

{∫
d rψ̄σ

τ (rt)[∂t + H0]ψσ
τ (rt) − Ldis − Lint

}
.

(3)

The single-particle Hamiltonian

H0 = − ∇2

2me

− μ + 1

2
(�sσ + �SASτ ) (4)

describes a 2D quasiparticle with mass me. Magnetic field
B perpendicular to the z axis induces the Zeeman splitting
�s = gμBB. The energy difference between symmetric and
antisymmetric states in a double quantum well structure yields
the splitting �SAS � 2ϕ(d/2)ϕ′(d/2)/me.35 The chemical
potential is denoted as μ, g stands for the effective electron
g factor, and μB the Bohr magneton. The single-particle
Hamiltonian (4) is completely analogous to one for a Si(001)-
MOSFET. In latter case, index τ enumerates valleys and �SAS

plays a role of a valley splitting.
Next, the term

Ldis = −
∫

d r ψ̄σ
τ1

(rt)Vτ1τ2 (r)ψσ
τ2

(rt) (5)

describes electron scattering off a random potential V (R). It
involves matrix elements

Vτ1τ2 (r) =
∫

dz V (R)ϕτ1 (z)ϕτ2 (z). (6)

In general, the matrix elements Vτ1τ2 induce transitions
between symmetric and antisymmetric states in a double
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quantum well structure. In the case of symmetric random
potential: V (r,z) = V (r, − z), the system is protected from
the symmetric-antisymmetric scattering.

In accordance with the experimental conditions reported in
Ref. 31 and 32, we assume that impurities are concentrated
in the middle between two quantum wells. We suppose that
the random potential created by impurities has the Gaussian
distribution and

〈V (R)〉 = 0, 〈V (R1)V (R2)〉 = W (|r1 − r2|,|z1|,|z2|), (7)

where W decays as the function of its variables at a typical
distance dW . If the condition[ ∫

dz ϕ4(z)

]−1

� d, (8)

holds, we can neglect the small difference [propor-
tional to ϕ(d/2)ϕ′(d/2)], between symmetric-symmetric and
antisymmetric-antisymmetric scattering rates. Then

〈Vτ1τ2 (r1)Vτ3τ4 (r2)〉 = W (|r1 − r2|,d/2,d/2) δτ1τ2δτ3τ4 . (9)

Provided correlations in W are short ranged,36 we find

〈Vτ1τ2 (r1)Vτ3τ4 (r2)〉 = 1

2πντi

δτ1τ2δτ3τ4δ(r1 − r2), (10)

1

τi

= 2πν

∫
d2r W (|r|,d/2,d/2).

Here ν is the thermodynamic density of states of 2D electrons
(including spin). We emphasize that electrons in both quantum
wells are subjected to correlated disorder since they scatter
off the very same random potential. Recently, under such
assumptions, the transconductance of a double quantum well
structure (the Coulomb drag effect with correlated disorder)
has been studied by one of the authors.37

The small asymmetry in the impurity distribution along
z axis will lead to the scattering between symmetric and
antisymmetric states in the double quantum well structure.
Its rate can be estimated as 1/τ+− ∼ (b/d)2/τi � 1/τi , where
b is a typical length characterizing asymmetry. We neglect
1/τ+− in what follows.

The interaction part of the action (3) reads

Lint = −1

2

∫
d Rd R′ρ(Rt) U (|R − R′|) ρ(R′t), (11)

where U (R) = e2/εR. The dielectric constant is de-
noted as ε. Expanding the density operator ρ(Rt) =
ψ̄σ

τ1
(rt)ψσ

τ2
(rt)ϕτ1 (z)ϕτ2 (z) and assuming again that condition

(8) holds we obtain

Lint = −1

8

∫
d rd r ′ ψ̄σ1

τ1
(rt)ψσ1

τ2
(rt)ψ̄σ2

τ3
(r ′t)ψσ2

τ4
(r ′t)

×[(1 + τ1τ2τ3τ4)U11(|r − r ′|)
+ (τ1τ2 + τ3τ4)U12(|r − r ′|)]. (12)

Here

U11(r) = e2

ε

∫
dzdz′ ϕ2

l (z)ϕ2
l (z′)√

r2 + (z − z′)2
≈ e2

εr
(13)

is the standard Coulomb interaction between electrons in a
single well. The interaction between electrons in different
quantum wells

U12(r) = e2

ε

∫
dzdz′ ϕ2

l (z)ϕ2
r (z′)√

r2 + (z − z′)2
≈ e2

ε
√

r2 + d2
(14)

takes into account that electrons are separated by the distance
d. Due to the difference between U11 and U12 the interaction
LagrangianLint is not invariant under global SU(4) rotations of
the electron operator ψσ

τ in the combined spin-isospin space.
It is the interaction part of the action (3) that distinguishes the
disordered electron liquid in double quantum well heterostruc-
tures from the one in a Si(001)-MOSFET.

As usual, we single out regions in the momentum space of
small momentum transfer.5,6,38,39 The low-energy part of Lint

then can be written as

Lint = 1

4ν

∫ ′ dq
(2π )2

3∑
a,b=0

Fab(q)mab(q)mab(−q), (15)

mab(q) =
∫

dk
(2π )2

ψ̄(k + q)tabψ(k). (16)

Here ψ̄ = {ψ̄+
+ ,ψ̄−

+ ,ψ̄+
− ,ψ̄−

− }, ψ = {ψ+
+ ,ψ−

+ ,ψ+
− ,ψ−

− }T , the
“prime” at the integral sign denotes the integration region
q � l−1 (l is the elastic mean free path), and 16 matrices
tab = τ a ⊗ σ b stand for the generators of SU(4). Pauli matrices
τ a , a = 0,1,2,3 act in the isospin space of two wells and Pauli
matrices σ b, b = 0,1,2,3 act in the spin space. The matrix of
interaction parameters reads

F (q) =

⎛
⎜⎝

Fs Ft Ft Ft

F̃s Ft Ft Ft

Fv Fv Fv Fv

Fv Fv Fv Fv

⎞
⎟⎠ , (17)

where

Ft = −ν

2

〈
U scr

11 (0)
〉
FS

, Fv = −ν

2

〈
U scr

12 (0)
〉
FS

,

Fs = ν[U11(q) + U12(q)] + Ft , (18)

F̃s = ν[U11(q) − U12(q)] + Ft .

Here U11(q) = 2πe2/qε, U12(q) = U11(q) exp(−qd). The
quantities Ft and Fv are analogous to the standard Fermi liquid
interaction parameters in the triplet channel. They involve
averaging of the static part of dynamically screened interaction
U scr

11/12(q,ω) over the Fermi surface. In the case of equal
electron concentrations and mobilities in both quantum wells

〈
U scr

11/12(0)
〉
FS

=
∫ 2π

0

dθ

2π
U scr

11/12[2kF sin(θ/2),0], (19)

where kF is Fermi momentum for a single quantum well. The
interaction parameter Fs involves the long-range part of the
Coulomb interaction. In the limit q → 0 it becomes Fs(q) ≈
2κ/q → ∞, where κ = 2πe2ν/ε. Within the same accuracy,
we find

F̃s = κd + Ft . (20)

At d = 0 (when both quantum wells coincide) the interac-
tion parameters are equal: F̃s = Ft = Fv . Then the matrix F
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= +

+

ba a a

a

a a

a a b

b

- -

b

FIG. 1. Dyson equation for the screened electron-electron inter-
action in RPA. Thick wavy line denotes screened interaction, the
thin wavy line is bare interaction, the solid lines are electron Green’s
functions, and the dashed lines are impurity lines. Indices a and b can
be 1 or 2. Index ā equals 1 (2) if index a is 2 (1).

corresponds to the case of electron liquid with two valleys as it
occurs in Si(001)-MOSFET. In the absence of �SAS and �s the
action (3) becomes invariant under global SU(4) rotations of
the fermionic fields. In the opposite case of d → ∞, the double
quantum well heterostructure is equivalent to two independent
single quantum wells. We then obtain F̃s = Fs and Fv = 0.
The action (3) (for �SAS = �s = 0) becomes invariant under
global SU(2) rotations of electron spin in each quantum well
independently. For intermediate values of d, the action (3) is
also invariant under global SU(2) × SU(2) rotations provided
�SAS and �s vanish.

B. Dynamically screened Coulomb interaction

The interaction parameters Ft and Fv involve the screened
Coulomb interaction. Solving the Dyson equations in the
random-phase approximation (RPA) (see Fig. 1), we ob-
tain the following results for the dynamically screened
interactions:40,41

U scr
11 = U11 + �2

[
U 2

11 − U 2
12

]
1 + [�1 + �2]U11 + �1�2

[
U 2

11 − U 2
12

] , (21)

U scr
12 = U12

1 + [�1 + �2]U11 + �1�2
[
U 2

11 − U 2
12

] , (22)

U scr
22 = U11 + �1

[
U 2

11 − U 2
12

]
1 + [�1 + �2]U11 + �1�2

[
U 2

11 − U 2
12

] . (23)

The polarization operators can be written in diffusive approx-
imation as

�j (q,ω) = ν
Djq

2

Djq2 − iω
, j = 1,2, (24)

where Dj is the diffusion coefficient in the j -th quantum
well. We mention that for D1 �= D2 the dynamically screened
Coulomb interaction in the first well U scr

11 (q,ω) does not
coincide with the one [U scr

22 (q,ω)] in the second well.
If the electron concentrations and mobilities in the quantum

wells are the same then D1 = D2. In this case U scr
11 = U scr

22 and

U scr
11/12 = κ

2νq
(Dq2 − iω)

{
1 + e−qd

Dq[q + κ(1 + e−qd )] − iω

± 1 − e−qd

Dq[q + κ(1 − e−qd )] − iω

}
. (25)

As one can see, at qd � 1 the effect of the right well
on the dynamically screened interaction in the left well is
negligible. In the opposite case, qd � 1 the right well affects
the dynamically screened interaction in the left well only at
κd � 1.

C. Estimates for the interaction parameters

Let us estimate the interaction parameters Ft and Fv in the
case of equal electron concentrations in both quantum wells.
By using Eqs. (21) and (22) we find

Ft ± Fv = −
∫ 2π

0

dθ

4π

κ(1 ± e−2kF d sin θ/2)

2kF sin θ
2 + κ(1 ± e−2kF d sin θ/2)

. (26)

To justify the RPA that has been used in derivation of
Eqs. (21) and (22) we assume that the condition κ/kF � 1
holds. As follows from Eq. (26), both Ft and Fv are negative
and |Ft | � |Fv|. The interaction parameter F̃s is negative at
small d and positive at large d. The dependence of the critical
distance dc at which F̃s vanishes on the parameter κ/kF is
shown in Fig. 2. We mention that |F̃s | � |Ft | for d < dc.

It is instructive to compare the results for Ft , Fv , and F̃s

with the case of a single quantum well for which the interaction
parameter in the triplet channel is given as39

F 0
t = −

∫ 2π

0

dθ

4π

κ

2kF sin(θ/2) + κ

= − 1

2π
G0(κ/2kF ),

G0(x) = x√
1 − x2

ln
1 + √

1 − x2

1 − √
1 − x2

. (27)

In the limit x → 0 the function G0(x) acquires the following
asymptotic form

G0(x) ≈ x ln(2/x), x � 1. (28)

Provided kF d � 1, the interaction parameters for the case of
double quantum wells with equal electron concentrations can

0 0.5 1
kF0

0.1

0.2

d

FIG. 2. (Color online) Value of the parameter κd at which F̃s = 0
versus κ/kF .
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be estimated as

Ft = F 0
t + 1

8πkF d
G1(κd), Fv = 1

8πkF d
G2(κd), (29)

G1(x) = 3x exE1(x)

x + 1
+ 2x e−2x/(x−1)

x2 − 1
E1

(
− 2x

x − 1

)
,

G2(x) = G1(x) − 4x exE1(x)

x + 1
.

Here E1(x) = ∫ ∞
x

dt exp(−t)/t is the exponential integral.
Finally, we mention that the interaction parameters Ft and

Fv can be estimated (from above) as |Ft | � [G0(κ/kF ) +
G0(κ/2kF )]/(4π ) and |Fv| � G0(κ/kF )/(4π ). Even for values
of κ/kF ∼ 1, it yields |Ft | � 0.3 and |Fv| � 0.2.

D. Nonlinear σ model

At low temperatures, T τtr � 1, the effective quantum
theory of 2D disordered interacting electrons described by
the microscopic action (3) is given in terms of the nonlinear
σ model. The latter describes interaction between low-enegy
modes which are the so-called diffusons and Cooperons. As
is well known,33,42,43 the interference (Cooperon) contribution
to the conductance is not sensitive to the presence of �s and
�SAS (in the absence of 1/τ+−). Furthermore, the interference
correction is cut off by weak magnetic fields and does not
influence the scaling of observables with temperature at B �
1/eDτϕ . Therefore, we shall ignore the interference correction
in the intermediate calculations for a sake of simplicity and
shall discuss its role in Sec. V.

In general, Cooperons are also involved in the interaction
correction to the conductance and the renormalization of
other interaction couplings. The corresponding contributions
are proportional to the interaction parameter in the Cooper
channel. For Coulomb interaction, the latter is repulsive and
remains small in the course of the renormalization for 2D
electron systems.5 Moreover, physically, a moderately weak
magnetic field B � T/eD applied parallel to the z axis is
enough to suppress the interaction effects in the Cooper
channel.44

Neglecting the Cooper channel, the effective theory
involves unitary matrix field variables Qα1α2;σ1σ2

mn;τ1τ2
(r) that

obey the nonlinear constraint Q2(r) = 1. The integers αj =
1,2, . . . ,Nr denote the replica indices. The integers m,n

correspond to the discrete set of Matsubara frequencies εn =
πT (2n + 1).

The effective σ model action is

S = Sσ + SF + SSB. (30)

Here Sσ represents the free-electron part45

Sσ = −σxx

32

∫
d r tr(∇Q)2 (31)

with σxx = 4πν∗D denoting the mean-field conductance in
units of e2/h. The thermodynamic density of states ν∗ = m∗/π
involves an effective mass m∗ renormalized due to interactions.
The symbol tr stands for the trace over replica, the Matsubara

frequencies, and spin and isospin indices. The Finkelstein
term5,46

SF = −πT

4

∫
d r

∑
αn;ab

�ab tr Iα
n tabQ(r) tr Iα

−ntabQ(r)

+ 4πT z

∫
d r tr η(Q − �) − 2πT z

∫
d r tr η�

(32)

involves the electron-electron interaction amplitudes �ab. The
bare value of the factor z is determined by the thermodynamic
density of states: z = πν∗/4. The quantity z has been originally
introduced by Finkelstein in order to ensure the consistence
of the renormalization group equations with the particle-
number conservation.5 Physically, the renormalization of z

is responsible for renormalization of the specific heat47 and
determines the relation between the frequency and length
scales, thus playing a crucial role at the criticality near the
MIT.5

The interaction amplitudes �ab are related to the interaction
parameters Fab introduced above as5,6,38 �ab = −zFab/(1 +
Fab). Therefore, the matrix � has the structure similar to the
matrix F [see Eq. (17)] and

�s = −z, �̃s = −zγ̃s, �t = −zγt , �v = −zγv,

γ̃s = − F̃s

1 + F̃s

, γt = − Ft

1 + Ft

, γv = − Fv

1 + Fv

. (33)

The matrices �, η, and I
γ

k are given as

�αβ
nm = sign (ωn)δnmδαβt00, ηαβ

nm = nδnmδαβt00,

(I γ

k )αβ
nm = δn−m,kδ

αγ δβγ t00. (34)

The action Sσ +SF is invariant under the global ro-
tations Q

αβ;σ1σ2
nm;τ1τ2 (r) → uτ1τ3

σ1σ3
Q

αβ;σ3σ4
nm;τ3τ4 (r)[u−1]τ4τ2

σ4σ2
with u =∑1

a=0

∑3
b=0 uabtab. This rotation corresponds to the global

SU(2) × SU(2) symmetry of the action Sσ +SF .
The presence of �s and/or �SAS generates the symmetry-

breaking terms. In general, they can be written as5

SSB = izab�ab

∫
d r tr tabQ + Nrzab

πT

∫
d r�2

ab. (35)

For the symmetry breaking by Zeeman splitting one can
choose tab = t03 and �03 = �s . In the case of the splitting
�SAS, the generator tab equals t30. Splitting �ab sets the
cutoff for a pole in the diffusion modes (diffusons). In what
follows, we are interested in high temperatures (T � �ab) or,
correspondingly, in short length scales L � √

D/�ab such
that the cutoff is irrelevant and the electron system behaves
as if no symmetry breaking terms are exist. We shall use
the symmetry breaking term SSB only as a source, assuming
infinitesimal �ab.

1. F algebra

The action (30) involves the matrices which are formally
defined in the infinite Matsubara frequency space. In order
to operate with them we have to introduce a cutoff for the
Matsubara frequencies. One should send the cutoff to infinity
at the end of all calculations. Then, the set of rules which is
called F algebra can be established.46 The global rotations of
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Q with the matrix exp(iχ̂) plays the important role, where χ̂ =∑
α,n χα

n Iα
n .46,48 For example, F algebra allows us to establish

the following relations:

tr Iα
n tabe

iχ̂Qe−iχ̂ = tr Iα
n tabe

iχ0Qe−iχ0 + 8in(χab)α−n ,

tr ηeiχ̂Qe−iχ̂ = tr ηQ +
∑
αn;ab

in(χab)αn tr Iα
n tabQ

− 4
∑
αn;ab

n2(χab)αn(χab)α−n, (36)

where χ0 = ∑
α χα

0 Iα
0 . With the help of Eqs. (36) one can

check that the relation �s = −z guarantees the so-called F
invariance.46 It is the invariance of the action Sσ +SF under the
global rotation of the matrix Q with χab = χδa0δb0.

E. Physical observables

The most significant physical quantities in the theory
containing information on its low-energy dynamics are
the physical observables σ ′

xx , z′, and z′
ab associated with

the mean-field parameters σxx , z, and zab of the action (30). The
observable σ ′

xx is the total DC conductance as obtained from
the linear response to an electromagnetic field. The observable
z′ is related with the specific heat.47 The observables zab

determine the static generalized susceptibilities of the 2D
electron system5,49 as χab = 2z′

ab/π . The conductance σ ′
xx can

be obtained from

σ ′
xx(iωn) = − σxx

16n

〈
tr

[
Iα
n ,Q

][
Iα
−n,Q

]〉
+ σ 2

xx

64Dn

∫
d r ′〈〈 tr Iα

n Q(r)∇Q(r) tr Iα
−nQ(r ′)∇Q(r ′)

〉〉
(37)

after the analytic continuation to the real frequencies: iωn →
ω + i0+ at ω → 0. The expectation values are defined with
respect to the theory (30) and D = 2 stands for the spatial
dimension. The physical observable z′ can be extracted from
the derivative of the thermodynamic potential � per the unit
volume with respect to temperature,46

z′ = 1

2π tr η�

∂

∂T

�

T
. (38)

The observables z′
ab are given as

z′
ab = π

2Nr

∂2�

∂�2
ab

∣∣∣∣
�ab=0

. (39)

It is worth mentioning that, alternatively, the observable
parameters σ ′

xx , z′
ab, and z′ can be found from the background

field procedure.

III. ONE-LOOP RENORMALIZATION

A. Perturbative expansions

To define the theory for the perturbative expansions we use
the “square-root” parametrization:

Q = W + �
√

1 − W 2, W =
(

0 w

w† 0

)
. (40)

The action (30) can be written as the infinite series in the
independent fields w and w†. At short length scales L �√

σxx/(zab�ab) which we are interested in, the symmetry

breaking term SSB can be omitted. Then the propagators for
fields w and w† can be written in the following form

〈
[wab(q)]α1α2

n1n2
[w†

cd (−q)]α4α3
n4n3

〉
= 4

σxx

Dq(ω12)

[
δn1n3 − 32πT �ab

σxx

δα1α2D(ab)
q (ω12)

]
× δab;cdδ

α1α3δα2α4δn12,n34 , (41)

where ω12 = εn1 − εn2 = 2πT n12 = 2πT (n1 − n2) and

D−1
q (ωn) = q2 + 16zωn

σxx

,

[
D(ab)

q (ωn)
]−1 = q2 + 16(z + �ab)ωn

σxx

. (42)

We use the convention that the Matsubara frequency indices
with odd subscripts n1,n3, . . . run over non-negative integers,
whereas those with even subscripts n2,n4, . . . run over
negative integers.

B. Relation of zab with z and �ab

The dynamical susceptibility χab(ω,q) that describes the
linear response of the system to time-dependent symmetry
breaking amplitude �ab can be obtained from5

χab(iωn,q) = 2zab

π
− T z2

ab

〈
tr Iα

n tabQ(q) tr Iα
−ntabQ(−q)

〉
(43)

by the analytic continuation to the real frequencies: iωn →
ω + i0+. In the tree level approximation Eq. (43) yields

χab(iωn,q) = 2zab

π

[
1 − 16zabωn

σxx

Dab
q (ωn)

]
. (44)

The action Sσ + SF is invariant under the global rotations
Q → uQu−1 with u = ∑1

a=0

∑3
b=0 uabtab. This implies that

the quantities corresponding to operators m0b and m1b con-
serve, i.e., χ0b(ω,q = 0) = χ1b(ω,q = 0) = 0. In order to be
consistent with this physical requirement, the relations

zab = z + �t = z(1 + γt ), a = 0,1, b = 1,2,3,

z10 = z + �̃s = z(1 + γ̃s). (45)

should hold. Therefore, renormalization of the interaction am-
plitudes �̃s and �t can be easily found from, e.g., renormalized
quantities z′

01 and z′
10. However, it is not the case for the

interaction amplitude �v = zγv . There is no simple relation
between �v and

zv = z2b = z3b, b = 0, . . . ,3. (46)

Therefore, the physical observables σ ′
xx , z′, γ̃ ′

s , γ ′
t , γ ′

v , and z′
v

completely determines the renormalization of the theory (30)
at short length scales L � √

σxx/zab�ab.
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C. One-loop results

Evaluation of the conductance according to Eq. (37) in the
one-loop approximation yields

σ ′
xx(iωn) = σxx − 128πT

ωnσxxD

∫
dD p

(2π )D
p2

∑
ab

�ab

∑
ωm>0

× min{ωm,ωn}Dp(ωm + ωn)Dp(ωm)D(ab)
p (ωm). (47)

Performing the analytic continuation to the real frequencies,
iωn → ω + i0+, one obtains the DC conductance in the one-
loop approximation:

σ ′
xx = σxx + 32

σxxD
Im

∫
dD p

(2π )D
p2

∑
ab

�ab

∫
d�

× ∂

∂�

(
� coth

�

2T

)[
DR

p (�)
]2

D(ab),R
p (�). (48)

Here DR
p (�) and D(ab),R

p (�) are retarded propagators corre-
sponding to Dp(ωn) and D(ab)

p (ωn), respectively:

[
DR

p (�)
]−1 = p2 − (16z/σxx) i� ,[

D(ab),R
p (�)

]−1 = p2 − [16(z + �ab)/σxx] i� . (49)

We mention that the result (48) can be also obtained with the
help of the background field procedure50 applied to the action
(31) and (32).

In order to compute z′, we have to evaluate the thermody-
namic potential �. In the one-loop approximation we find

T 2 ∂�/T

∂T
= 8NrT

∑
ωn>0

ωn

[
z + 2

σxx

∑
ab

∫
dD p

(2π )D

× [
(z + �ab)D(ab)

p (ωn) − zDp(ωn)
] ]

. (50)

Following definition (38), we obtain from Eq. (50)

z′ = z + 2

σxx

∑
ab

�ab

∫
dD p

(2π )D
Dp(0). (51)

Next, we evaluate in the one-loop approximation the gener-
alized susceptibility χab(iωn,q) at q = 0 and ωn → 0. Then,
according to Eq. (39), we find

z′
ab = zab + 32πz2

ab

σ 2
xx

∑
cd;ef

[
Cab

cd;ef

]2
∫

dD p
(2π )D

T
∑
ωm>0

× [
D(ef )

p (ωm)D(cd)
p (ωm) − D2

p(ωm)
]
, (52)

where Cab
cd;ef denotes the structural constants of SU(4):

[tcd ,tef ] = ∑
ab Cab

cd;ef tab. Applying Eq. (52) for (ab) = (10)
and (ab) = (01), and by virtue of relations (45) we obtain

z′ + �̃′
s = z + �̃s − 210π (z + �̃s)2

σ 2
xx

∫
dD p

(2π )D
T

∑
ωm>0

× {[
D(20)

p (ωm)
]2 − D2

p(ωm)
}
, (53)

z′ + �′
t = z + �t − 29π (z + �t )2

σ 2
xx

∫
dD p

(2π )D
T

∑
ωm>0

× {[
D(01)

p (ωm)
]2 + [

D(20)
p (ωm)

]2 − 2D2
p(ωm)

}
.

(54)

In order to find renormalization of �v , one cannot use the
static generalized susceptibility since there exists no simple
relation between zv and �v . We use the the background-field
renormalization procedure (see details in Appendix A) and
find

�′
ab = �ab − 1

8σxx

∫
dD p

(2π )D
Dp(0)

∑
cd;ef

�cd [sp(tcd tef tab)]2

− 32πT

σ 2
xx

∑
ωm>0

∫
dD p

(2π )D
∑
cd;ef

[
Cab

cd;ef

]2 {
�2

abD
2
p(ωm)

− [
�cd�ef + �2

ab − 2�ab�cd

]
D(cd)

p (ωm)D(ef )
p (ωm)

}
.

(55)

Here symbol sp denotes trace over spin and isospin indices.
Using Eq. (55) for (ab) = (02), we obtain

�′
v = �v − 2(�s − �̃s)

σxx

∫
dD p

(2π )D
Dp(0)

+ 210π�2
v

σxx

T
∑
ωm>0

∫
dD p

(2π )D
D2

p(ωm). (56)

It is worthwhile to mention that the results (51), (53), and (54)
can be also derived from Eq. (55). Equations (48) (51), (53),
(54), and (56) allow us to extract one-loop renormalization of
conductance σxx , parameter z, and interaction amplitudes �̃s ,
�t , and �v .

D. Renormalization group equations

Applying the minimal subtraction scheme (see, e.g., Ref.
50) to Eqs. (48), (51), (54), (53), and (56), we derive the
following one-loop results for the renormalization group (RG)
equations which determine the T = 0 behavior of the physical
observables with changing the length scale L in D = 2
dimensions:

dσxx

dξ
= − 2

π
[1 + f (γ̃s) + 6f (γt ) + 8f (γv)], (57)

dγ̃s

dξ
= 1 + γ̃s

πσxx

[
1 − 6γt − γ̃s + 8γv + 16γv

γ̃s − γv

1 + γv

]
, (58)

dγt

dξ
= 1 + γt

πσxx

[
1 − γ̃s + 2γt + 8γv

γt − γv

1 + γv

]
, (59)

dγv

dξ
= 1

πσxx

[
1 + γ̃s + γv − γv(6γt + γ̃s) + 8γ 2

v

]
, (60)

d ln z

dξ
= 1

πσxx

[γ̃s + 6γt + 8γv − 1]. (61)
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Here f (x) = 1 − (1 + x−1) ln(1 + x), ξ = ln L/l and we omit
primes for a brevity. Equations (57)–(60) constitute one of the
main results of the present paper and describe the system at
the length scales L � √

σxx/(zab�ab).
It is worthwhile to mention that the right-hand side of

Eqs. (58) and (59) is not polynomial in the interaction
amplitude γv . To the best of our knowledge, the one-loop RG
equations for interaction amplitudes are quadratic polynomials
in all cases studied previously.5,13,14,18,38 This fact is deeply
related with invariance of the action Sσ +SF under the global
rotation of the matrix Q with the matrix exp(iχ̂) (see Sec.
II D 1). As it follows from Eqs. (36), Sσ +SF is invariant under
such global rotation with χab = χδacδbd where c = 0,1 and
d = 1, 2, or 3 provided γt = −1. The same holds for the
global rotation with χab = χδa1δb0 if γ̃s = −1. This invariance
guarantees that γt = −1 and γ̃s = −1 are fixed points of the
RG equations. Therefore, the latter have to be well defined
at γt = −1 and γ̃s = −1. However, for γv = −1 the action
Sσ +SF is not invariant under the global rotation of the matrix
Q with χab = χδacδbd with c = 1,2 and d = 0, 1, 2, or 3. It
is exactly this noninvariance that allows appearance of factors
1/(1 + γv) (diverging at γv = −1) in Eqs. (58) and (59).

The renormalization group equations (57)–(60) possess
a rich four-dimensional (σxx,γ̃s,γt ,γv) flow diagram. First,
there is the two-dimensional surface γt = γv = γ̃s which is
conserved under RG flow. It corresponds to the case of
coinciding quantum wells (d = 0). In this case, the RG
equations (57)–(61) are completely equivalent to ones for
the two-valley electron liquid. However, this two-dimensional
surface is unstable: a small initial mismatch (e.g., due to finite
d) in the condition γt = γv = γ̃s increases during RG flow.
Second, the RG flow conserves the two-dimensional surface
γv = 0, γ̃s = −1 which is stable. It describes the limit of two
separate quantum wells (d = ∞). In addition, there are some
interesting features of RG flow. For example, there is a two-
dimensional surface γt = γ̃s = −1 that is conserved by RG
flow. There is an accidental fixed line γ̃s = −1, γv = −1/2,
γt = −1/3. However, these features are not accessible in the
double quantum well structure.

Indeed, the initial values of the parameters γt , γv , and γ̃s

satisfy

γ̄t � γ̄v � 0, γ̄t � ¯̃γs. (62)

Then, using Eq. (58)–(60), one can prove that under RG flow
(i) the conditions γt � γv � 0 and γt � γ̃s hold; (ii) γt always
increases. Starting from initial values of the parameters γt ,
γv , and γ̃s satisfying Eq. (62) the RG flow develops in such a
way that γv vanishes, γ̃s tends to −1, and γt increases toward
infinity as shown in Fig. 3.

The conductance σxx demonstrates metallic behavior as in
the case of two-valley electron liquid. It increases at large
length scales. Depending on the sign of the parameter Kee =
1 + f ( ¯̃γs) + 6f (γ̄t ) + 8f (γ̄v), the conductance can develop
both monotonic (Kee < 0) and nonmonotonic behavior (Kee >

0) (see Fig. 4). The phase diagram for the parameter Kee is
shown in Fig. 5. At κ/kF � 0.4 the parameter Kee is positive
for all values of κd. With increasing κ/kF a domain of
negative values of Kee develops at small values of κd.

FIG. 3. (Color online) Dependence of the parameters γt , γv , γ̃s on
ξ . Initial values are γ̄t = 0.35, γ̄v = 0.01, ¯̃γs = −0.77, and σ̄xx = 6.

The conductance σ ′
xx defined in Eq. (37) and renormalized

in accordance with Eq. (57) is the total conductance of double
quantum well structure. In general, one can write σ ′

xx =
σ ′

11 + σ ′
22 + σ ′

12 + σ ′
21, where σ ′

11 and σ ′
22 are the intrawell

conductances of left and right quantum wells, respectively,
and σ ′

12 and σ ′
21 denote the transconductances responsible for

a drag effect. At the balance, symmetry yields that σ ′
11 = σ ′

22
and σ ′

12 = σ ′
21.

Although in the experiments of Refs. 31 and 32 only the
total conductivity σ ′

xx was measured, such double quantum
well heterostructures with correlated disorder at the balance
allow for the experimental study of transconductance, in
contrast to the two-valley electron system in Si-MOSFET.
It was shown37 that in the presence of electron-electron
interactions, the one-loop contribution in the particle-hole
channel (only diffusons) to the DC transconductance σ ′

12
vanishes. As a result, the one-loop contribution to the DC
transconductance is entirely determined by the particle-
particle channel (Cooperons). However, in Ref. 37 only the
interwell interactions (U scr

12 ) were taken into account. As shown
in Appendix B, an accurate treatment of both interwell (U scr

12 )
and intrawell (U scr

11 ) interactions (i.e., taking into account all
interaction couplings �s , �̃s , �t , and �v) does not change the

0 5 10

0.1

0.2

ξ

1
σ

xx

FIG. 4. (Color online) Dependence of the inverse conductance
1/σxx on ξ . The solid (red) curve is plotted with initial values γ̄t =
0.35, γ̄v = 0.01, ¯̃γs = −0.77, and σ̄xx = 6. The dashed (blue) curve
corresponds to γ̄t = 0.198, γ̄v = 0.135, ¯̃γs = 0.57, and σ̄xx = 6.
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conclusion of Ref. 37: the particle-hole (diffuson) contribution
to the DC transconductance σ ′

12 vanishes in the one-loop
approximation.

IV. DEPHASING RATE

The presence of the right well changes the properties of
electrons in the left well. One of the important quantities
characterizing interacting electrons in a random potential is
the dephasing rate. Its dependence on temperature determines
the behavior of the weak-localization correction to the con-
ductance. In this section, we investigate how the presence of
the right well changes the dephasing rate of electrons in the
left well compared to the case when the right well is empty.

A. Contribution from the interaction in the singlet channel

We start from the case of the interaction in the singlet
channel only. According to Eq. (21), electrons in the right well
screen interaction between electrons in the left well and vice
versa. The dephasing rate of electrons in the left well due to
the presence of electrons from the right well can be found from
the following expression that generalizes the standard one33,51

1

τϕ

= −
∫

τ−1
ϕ

dω

π

∫
d2q

(2π )2

Im U scr
11 (q,ω)

sinh (ω/T )

D1q
2

D2
1q

4 + ω2
. (63)

Expression for the dephasing rate of electrons in the right well
can be obtained from Eq. (63) by substitution of U22 and D2

for U11 and D1, respectively. At the balance we are interested
in, the dephasing rates in the left and right wells are the same.
Under the following assumption d,κ−1 � LT = √

D/T , we
find

1

τϕ

= As

T

8πνD
ln T τϕ, (64)

where As is the function of the parameter κd:

As = 1

2

[
1 + (κd)2

(1 + κd)(2 + κd)

]
. (65)

We mention that in the absence of electrons in the right
well (formally this case corresponds to the limit d → ∞) the
dephasing rate is maximal: As = 1. Equation (65) was used
for analysis of the experimental data in Ref. 31.

B. Contribution from the interaction in the multiplet channels

In general case, one has to take into account contributions to
the dephasing rate from the interaction in multiplet channels.34

We restrict ourselves to the case of the balance. Generalizing
the well-known result33 for the single well we can write the
dephasing rate in the left well as

1

τϕ

= − 2

σxx

∫
τ−1
ϕ

dω

∫
d2q

(2π )2

Re DR
q (ω)

sinh (ω/T )

∑
ab

Im U (ab)(q,ω),

(66)

where

U (ab)(q,ω) = �ab

z
D(ab),R

q (ω)
[
DR

q (ω)
]−1

. (67)

0 0.5 1
0

0.5

1

kF

d
1

d

FIG. 5. (Color online) The phase diagram for the parameter
Kee = 1 + f ( ¯̃γs) + 6f (γ̄t ) + 8f (γ̄v). It vanishes on the solid (blue)
line. Kee is negative in the filled region below the solid (blue) curve
and is positive above. The dashed (red) line indicates F̃s = 0.

Performing integration over momentum and frequency, we find

1

τϕ

= A T

2σxx

ln T τϕ (68)

with

A = 1

2

[
1 + γ̃ 2

s

2 + γ̃s

+ 6
γ 2

t

2 + γt

+ 8
γ 2

v

2 + γv

]
. (69)

In the absence of interaction in the multiplet channels, i.e., for
Ft = Fv = 0 and γ̃s = −κd/(1 + κd), this result transforms
into Eq. (64). We mention that the interaction parameters γ̃s ,
γt , and γv as well as conductance σxx should be taken at the
length scale LT = √

σxx/zT .
It is worthwhile to compare Eq. (68) with the result for the

dephasing rate in the absence of electrons in the right well.33,34

Taking the limit d → ∞, i.e., setting γ̃s = −1, γv = 0, and
γt = γt,0, we obtain

A → A0 =
[

1 + 3γ 2
t,0

2 + γt,0

]
, (70)

where the initial value of γt,0 is γ̄t,0 = −F 0
t /(1 + F 0

t ).

V. COMPARISON WITH THE EXPERIMENT

Recently, the interference31 and interaction32 corrections
to the conductivity of the gated double quantum well
AlxGa1−xAs/GaAs/AlxGa1−xAs heterostructures have been
studied. Two heterostructures, 3243 and 3154, distinguishing
by the doping level have been investigated. From analysis of
positive magnetoconductivity the dephasing rate has been ex-
tracted. By tuning the gate voltage, the electron concentration
in the right quantum well were controlled in the experiment.

We consider two characteristic cases: (I) electron concen-
trations and mobilities (M) of both quantum wells are equal:
n1 = n2 = n and M1 = M2 = M; (II) the left quantum well
has electron concentration n1 = n and mobility M1 = M,
whereas the right quantum well has electron concentration
n2 = 0. The electron concentration n has been high such that
the conductance σ̄xx was about 80. Therefore, the physics
described by RG equations (57)–(61) was not observed. The
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TABLE I. Parameters for samples studied in Refs. 31 and 32.

Sample No. 3154 No. 3243

n (1011 cm−2) 4.5 7.5
kF (106 cm−1) 1.7 2.2
κ (106 cm−1) 2 2
d (10−6 cm) 1.8 1.8
κd 3.6 3.6
kF d 3.06 3.95
κ/kF 1.18 0.91

main unexpected findings of Refs. 31 and 32 were as follows.
Dephasing rates (coefficient A) and interaction correction
(parameter Kee) extracted in cases (I) and (II) were practically
the same. At first glance, it is counterintuitive since there are
15 multiplets in the case (I) and only 3 in the case (II).

After Refs. 31 and 32 we summarize the experimental
values of relevant parameters in Table I. The theoretical
estimates for the interaction parameters in cases (I) and (II)
are presented in Table II. As one can see, in the experimentally
studied case of κd = 3.6 the interaction parameter Fv is
negligible, Ft and F 0

t coincide with each other and F̃s is equal
approximately to κd. The comparison between theoretical
estimates for Kee, A, Kee,0, and A0 with experimental data
(wherever it is possible) is summarized in Table III. Our
theoretical estimates are in good quantitative agreement with
the experimental ones. Our results explain why the interaction
corrections and dephasing rates in cases (I) and (II) were found
to be practically the same in the experiments.31,32 Since the
parameter Kee,0 is positive for κ/kF � 1, a drastic effect in the
interaction correction could be seen by tuning the gate voltage
from case (I) to case (II) in double quantum well structures
with κd � 1 for which one can expect Kee < 0 (see Fig. 5).

As mentioned in the Introduction, our theory is valid at
temperatures T � �SAS,�s,1/τ+−. In the experiments of
Refs. 31 and 32 the Zeeman splitting (at relevant magnetic field
which was used in order to extract interaction correction) and
�SAS were estimated as �s � 0.2K and �SAS � 1K . A small
asymmetry in the impurity distribution along z axis presented
in the double quantum well heterostructures used in Refs. 31
and 32 leads to appearance of scattering rate between symmet-
ric and antisymmetric states. The corresponding scattering rate
(1/τ+−) can be estimated from temperature and magnetic field
dependence of weak-localization (interference) correction to
conductivity.

TABLE II. Theoretical estimates of interaction parameters.

Sample No. 3154 No. 3243

F̃s 3.34 3.37
Ft −0.26 −0.23
Fv −0.009 −0.007
¯̃γs −0.77 −0.77
γ̄t 0.35 0.30
γ̄v 0.009 0.007
F 0

t −0.26 −0.23
γ̄t,0 0.35 0.30

TABLE III. Comparison of theoretical estimates and experi-
mental findings [Kee,0 = 1 + 3f (γ̄t,0), Kee = 1 + f ( ¯̃γs) + 6f (γ̄t ) +
8f (γ̄v)].

Theory Experiment

No. 3154 No. 3243 No. 3154 No. 3243

Kee 0.59 0.72 0.50 ± 0.05 0.57 ± 0.05
Kee,0 0.52 0.59 0.53 ± 0.05 0.60 ± 0.05
A 0.89 0.86
A0 1.15 1.12
A/A0 0.77 0.77 1.00 ± 0.05 1.00 ± 0.05

As known,33,42,43 in the absence of scattering between
symmetric and antisymmetric states neither �s nor �SAS

does not influence the weak-localization contribution. In the
absence of magnetic field, the weak localization correction to
the conductance in both asymptotic cases �SAS � 1/τ+− and
�SAS � 1/τ+− can be written as

δσWL
xx = 1

π
ln

[
τ 2

tr

τϕ

(
1

τϕ

+ 1

τ12

)]
, (71)

where 1/τ12 ∼ min{�2
SASτ+−,1/τ+−}. The temperature de-

pendence of the weak-localization correction (71) smoothly
interpolates between the result known for a two-valley system
at high temperatures (1/τϕ � 1/τ12) and the single-valley
result at low temperatures (1/τϕ � 1/τ12). In experiments31

the characteristic time τ12 was estimated from the suppression
of weak-localization correction due to perpendicular magnetic
field as 1/τ12 � 0.1K . Together with the estimate �SAS � 1K

it implies that 1/τ+− ∼ 1/τ12 � 0.1K . Therefore, our theory
is applicable at temperatures T � 1K . It is this temperature
range that was studied experimentally in Refs. 31 and 32.

VI. CONCLUSIONS

To summarize, we have developed the theory of the disor-
dered electron liquid in a double well quantum heterostructure
with equal electron concentrations. We have identified all
relevant interaction parameters and found their dependence
on the distance between quantum wells. To describe the
system at low temperatures, we have derived the interacting
nonlinear σ model and studied its renormalization in the one-
loop approximation. We have obtained the renormalization
group equations describing the length-scale dependence of the
conductance and interaction parameters. We have found that
upon the renormalization the system flows toward the fixed
point corresponding to two separate quantum wells. The RG
equations predict the metallic behavior of the conductance.
We have evaluated the dephasing rate of electrons due to
the presence of electron-electron interaction. This expression
takes into account screening of electron-electron interaction
within one quantum well by electrons from the other quantum
well.

We did not consider contributions to the one-loop RG
equations from the particle-particle (Cooper) channel. The
interaction effects related to the Cooper channel are governed
by the corresponding interaction amplitude which is always
small for 2D electron systems with Coulomb repulsion, so
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one can neglect it.5 As for the interference contribution to
conductance, for 1/τϕ � 1/τ12, it can be taken into account by
the substitution of 1+2 for 1 in the square brackets of Eq. (57).
This does not change qualitative behavior of the interaction
amplitudes γ̃s , γt , and γv discussed above. However, the
interference contribution makes behavior of the conductance
always nonmonotonous.

We performed detailed comparison between our theory
and experimental data.31,32 We explained main experimental
results and found good quantitative agreement. It would be
an experimental challenge to construct the double quantum
well heterostructure with κd � 1. Then, according to our
predictions, one can expect a change from nonmonotonous
to monotonous behavior in conductance in the presence of
small perpendicular magnetic field (to suppress interference
contribution) when the right well is depopulated by tuning the
gate voltage. It would be also interesting to experimentally
study the Coulomb drag effect in such heterostructures with
correlated disorder.

Finally, it would be worthwhile to extend our analysis to
temperatures less than the symmetry-breaking energy scales
�SAS, �s , and 1/τ+−. At such low temperatures one may
expect different behavior of transport in double quantum well
structures as compared to two-valley electron systems studied
recently.13,14,18
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APPENDIX A: BACKGROUND FIELD
RENORMALIZATION OF THE FINKELSTEIN TERM SF

In this Appendix we present details of the derivation of
Eq. (55) with the help of the background field renormalization.
Let us separate the matrix field Q into the “fast” (Q) and “slow”
(Q0 = T −1

0 �T0) modes as

Q → T −1
0 QT0. (A1)

The effective action for the Q0 fields is given by

expSeff[Q0] =
∫

D[Q] expS
[
T −1

0 QT0
]
. (A2)

Since we are interesting in the renormalization of the inter-
action parameters �ab only, we insert the spatial independent
background field T0 in the action (32). The result can be written
as follows:

SF

[
T −1

0 QT0
] = SF [Q0] + SF [Q] + O

(1),1
t + O

(1),2
t

+O
(2),1
t + O

(2),2
t + Qη, (A3)

where

O
(1),1
t = −πT

2

∫
d r

∑
αn;ab

�ab tr Iα
n tabδQ tr Iα

−ntabQ0,

O
(1),2
t = −πT

2

∫
d r

∑
αn;ab

�ab tr Iα
n tabδQ tr Aα

−n;abδQ,

O
(2),1
t = −πT

2

∫
d r

∑
αn;ab

�ab tr Iα
n tabQ0 tr Aα

−n;abδQ,

O
(2),2
t = −πT

4

∫
d r

∑
αn;ab

�ab tr Aα
n;abδQ tr Aα

−n;abδQ,

Oη = 4πT z

∫
d r tr AηδQ. (A4)

Here we introduce δQ = Q − � and

Aη = T0
[
η,T −1

0

]
, Aα

n;ab = T0
[
Iα
n tab,T

−1
0

]
. (A5)

The effective action Seff[Q0] can be obtained by expansion of
S[T −1

0 QT0] to the second order in Aη and Aα
n;ab.8 Then, we

find

Seff[Q0] − SF [Q0]

= 〈
O

(2),1
t

〉 + 〈O(2),2
t 〉 + 1

2

〈[
O

(1),1
t

]2〉
+ 1

2

〈
O

(1),1
t O

(1),2
t

〉 + 1

2

〈[
O

(1),2
t

]2〉 + 〈Oη〉, (A6)

where the average 〈. . . 〉 is with respect to action (31) and (32)
and we omit terms which do not involve infrared divergencies.
In general, each term in the right-hand side of Eq. (A6) produce
contributions which cannot be expressed in terms of Q0 only.
However, all such contributions cancel in the total expression
(A6). Therefore, we will not list them below. Expanding δQ

in series of W according to Eq. (40) and performing averaging
with the help of Eq. (41), we obtain

Seff[Q0] = −πT

4

∫
d r

∑
αn;ab

�′
ab tr Iα

n tabQ tr Iα
−ntabQ

+ 4πT z′
∫

d r tr ηQ, (A7)

where

�′
ab = �ab + δ�

(2),1
ab + δ�

(2),2
ab + δ�

(1),1;1
ab + δ�

(1),1;2
ab

+ δ�
(1),2;2
ab + δ�

η

ab (A8)
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and similar for z′. Here the contributions to �′
ab from each term

in the right-hand side of Eq. (A6) are given as follows:

〈
O

(2),1
t

〉 → δ�
(2),1
ab = 32πT

σ 2
xx

∑
cd;ef

[
Cab

cd;ef

]2
�cd�ef

×
∫

d2 p
(2π )2

∑
ωm>0

DD(cd)
p (ωm), (A9)

〈O(2),2
t 〉 → δ�

(2),2
ab = − 1

8σxx

∑
cd;ef

[sp(tcd tef tab)]2�cd

×
∫

d2 p
(2π )2

Dp(0), (A10)

1

2
〈[O(1),1

t ]2〉 → δ�
(1),1;1
ab

= 32πT

σ 2
xx

∑
cd;ef

[
�abCab

cd;ef

]2 ∑
ωm>0

×
∫

d2 p
(2π )2

[
D(cd)D(ef )

p (ωm) − D2
p(ωm)

]
, (A11)

〈
O

(1),1
t O

(1),2
t

〉 → δ�
(1),1;2
ab

= −64πT

σ 2
xx

∑
cd;ef

[
Cab

cd;ef

]2
�ab�cd

×
∫

d2 p
(2π )2

∑
ωm>0

D(ab)D(ef )
p (ωm), (A12)

1

2

〈[
O

(1),2
t

]2〉 → δ�
(1),2;2
ab

= 32πT

σ 2
xx

∑
cd;ef

[
�ef Cab

cd;ef

]2 ∑
ωm>0

×
∫

d2 p
(2π )2

[
D(cd)D(ef )

p (ωm) − DD(cd)
p (ωm)

]
, (A13)

and

〈Oη〉 → δ�
η

ab = 0. (A14)

Combing contributions (A8)–(A14) we obtain Eq. (55).
The only nonzero contributions to renormalization of z are

1

2

〈[
O

(1),2
t

]2〉 → δz(1),2;2 = 64πT

σ 2
xx

∑
cd

�cd

∑
ωm>0

×
∫

d2 p
(2π )2

[
DDp(ωm) − D(cd)D(cd)

p (ωm)
]

(A15)

and

〈Oη〉 → δzη = −64πT

σ 2
xx

∑
cd

�cd

∫
d2 p

(2π )2

×
∑
ωm>0

DD(cd)
p (ωm). (A16)

In total, Eqs. (A15) and (A16) give

z′ = z + 64πT

σ 2
xx

∑
cd

�cd

∫
d2 p

(2π )2

∑
ωm>0

D2
p(ωm). (A17)

It coincides with Eq. (51).

APPENDIX B: EVALUATION OF DC
TRANSCONDUCTANCE σ ′

12

In this Appendix we present calculations of the DC
transconductance in the one-loop approximation. Similarly to
the total conductance, the transconductance can be obtained
from

σ ′
12(iωn) = − σxx

16n

〈
tr

[
Iα
n t−,Q

][
Iα
−nt+,Q

]〉 + σ 2
xx

128n

∫
d r ′

× 〈〈tr Iα
n t−Q(r)∇Q(r) tr Iα

−nt+Q(r ′)∇Q(r ′)〉〉
(B1)

after the analytic continuation to the real frequencies: iωn →
ω + i0+ at ω → 0. Here matrices t± = (t00 ± t30)/2. Evalu-
ation of the transconductance according to Eq. (B1) in the
one-loop approximation yields

σ ′
12(iωn) = 32πT

σxxωn

∑
ab

�ab sp
[
t−tabt+tab − t−t+

] ∑
ωm>0

×ωm

∫
d2 p

(2π )2
DD(ab)

p (ωm+n)

− 8πT

σxxωn

∫
d2 p

(2π )2
p2

∑
ab;cd

sp[t−tabtcd ]
∑
ωm>0

× {
sp(t+[tab,tcd ])ωm

[
�abDp(ωm+n)DD(ab)

p (ωm)

+�cdD
(ab)
p (ωm)DD(cd)

p (ωm+n)
] − sp[t+tabtcd ]

×�ab min{ωm,ωn}Dp(ωm+n)DD(ab)
p (ωm)

}
,

(B2)

where DD(ab)
p (ωm) ≡ Dp(ωm)D(ab)

p (ωm). Evaluating the traces
we find

σ ′
12(iωn) = 29πT �v

σxxωn

∫
d2 p

(2π )2

∑
ωm>0

(
ωm

{
DD(20)

p (ωm+n)

−p2
[
Dp(ωm) + D(20)

p (ωm+n)
]

×Dp(ωm+n)D(20)
p (ωm)

}
+ min{ωm,ωn}p2Dp(ωm+n)DD(20)

p (ωm)
)
.

(B3)

Performing the analytic continuation to the real frequencies,
iωn → ω + i0+, one obtains the DC transconductance in the
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one-loop approximation:

σ ′
12 = −27�v

σxx

Im
∫

d2 p
(2π )2

∫
d�

{
∂

∂�

(
� coth

�

2T

)

× [
DD(20),R

p (�) − p2D2D(20),R
p (�)

] + p2� coth
�

2T

×D(20),R
p (�)

∂

∂�

[
1

2
D2

p(�) + DD(20),R
p (�)

]}
, (B4)

where DD(ab),R
p (�) ≡ DR

p (�)D(ab),R
p (�). Next, Eq. (B4) can

be simplified as

σ ′
12 = 211�v

σ 2
xx

Re
∫

d�� coth
�

2T

×
∫

d2 p
(2π )2

p2DD(20),R
p (�)

×{
z
[
DR

p (�)
]2 − (z + �v)

[
D(20),R

p (�)
]2

}
. (B5)

One can check that due to integration over momentum p

the DC transconductance vanishes at arbitrary temperature,
σ ′

12 = 0.
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