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Interaction correction to conductivity of AlxGa1−xAs/GaAs double quantum well heterostructures
near the balance
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The electron-electron interaction quantum correction to the conductivity of the gated double well
AlxGa1−xAs/GaAs structures is investigated experimentally. The analysis of the temperature and magnetic field
dependences of the conductivity tensor allows us to obtain reliably the diffusion part of the interaction correction
for the regimes when the structure is balanced (i.e., for equal electron concentrations in the wells) and when only
one quantum well is occupied. The surprising result is that the interaction correction does not reveal resonant
behavior: it is practically the same for both regimes.
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I. INTRODUCTION

The double quantum well (DQW) structures exhibit a
number of salient features. For instance, the resistance of
the structures with different mobilities in the wells strongly
depends on the potential profile of the quantum wells and has
a peak when the latter is symmetric.1–3 The DQW structures are
convenient systems to study a wide variety of the oscillatory
phenomena originated from the peculiarities of the Landau
quantization of the energy spectrum.4–8

The quantum corrections to the conductivity are also ex-
pected to demonstrate peculiar behavior when the population
of the quantum wells and/or the interwell transition rate
is varied. The interference quantum correction in DQWs
has been studied in Refs. 9–13 where the specific features
of the interference-induced magnetoresistance and dephas-
ing processes have been investigated both theoretically and
experimentally. An unexpected result has been obtained in
Ref. 13. Analyzing the positive magnetoconductivity induced
by suppression of the quantum interference by magnetic field,
the authors have found that the dephasing rate in the lower
quantum well is independent of whether the upper quantum
well contributes to the conductivity or not. This observation
is inconsistent with the results of the theory which takes
into account the inelasticity of the electron-electron (e–e)
interaction in the singlet channel only. Such a simplified
theoretical approach would yield an increase of the dephasing
time in double layer structures as compared with the single-
layer case.

The correction to the conductivity due to e–e interaction14 is
investigated in DQW structures significantly less,12,15 although
it is of paramount importance in complicated systems. For
instance, the effect of interaction on the conductivity has
recently attracted a great deal of interest in a context of two-
dimensional (2D) systems with strong e–e interaction showing
a metallic-type behavior of the conductivity, dσ/dT < 0.16–18

Main features of the interaction correction expected in
DQW structures can be revealed by considering the case of
single quantum well system with two-valley energy spectrum.
Such structures are relevant to the problem of an apparent
metal-insulator transition in 2D silicon MOSFET systems.16,19

The diffusion part of the interaction correction to the conduc-
tivity, which is dominant at low temperature, T � 1/τ , is
given by19–21

δσee = KeeG0 ln(T τ ),
(1)

Kee = 1 + (
4n2

v − 1
) [

1 − 1 + γ2

γ2
ln(1 + γ2)

]
,

where G0 = e2/πh � 1.23 × 10−5 �−1, nv is the number
of valleys, and γ2 is the Landau’s Fermi liquid ampli-
tude expressed through the Fermi liquid constant Fσ

0 : γ2 =
−Fσ

0 /(1 + Fσ
0 ).22 For the high conductivity, the value of Fσ

0

depends on the gas parameter rs = √
2/(aBkF ). Here aB is the

effective Bohr radius and kF is the Fermi quasimomentum. For
small values of rs , the Fermi liquid constant can be estimated
as17

Fσ
0 → − 1

2π

rs√
2 − r2

s

ln

(√
2 + √

2 − r2
s√

2 − √
2 − r2

s

)
, r2

s < 2. (2)

The coefficient Kee involves two terms coming from singlet
and multiplet channels [the first and second terms in Eq. (1),
respectively]. The singlet term does not depend on the
interaction constant Fσ

0 and the number of valleys. This term
favors localization, i.e., it leads to the conductivity decrease
with lowering temperature. In contrast, the multiplet term
depends on both Fσ

0 and nv . The multiplet channel gives
the antilocalization contribution to the conductivity for any
Fσ

0 given by Eq. (2). This correction is independent of the
magnetic field provided the Zeeman splitting is sufficiently
small, gμBB � T , where g is the effective Landé g-factor.
Importantly, in the two-valley case, the multiplet term contains
a large factor 4n2

v − 1 = 15 and hence dominates over the
localizing singlet term already for not too strong interaction.

The value of Kee can be experimentally determined from the
temperature and magnetic-field dependences of the resistivity.
Let us demonstrate how strongly Kee depends on the valley de-
generacy. For the 2D electron gas in GaAs quantum well (i.e.,
nv = 1, aB � 100 Å) with the density n = 5 × 1011 cm−2,
we obtain from Eq. (2) that Fσ

0 = −0.255 (γ2 = 0.343) and
Kee � 0.6. The positive sign of Kee means that the e–e
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interaction favors localization. For the hypothetical case of the
two-valley electron spectrum, nv = 2, with the same effective
mass and electron density per one valley, the correction in the
multiplet channels is larger than that in the singlet one. As a
result, the coefficient Kee has the opposite sign, Kee � −1.3,
i.e., the correction would be antilocalizing.23

It is natural to think that DQW heterostructures based on
the single-valley semiconductors should demonstrate behavior
similar to the case of two-valley systems. The two quantum
wells in DQWs play the role of artificial valleys. Importantly,
DQW structures provide a possibility of controllable manipu-
lation of this “valley” degree of freedom, which is not easy in
real two-valley systems. As follows from the above discussion,
this renders DQW heterostructures particularly interesting for
studying interaction-induced effects on transport properties. In
particular, a crucial change of the interaction contribution to
the conductivity is expected to be observed in the gated DQW
structures when, by changing the gate voltage, one varies the
electron concentration in the two quantum wells. Specifically,
one can expect huge variations of Kee in the DQW structure,
when crossing over from the regime when the structure is in
the balance to the regime when the upper quantum well is
empty.

In order to model a two-valley system with the help of a
DQW, the following special conditions have to be fulfilled.
At the balance, not only the electron densities in the wells
should be equal to each other, n1 = n2, but the mobilities
as well. Moreover, the scatterers should be common for the
carriers in the different wells: each specific impurity should
scatter the carriers of the lower and upper wells identically.
In addition, the interwell distance d should be small, κd <

1, where κ is the inverse screening length, but the interwell
transition time t12 should be large, t12 � 1/T . In reality, it is
very difficult to fulfill (and especially to check the fulfillment
of) all these requirements. However, because the qualitative
speculation presented above predicts a very huge effect, it
seems that significant change of the interaction correction in
DQW structure at varying of the density should be observed
easily even in structures that fall short of this ideal. To the best
of our knowledge, such a renormalization of the interaction
contribution to the conductivity in the singlet and multiplet
channels at varying ratio of densities in the wells was never
observed experimentally.

In this paper, we have tried to detect the resonant change
of the interaction-induced correction to the conductivity in the
GaAs DQW heterostructures. Surprisingly, we have found that
the interaction correction is practically independent of whether
two or one quantum well contribute to the conductivity. The
situation in DQW heterostructures is thus very nontrivial.
Clearly, the model of two essentially independent 2D electron
gases would yield a twice larger value of Kee than for a single
layer. Indeed, in the limit d → ∞, the two layers can be
thought of as two parallel conductors which do not affect each
other. Their conductivities, including the interaction-induced
corrections, would just add up, when contacts are attached to
both layers. The actually observed value of Kee at the balance
is, however, close to that found in the effectively single-layer
case. This suggests that the two layers are strongly coupled
by Coulomb interaction under our experimental conditions.
Then, naively, it would resemble a single-layer system with

two valleys, where the intervalley and intravalley interactions
are equally important. In this case, the singlet contribution to
Kee is the same as in a single-valley system, see Eq. (2):
the valley degeneracy (number of parallel conductors) is
compensated by the increase of the screening (electrons from
both valleys participate in the dynamical screening of Coulomb
interaction). However, according to Eq. (2), the multiplet
interaction in this situation is expected to change the sign
of Kee, contrary to experimental observations. Thus, none of
the limiting cases may explain that at the balance Kee has
essentially the same value as in the single-layer case.

II. EXPERIMENTAL DETAILS

The results presented in this paper have been obtained for
just the same samples for which the weak localization effect
has been investigated in Ref. 13. The gated samples were
made on the basis of the DQW heterostructures in which the
two GaAs quantum wells of width 8 nm are separated by
10 nm Al0.3Ga0.7As barrier. Two δ layers of Si have been
situated in the barriers to deliver the electrons in the wells.
The main doping δ layer of Si is in the center of barrier
separating the wells. To compensate the electric field of the
Schottky barrier, the second δ layer is located above the upper
quantum well at distance of 18 nm from the well interface.
Two heterostructures, 3243 and 3154, with different doping
levels have been investigated. The main parameters of the
samples have been determined in Ref. 13 and for two regimes
considered in this paper are listed in Table I. The regime when
only the lower quantum well is occupied is referred as SQW
regime. Balance is the regime of the equal electron densities
in the wells. The energy splitting between the symmetric and
antisymmetric states (�SAS) in this regime is about 0.1 meV,13

that is much less than 1/τ and less than the temperature under
our experimental conditions.

For both heterostructures, the results obtained were mostly
analogous and in what follows, we shall discuss in more detail
the results obtained for the structure 3243.

III. RESULTS AND DISCUSSION

To extract the interaction contribution to the conductivity,
we have used the unique property of this correction in the
diffusive regime: the interaction gives contribution to the one
component of the conductivity tensor, namely, to σxx , whereas
δσxy = 0.14 At low interwell transition rate, the components

TABLE I. Parameters of the structures investigated.

Structure #3243 #3154

Regime SQW Balance SQW Balance
Vg (V) −4.1 −1.5 −3.6 −2.0

n (1011 cm−2)a 7.0 7.5 4.0 4.5
μ (103 cm2/V s) 14.5 15 4.8 6.5
Kee ± 0.05, exp. 0.60 0.57 0.53 0.50
Kee, theor.b 0.58 0.72 0.51 0.59

aThe electron density per quantum well.
bEstimated from Eqs. (1) and (2) for SQW regime and according to
Ref. 24 for the balance.
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of the conductivity tensor in the double well structures are
simply the sum of the components of each well, σxx,xy =
σ (1)

xx,xy + σ (2)
xx,xy . Therefore, the temperature dependence of σxx

at the high magnetic field, B > Btr , which suppresses the
temperature dependence of the WL correction, is determined
by the interaction correction only. Here Btr = h̄/2el2 is the
transport magnetic field and l is the transport mean free path.
The temperature dependence of σxx should be logarithmic
and the slope of σxx vs ln T plot should give the value
of Kee.

The situation becomes more complicated at T τ > 0.1,
when the ballistic contribution of interaction becomes
important.17 This contribution results in the temperature-
dependent correction to the mobility.17,25 In its turn, this
leads to appearance of the magnetic field dependence of
�σxx = σxx(T ) − σxx(T0) and the temperature dependence of
�σxy :

�σxx(B,T ) =
2∑

i=1

1 − μ2
i (T0)B2

[
1 + μ2

i (T0)B2
]2 eni�μi(T )

+ [
K (1)

ee + K (2)
ee

]
G0 ln

(
T

T0

)
, (3)

�σxy(B,T ) =
2∑

i=1

2μi(T0)B[
1 + μ2

i (T0)B2
]2 eni�μi(T ), (4)

where summation runs over the quantum wells, �μi(T ) =
μi(T ) − μi(T0), T0 is some fixed temperature, K (1)

ee and K (2)
ee

stand for Kee in the lower and upper well, respectively. As seen
from Eq. (3), the temperature dependence of σxx in this case is
determined not only by K (1)

ee and K (2)
ee , but by μ1, μ2, �μ1, and

�μ2 also. Things will get better preferably when the mobilities
in the wells are close to each other. Then, as seen from Eq. (3),
the temperature dependence of σxx at B = 1/μ is determined
by diffusion interaction correction only. Therefore, let us start
our analysis of the data from this case.

For the structures 3243 and 3154, the balance, n1 = n2,
takes place at Vg = −1.5 and −2 V, respectively. Detailed
analysis of the gate voltage dependences of the electron
densities and mobilities performed for these structures in
Ref. 13 demonstrates that near the balance, the mobilities have
close values. The magnetic field dependences of σxx , σxy ,
and �σxx,xy = σxx,xy(4.2 K) − σxx,xy(1.35 K) taken for the
structure 3243 at Vg = −1.5 V are presented in Figs. 1(a) and
1(b), respectively. One can see that �σxx decreases strongly
up to B = 1 T whereas �σxy is not small over the whole
magnetic field range. (The value of Btr at this gate voltage
is about 10−2 T. Therefore, the variation of σxx and σxy is
not associated with the contribution of the weak localization
correction.) Such variations of �σxx and �σxy with the
changing temperature and magnetic field do not match to the
diffusion interaction correction. It is not surprising because the
parameter T τ = 0.08–0.25 is not small within this temperature
range and the ballistic part of interaction correction gives
significant contribution.

As we mention just below Eq. (4), the diffusion contribution
can be extracted in this situation by analyzing the �σxx vs T

behavior at B = 1/μ. Such the dependence plotted in Fig. 1(c)
demonstrates that the temperature dependence of �σxx in this
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FIG. 1. (Color online) (a) The magnetic field dependences of σxx

and σxy taken at T = 1.35 K. (b) The magnetic field dependences
of �σxx,xy = σxx,xy(4.2 K) − σxx,xy(1.35 K). (c) The temperature
dependences of �σxx = σxx(4.2 K) − σxx(T ) at B = 1/μ = 0.67 T
(squares) and that found from the Hall effect as described in the text
(diamonds). The gate voltage is Vg = −1.5 V.

case is close to the logarithmic one and its slope gives Kee =
0.55 ± 0.05.

The diffusion part of the interaction correction has to
lead to the temperature dependence of the Hall coefficient,
�RH/RH � −2�σxx/σxx , and, hence, the diffusion contri-
bution can be independently obtained from the T dependence
of the Hall coefficient. As seen from Fig. 1(c), �σxx found
as [RH (T ) − RH (4.2 K)]σxx(4.2 K)/2RH (4.2 K) agrees well
with the data obtained by the first method.

Finally, the diffusion contribution δσee can be obtained even
over the whole magnetic field range by eliminating the ballistic
part of interaction with the use of the method described in
Ref. 26. Because the ballistic part of the interaction correction
is reduced to the renormalization of the mobility and the
diffusion part of the correction does not contribute to the
off-diagonal component of the conductivity, one can obtain
the μ vs T dependence from σxy provided the electron density
is known, e.g., from the period Shubnikov-de Haas oscillations

μ(T ) =
{

σxy(T )

[en − σxy(T )B]B

}1/2

. (5)

Equation (5) allows us to find the correction δσee(T ) as the
difference between the experimental value of σxx(T ) and the
value of enμ(T )/(1 + μ2(T )B2). The results of such analysis
of the data are presented in Fig. 2(a) as the �δσee vs ln T

plot where �δσee = δσee(T ) − δσee(1.35 K). It is clearly seen
that the slopes of σxx vs ln T dependences are practically
independent of the magnetic field and give Kee = 0.57 ± 0.05
in agreement with the value of Kee obtained by the two
previous methods.

Thus, three different methods for obtaining the diffusion
interaction correction give the same results. The correction
δσee is logarithmic in the temperature, and the value of the
parameter Kee is 0.57 ± 0.05.

Let us inspect the data for the case when only one well
is occupied. For the structure 3243, it occurs at Vg � −4 V.
There are not additional difficulties in the extraction of Kee
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FIG. 2. (Color online) The temperature dependence of the diffu-
sion e–e interaction correction �δσee = δσee(T ) − δσee(1.35 K) for
different magnetic fields near the balance, Vg = −1.5 V (a) and
under the condition that only the lower quantum well is occupied,
Vg = −4.1 V (b). The insets show the energy diagrams and the
electron density distributions |ψ(z)|2 for corresponding gate voltages.
E1 and E2 are the energies of the subband bottoms, z is the distance
from the gate electrode.

for this case. All three methods give also the same results.
As an example, we have plotted in Fig. 2(b) the temperature
dependence of �δσee taken at different magnetic fields at Vg =
−4.1 V. At this value of the gate voltage, the electron density
and mobility are close to those for each well at the balance.
One can see that the temperature dependences of �δσee taken
at different B for this case are close to each other also. The
slope of the �δσee vs ln T dependence gives Kee = 0.60 ±
0.05 that corresponds to Fσ

0 = −0.225. This value is in a
good agreement with the theoretical estimate, Eq. (2), Fσ

0 =
−0.237.

Surprisingly, the value of Kee in the balance practically
coincides with that for the regime in which only one quantum
well is occupied.27 Such coincidence seems strange. It does
not agree with the qualitative picture considered in Sec. I.

It is possible that the structure 3243 at Vg = −1.5 V is close
to the balance but not exactly in it. Let us analyze the data at
the gate voltages in the vicinity of −1.5 V. In this situation, the
mobilities in the wells are distinguished and strictly speaking
the method used for Vg = −1.5 V is not applicable. However,
one can easily assure that by using the total electron density
n1 + n2 and the average mobility μ∗ = σ ∗/e(n1 + n2) (where
σ ∗ = 1/ρxx at B = 1/μ∗) in the data processing one obtains
the value of Kee very close to its average value. The values of
Kee obtained by this way for Vg = −1.2 and −1.8 V are close
to that in the balance as shown in Fig. 3.

The resonant change of Kee occurs quite possible within a
very narrow range of Vg and we could overlook it measuring
Kee at fixed Vg . To check such an occasion, we have measured
ρxx and ρxy at fixed magnetic field B = 1/μb, where μb stands
for the mobility in the balance, and different temperatures
sweeping the gate voltage. The dependence of Kee vs Vg was
found as the slope of the σxx vs ln T plot. As seen from the
inset in Fig. 3, the coefficient Kee changes monotonically28
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FIG. 3. (Color online) The Kee values plotted against the gate
voltage for two regimes, when lower quantum well is occupied and
near the balance. In the inset, the line is the Kee vs Vg dependence
obtained by sweeping the gate voltage at different temperatures.

and exhibits no resonant feature within the sweeping Vg range.
Analogous results were obtained for the structure 3154.

Thus, all the results presented above demonstrate that the
noticeable resonant change of Kee to say nothing of change of
its sign is not observed in the structures investigated.

One possible reason of the absence of the Kee resonance
can be the fact that the scatterers are not common enough in
spite of our efforts to design special structures and despite
proximity of the mobilities in the wells. The unavoidable
variation in the scatterer positions with respect to the center
of the barrier results in the fact that the specific impurity
scatters the carriers from the lower and upper wells differently.
Besides, the interwell distance is not sufficiently small in our
case. The parameter κd is equal to 3.6, so the interaction
between the electrons in the different wells is noticeably
weaker than that between electrons within the one well.

On the other hand, the interaction correction for the struc-
ture with the sufficiently large interwell distance, d � 1/κ,
should be equal to the sum of the correction in wells. The value
of Kee for the case when one well is occupied is 0.60 ± 0.05
for structure 3243 (see Table I). So, at Vg = −1.5 V, when
both wells are occupied and each of them has approximately
the same density, the value of Kee would be expected as
large as �1.2. In fact, the observed value of Kee is twice
less. We conceive that this paradox can be resolved by taking
into account the screening of the e–e interaction between
the carriers in the one well by the carriers of the other one,
which was not taken into account in qualitative consideration
above. This screening reduces the e–e interaction strength and,
consequently, diminishes the interaction contribution to the
conductivity.

It is clear that for the adequate understanding of the role
of e–e interaction in the DQW structures, a theory, which
properly takes into account the interaction in the singlet and
multiplet channels and specifics of the screening for different
interwell distances, is necessary. Such theoretical considera-
tion is presented in the following paper.24 The authors analyze
both the interaction and weak localization corrections to the
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FIG. 4. (Color online) The Kee value at the balance plotted as a
function of κd . The solid line is calculated according to Ref. 24 with
n = 7.5 × 1011 cm−2. The solid circle is obtained experimentally, the
open circle marks the theoretical value of Kee for the structure 3243.
The inset shows the calculated Kee vs κd dependence in wider κd

range (solid line). The dashed line is the Kee value in the limiting
case of two independent wells.

conductivity of the double layer structures in framework of
the random phase approximation. The interaction effect is
considered for the case of the identical layers. Unexpected
result is that the multiplet contribution even in the case of
common scatterers does not win the singlet contribution for
κd > 1 and, consequently, does not result in the change of the
Kee sign, as we have naively reasoned in Sec. I.

Let us compare the theoretical results24 with the experimen-
tal data. For both structures 3243 and 3154, the experimental
and theoretical values of Kee for SQW regime and for the
balance are presented in Table I. The calculations have been
performed with the electron densities listed in the table, κ =
2 × 106 cm−1, and d = 1.8 × 10−6 cm. Because no fitting

parameters have been used, agreement between the theory and
experiment can be considered as reasonably good.

Figure 4 illustrates the sensitivity of Kee to the interwell
distance. The theoretical and experimental values of Kee

corresponding to the sample 3243 are marked by open and solid
circles, respectively. As seen Kee diminishes with decreasing
distance between the wells. However, being always positive
it does not even approach the value Kee ∼ −1 expected in
the beginning of the paper for the equal contributions of 15
multiplet channels in the DQW heterostructures with the small
interwell distance. The other limiting case of independent
contributions to Kee from each well is achieved at very
large distance, κd > 30 (see inset in Fig. 4). This is clear
indication of the great importance of specific feature of
screening of electron-electron interaction in the double layer
systems.

IV. CONCLUSION

We have studied the electron-electron interaction correction
to the conductivity of 2D electron gas in the gated dou-
ble quantum well AlxGa1−xAs/GaAs heterostructures. Using
three different methods, we have obtained the diffusion part
of the interaction correction under the conditions when one
and two quantum wells are occupied. It has been found that
the interaction correction, contrary to naive expectations, is
practically independent of whether two or one quantum well
contribute to the conductivity. This observation is consistent
with the results of the paper by Burmistrov et al.,24 in which
the theory for the dephasing and electron-electron interaction
in the DQW structures is developed.
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