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Dynamics of spin relaxation in finite-size two-dimensional systems: An exact solution
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We find an exact solution for the problem of electron spin relaxation in a two-dimensional (2D) circle
with Rashba spin-orbit interaction. Our analysis shows that the spin relaxation in finite-size regions involves
three stages and is described by multiple spin relaxation times. It is important that the longest spin relaxation
time increases with the decrease in system radius but always remains finite. Therefore, at long times, the spin
polarization in small 2D systems decays exponentially with a size-dependent rate. This prediction is supported
by results of Monte Carlo simulations.
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I. INTRODUCTION

The D’yakonov-Perel’1,2 spin relaxation mechanism in
two-dimensional (2D) systems has attracted wide attention1–14

because of its fundamental importance for the field of
spintronics.15,16 However, the spin relaxation in systems with
boundaries is even more important because boundaries are nat-
urally present in all electronic devices. There are only several
examples in the literature where the influence of boundary
conditions on D’yakonov-Perel’ spin relaxation have been
explored theoretically and/or experimentally. These examples
include investigations of spin relaxation in 2D channels,17–22

2D half-space,23 2D systems with antidots,24 large quantum
dots,25,26 and one-dimensional (1D) finite-length wires.27 Both
available experimental and theoretical results indicate that,
typically in the diffusive spin transport regime, the electron
spin life time is longer in systems with boundaries.

In this paper we find an exact solution for the problem of
electron spin relaxation in finite-size 2D systems. Specifically,
we consider the dynamics of electron spin relaxation in a 2D
circle made of a semiconductor structure with Rashba-type
spin-orbit interaction. One may think that in small systems
the spin relaxation is incomplete as the spin precession angle
across the system is small. However, in such a situation, the
different effect plays a role: the noncommutativity of spin
rotations. Because of this effect, the electron spin precession
angle can largely exceed the maximum rotation angle allowed
by naive geometrical considerations. To the best of our knowl-
edge, the spin relaxation in small systems was investigated
previously only in Ref. 25. This previous study provides only
an asymptotic value of the spin relaxation time without giving
details on how the whole process of spin relaxation occurs. In
the present paper, we show that the spin relaxation process in
finite-size systems is intrinsically complex. The exact solution
of this fundamental problem involves an infinite number of
spin relaxation constants. At long times, however, only the
slowest decaying component survives and the spin polarization
exhibits a slow size-dependent exponential decay. Our exact
analytical solution is obtained using the Laplace transform28

and is confirmed by Monte Carlo simulations of spin dynamics.
This work thus provides an important missing part of spin
relaxation theory.

This paper is organized as follows. In Sec. II, we introduce
a set of diffusive equations describing evolution of spin

polarization supplemented by appropriate boundary condi-
tions. The solution of these equations for the case of spin
relaxation in a circle is found analytically using the Laplace
transform method. The main result of our work is given by
Eqs. (22) and (23) describing the time and space dependence of
spin polarization components. Section III presents numerical
Monte Carlo simulations of spin dynamics that are in an
excellent agreement with our analytical results. Section IV
summarizes the results and conclusions of the paper.

II. ANALYTICAL APPROACH

A. Spin drift-diffusion equations

Let us consider the dynamics of electron spin polarization
in a finite-size 2D electron system such as the circle shown
in Fig. 1. The standard electron Hamiltonian with the Rashba
spin-orbit interaction term29 is given by

Ĥ = p̂2

2m
+ α (σ̂ × p̂) · z, (1)

where p̂ = (p̂x,p̂y) is the 2D electron momentum operator, m

is the effective electron’s mass, σ̂ is the Pauli-matrix vector,
α is the spin-orbit coupling constant, and z is a unit vector
perpendicular to the confinement plane. The set of diffusion
equations4,30,31 for spin polarization can be written as

1

D

∂Sin

∂t
= �Sin + 2η∇Sz − η2Sin, (2)

1

D

∂Sz

∂t
= �Sz − 2η∇ · Sin − 2η2Sz, (3)

where Sin and Sz are the in-plane and z components of
spin polarization, respectively, D = l2/(2τ ) is the diffusion
coefficient, l is the mean free path, τ is the momentum
relaxation time, and η = 2αmh̄−1 is the spin rotation angle
per unit length (spin rotations are induced by the Rashba
spin-orbit interaction). The applicability limits of Eqs. (2) and
(3) are λ � l � a and l � η−1, where λ is the electron’s de
Broglie wavelength, and a is the characteristic system size (in
the context of this work, a is the radius of the circle). We also
note that Eqs. (2) and (3) are valid for any value of aη.
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FIG. 1. (Color online) Schematic of a circular 2D region of a
radius a with electron spin polarization initially pointing in the z

direction perpendicular to the circle plane. n and ϒ are the normal
in-plane and tangential vectors to the boundary, correspondingly.

Equations (2) and (3) are supplemented by the standard
boundary conditions30,32 for spin polarization components
(

∂Sn

∂n
+ ηSz

)
	

= 0,

(
∂Sz

∂n
− ηSn

)
	

= 0,

(
∂Sϒ

∂n

)
	

= 0,

(4)

where n and ϒ are the normal in-plane and tangential vectors
to the boundary 	, respectively. For clarity sake, Fig. 1
illustrates the directions of these vectors at an arbitrary point
of the boundary. Physically, the boundary conditions given by
Eqs. (4) describe a spin-conserving scattering of electrons from
the system boundary. We note that the first two equations of
Eqs. (4) are different from the standard zero-flux boundary
conditions (e.g., for the heat equation). This is related to
the Rashba spin-orbit interaction causing spin rotations. It is
clearly seen that the form of the usual von Neumann boundary
conditions is restored in the limit of η = 0. We refer to Ref. 30
for more details about boundary conditions in systems with
spin-orbit interaction.

Next, we would like to reduce the set of Eqs. (2) and (3)
to a single equation for Sz. Introducing u = ∇ · Sin and v =
(∇ × Sin)z, Eqs. (2) and (3) can be rewritten as

ut = �u + 2�Sz − u, (5)

(Sz)t = �Sz − 2Sz − 2u, (6)

vt = �v − v. (7)

Here, � is the 2D Laplace operator, the time is measured in
the units of ts = (Dη2)−1, and the coordinates are measured in
the units of η−1. Such a convention is used below if not stated
otherwise. Combining Eqs. (5) and (6) we readily get

(Sz)t t − 2�(Sz)t + 3(Sz)t + �2Sz + �Sz + 2Sz = 0. (8)

B. Analytical solution

The Laplace transform28 of Eq. (8) is given by

�2S̃z + (1 − 2p)�S̃z + (p2 + 3p + 2)S̃z

= (p + 1)Sz|t=0 − �Sz|t=0 − 2u|t=0, (9)

where S̃z is the Laplace transform of Sz to the complex p

domain. In the above equation, the time derivative of Sz at
t = 0 was substituted from Eq. (6).

In what follows we consider the relaxation of homogeneous
spin polarization pointing in the z direction perpendicular to
the plane of the 2D circle (see Fig. 1). Taking into account
the axial symmetry of the problem, the initial and boundary
conditions read

u(r,t = 0) = ∂[rSr (r,t = 0)]

r∂r
= 0, Sz(r,t = 0) = S0, (10)

(
∂Sr

∂r
+ Sz

)∣∣∣∣
r=a

= 0,

(
∂Sz

∂r
− Sr

)∣∣∣∣
r=a

= 0. (11)

We note that the function v = ∂(rSφ)/(r∂r) is safely taken
out of the consideration since the solution v(r,t) = 0 satisfies
Eq. (7) with the boundary condition ∂Sφ/∂r|r=a = 0 and the
initial condition v(r,0) = 0. Applying the initial conditions
(10), Eq. (9) simplifies to

�2S̃z(r) + (1 − 2p)�S̃z(r) + (p2 + 3p + 2)S̃z(r)

= (p + 1)S0. (12)

The general solution of Eq. (12) can be found by the
factorization of its left-hand side and be presented as

S̃z(r) = A1J0(k1r) + A2J0(k2r) + B1N0(k1r)

+B2N0(k2r) + S0

p + 2
, (13)

where A1,2,B1,2 are arbitrary constants, J0(x) and N0(x) are
the zeroth order Bessel and Neumann functions, respectively,
and

k2
1,2 = −p + 1

2
± 2i

√
p + 7

16
. (14)

In the case of the circle, B1,2 = 0 since N0(x) diverges as x →
0. Moreover, the actual choice of two branches corresponding
to ± in Eq. (14) is not essential. We may make a branch cut
along the line p < −7/16, Im(p) = 0 in the plane of complex
p and define two branches by the conditions k2

1,2(p = 0) =
(1 ± i

√
7)/2.

Although the radial component of spin polarization equals
zero at t = 0, it becomes different than zero at t > 0 similarly
to the case of spin relaxation in rings.33 With the help of the
Laplace transform of Eq. (6), we express S̃r (r) through S̃z(r)
as

S̃r (r) = 1

r

∫ r

0
dξξ ũ(ξ ) = 1

2

∂S̃z(r)

∂r
− p + 2

2r

∫ r

0
dξξ S̃z(ξ )

+ 1

2r

∫ r

0
dξξSz(ξ,t = 0). (15)

The boundary conditions (11) are used to find the values
of A1,2 in Eq. (13). For this purpose, we Laplace transform
Eqs. (11) and employ Eq. (15) to find

∂2S̃z(a)

∂r2
+ p + 2

a2

∫ a

0
drrS̃z(r) − pS̃z(a)

= 1

a2

∫ a

0
drrSz(r,t = 0) − Sz(a,t = 0), (16)
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∂S̃z(a)

∂r
+ p + 2

a

∫ a

0
drrS̃z(r) = 1

a

∫ a

0
drrSz(r,t = 0).

(17)

A1,2 are obtained from Eqs. (16) and (17) complemented by
Eq. (13) and the initial conditions (10). Finally, the Laplace
transform of the z component of the spin polarization is written
as

S̃z(r) = 2S0

(p + 2)D(p)

[(
p + 2 − k2

2

)J1(k2a)

k2
J0(k1r)

− (
p + 2 − k2

1

)J1(k1a)

k1
J0(k2r)

]
+ S0

p + 2
, (18)

where the following notation is used:

D(p) = 2(p + 2)
(
k2

2 − k2
1

)J1(k1a)J1(k2a)

ak1k2

+ [
(p + 2)

(
k2

1 − 1
) − pk2

2

]
J0(k1a)

J1(k2a)

k2

− [
(p + 2)

(
k2

2 − 1
) − pk2

1

]
J0(k2a)

J1(k1a)

k1
. (19)

The Laplace transform of the r component of spin polarization
is found combining Eqs. (15), (18), and (10)

S̃r (r) = S0

(p + 2)D(p)

[(
k2

1 + p + 2
)(

k2
2 − p − 2

)J1(k2a)

k2

× J1(k1r)

k1
− (

k2
2 + p + 2

)(
k2

1 − p − 2
)J1(k1a)

k1

J1(k2r)

k2

]
.

(20)

The inverse Laplace transform of Eqs. (18) and (20)
provides the time-domain components of spin polarization.
It is important to note that the right-hand sides of Eqs. (18)
and (20) do not change under a permutation of k1 and k2.
This means that these functions are one-valued functions
in the whole complex plane of p despite the square root
in Eq. (14). As a result, S̃z(r) and S̃r (r) are meromorphic
functions on the whole complex plane of p. The poles of
these functions are defined by the equation D(p) = 0, which
has an infinite number of roots pn, |pn| → ∞ as n → ∞.
All poles are characterized by Im(pn) = 0 and Re(pn) < 0.
Note that, generally, p = −2 is not a pole of both S̃z(r) and
S̃r (r). Referring to Fig. 2, the positions of the poles depend on
the circle radius. At small values of aη, the values of all |pn|
(n = 1,2, . . . ,) increase with the decrease of aη except for |p0|
whose value decreases. Basically, this is the most interesting
pole describing the asymptotic spin relaxation at long times. p0

is always located between −7/16 and 0 and tends to zero when
aη → 0, and to −7/16 when aη → ∞. In the limit of small
a, an analytical expression for p0 can be found. Expanding
Eq. (19) over small p and a, we get (using dimensional units
for a)

−p0 = 1

48
(aη)4 − 7

768
(aη)6 + O((aη)8). (21)

This expression is basically valid when aη < 1. We also note
that the first term in the right-hand side of Eq. (21) was
previously reported in Ref. 25. It can also be shown that for
n = 1,2, . . ., |pn| ∼ Cn(aη)−2 when aη � 1.

η

FIG. 2. (Color online) First six poles of S̃z(r) and S̃r (r) versus
the circle radius. These poles are proportional to the slowest six spin
relaxation rates.

The time-domain components of spin polarization are
written using the normal dimensional units of time and
coordinates as

Sz(r,t) =
+∞∑
n=0

2S0e
pnDη2t

(pn + 2)D′(pn)

[(
pn + 2 − k2

2n

)J1(k2naη)

k2n

× J0(k1nrη) − (
pn + 2 − k2

1n

)J1(k1naη)

k1n

J0(k2nrη)

]
,

(22)

and

Sr (r,t) =
+∞∑
n=0

S0e
pnDη2t

(pn + 2)D′(pn)

[(
k2

1n + pn + 2
)

× (
k2

2n − pn − 2
)J1(k2naη)

k2n

J1(k1nrη)

k1n

− (
k2

2n + pn + 2
)(

k2
1n − pn − 2

)J1(k1naη)

k1n

J1(k2nrη)

k2n

]
.

(23)

Equations (22) and (23) represent the main result of this work
describing the time dependence of spin relaxation in the circle.

III. NUMERICAL SIMULATIONS

To obtain an additional insight on spin relaxation in the 2D
circle, we have performed extensive Monte Carlo simulations.
All of the specific details of the Monte Carlo simulations
approach can be found in Refs. 17 and 34 and will not be
repeated here. We just mention that the Monte Carlo simulation
program uses a semiclassical description of electron space
motion and quantum-mechanical description of spin dynamics.
A spin conservation condition was used for electrons elasti-
cally scattered from system boundaries. Generally, all obtained
Monte Carlo simulation results are in perfect quantitative
agreement with our analytical predictions thus confirming
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our analytical theory of spin relaxation in finite-size systems
presented in the above section. A comparison of selected
analytical and numerical curves is given in Fig. 4.

IV. DISCUSSION AND CONCLUSION

Basically, the whole process of homogeneous spin relax-
ation in 2D circles described by Eqs. (22) and (23) can be
separated into three main stages. This separation is appropriate
for the spin polarization in the central part of the circle at
aη � 3, when, as it follows from Fig. 2, the p0 pole is well
separated from all other poles. The first (initial) stage of spin
relaxation takes place at t � a2/(16D), where a2/(4D) is the
time it takes for an electron to diffusively propagate over a
distance a. During this stage, most of the electrons in the
circle’s center still do not “know about” the presence of the
boundary and, therefore, the spin relaxation occurs essentially
as in the bulk (according to the standard 2D D’yakonov-Perel’
spin relaxation theory). The existence of the first stage of spin
relaxation is intuitively clear and well seen in Fig. 4. However,
it is difficult to show analytically that Eqs. (22) and (23) reduce
to a single exponent at short times since many terms in the sums
of Eqs. (22) and (23) play a role during this stage.

In the second stage of spin relaxation, when a2/(16D) �
t � 4/(|p1|Dη2), several exponentially decaying terms play
the main role in Eqs. (22) and (23). During this stage,
a slow-decaying spin polarization profile is established. In
such a profile, |Sr | increases with r as we demonstrate in
Fig. 3. Figure 4 shows that at aη = 1 the second stage of
spin relaxation is relatively short. For this combination of
parameters, the initial fast bulk-type decay of spin polarization
(first stage) monotonically transforms into the long-time slow
spin polarization decay (third stage). When aη = 2, the second
stage of spin relaxation is longer and exhibits a local maxima of
Sz. It is known that the electron spin polarization relaxes slower
near sample boundaries than in the bulk.23 Therefore, the local
maxima of spin polarization can be associated with diffusion

FIG. 3. (Color online) Radial distributions of Sr and Sz compo-
nents of spin polarization at different moments of time. Here, the
time is measured in units of characteristic bulk spin relaxation time
ts = (Dη2)−1. This plot was obtained at aη = 1.

η τ

η

τ

η

FIG. 4. (Color online) Time dependence of Sz component of
spin polarization at r = 0 obtained using Eq. (22) and Monte Carlo
calculations. The dashed line corresponds to the usual D’yakonov-
Perel’ relaxation in infinite 2D systems. This plot was obtained using
the parameter value ηl = 0.1.

of stronger spin polarization from the boundary regions to the
circle’s center.

The third stage of spin relaxation is a slow single-exponent
decay of the spin polarization profile established during the
second stage. This process occurs at long times, namely, when
4/(|p1|Dη2) � t . The analytical expressions describing the
shape of the slow-decaying spin polarization profile can be
easily derived from Eqs. (22) and (23) in the long-time limit
when only p0 exponential term is important. Explicitly, in the
third stage of spin relaxation process, Eqs. (22) and (23) can
be reduced to

Sz(r,t) = A(r)e−|p0|Dη2t , (24)

Sr (r,t) = B(r)e−|p0|Dη2t . (25)

Here, the functions A(r) and B(r) describe the radial depen-
dence of spin polarization components; their forms can be
straightforwardly inferred from Eqs. (22) and (23). The value
of p0 is determined from Eq. (19). Asymptotically, p0 is given
by Eq. (21). All three stages of spin relaxation can be easily
distinguished in Fig. 4.

In summary, we have found an analytical solution for
the problem of electron spin relaxation in the circle in the
diffusive electron transport regime. It is shown that a small
but nonvanishing spin relaxation exists even in small systems
at long times. Consequently, it is not possible to completely
eliminate the electron spin relaxation by reducing the system
size (remaining in the diffusive transport regime), although
the relaxation rate is dramatically suppressed in small-size
systems. Basically, the spin relaxation process can be separated
into three stages including an initial region of fast bulk-type
relaxation, a transition region where the relaxation is described
by a combination of several exponentially decaying functions
and a region of slow exponential decay at long times. Our
results can be easily verified experimentally.
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