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Topological classification of interaction-driven spin pumps
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When adiabatically varied in time, certain one-dimensional band insulators allow for the quantized noiseless
pumping of spin even in the presence of strong spin-orbit scattering. These spin pumps are closely related to
the quantum spin Hall system, and their properties are protected by a time-reversal restriction on the pumping
cycle. In this paper we study pumps formed of one-dimensional insulators with a time-reversal restriction on the
pumping cycle and a bulk energy gap which arises due to interactions. We find that the correlated gapped phase
can lead to novel pumping properties. In particular, systems with d different ground states can give rise to d + 1
different classes of spin pumps, including a trivial class which does not pump quantized spin and d nontrivial
classes allowing for the pumping of quantized spin h̄/n on average per cycle, where 1 � n � d . We discuss an
example of a spin pump that transfers an average of spin h̄/2 without transferring charge.
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I. INTRODUCTION

Finding ways to manipulate individual charges or spins at
zero external bias, the idea that lies at the essence of pumping,
holds promise for numerous applications. In a seminal work,
Thouless observed that certain band insulators allow for the
adiabatic pumping of quantized charge.1 Transcending its
relevance for practical applications, this observation sheds
light on transport properties found in other systems. Notably,
Laughlin’s argument for the quantization of Hall conductance2

can be formulated in terms of a quantized charge pump.3 In
accordance with the quantum Hall system, the adiabatic charge
pump formed of a band insulator can be characterized by a Z
topological invariant, which determines the quantized charge
pumped in one cycle.

These ideas have found a recent extension to spin pumps
with the discovery of the quantum spin Hall effect in time-
reversal invariant systems.4 In analogy to the quantum Hall
state, it is possible to gain insight into the spin Hall state
by studying a pump formed by placing the two-dimensional
system on a cylinder with a circumference of a single unit
cell and threading it with a magnetic flux which is varied
in time.1,3 Time-reversal symmetry of the two-dimensional
Hamiltonian imposes a time-reversal restriction on the pump-
ing cycle.4 Similarly to its two-dimensional analog, spin
pumps with a time-reversal restriction on their pumping cycle
are characterized by a Z2 topological invariant. The nontrivial
class of pumps allows for the symmetry-protected pumping
of quantized spin, even in the presence of strong spin-orbit
scattering.5 Following the paradigm of the fractional quantum
Hall effect,6–9 a natural yet challenging question arises: can
interactions give rise to spin pumping properties that cannot
be found in noninteracting pumps?

In this paper we study the topological classification of spin
pumps consisting of a family of one-dimensional insulators in
which the bulk gap arises due to electron-electron interactions.
Our classification is made with respect to the observable
pumping properties of pumps that are weakly coupled to
leads, not on the structure of the bulk insulating state. To this
extent, the study of pumps based on their scattering matrix
provides a powerful tool that allows one to obtain information
on the strongly correlated system based on the phase shift

acquired by the noninteracting scattering states. We find that
the number of classes in the correlated system is larger than in
the noninteracting case if the system has d different many-body
ground states. In particular, a spin pump with d ground states
gives rise to d + 1 distinct classes which exhibit different
pumping properties: For a weakly coupled pump, these are
a trivial class, which does not pump quantized spin, and d

nontrivial classes. The nontrivial classes include an integer
spin pump that allows for the pumping of quantized spin
h̄ during a cycle, as well as d − 1 “fractional” spin pumps
that allow for the average pumping of quantized spin h̄/n

with 1 < n � d per cycle. We discuss an example of a pump
that transfers an average of spin h̄/2 during a pumping cycle,
without transferring charge.

II. Z2 CLASSIFICATION OF NONINTERACTING
SPIN PUMPS

To set the stage, we briefly review the Z2 classification of
noninteracting spin pumps. We then show that this classifica-
tion is naturally extended to interacting systems. We consider
a family of one-dimensional Hamiltonians with a bulk energy
gap that depends continuously on a cyclic pumping parameter
t and satisfy

H (t + T ) = H (t), H (−t) = �H (t)�−1, (1)

where � is the time-reversal operator. We assume that H (t)
does not possess any additional discrete symmetries. Due to the
time-reversal restriction (1), such a system cannot pump charge
but it may pump spin. These pumps are related to quantum spin
Hall systems (class AII in the classification of Ref. 10) upon
placing the two-dimensional system on a cylinder threaded
by magnetic flux. [This connection becomes evident upon the
identification (kx,ky) → (kx,t).4]

When coupling the system to one-dimensional noninteract-
ing leads, the transport properties of the open system at time
t are determined from the scattering matrix. Provided that the
system’s size exceeds the attenuation length associated with
the bulk energy gap, the scattering matrix decouples into two
unitary 2 × 2 reflection matrices Rα , for left and right leads
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α = L/R, respectively. The average spin injected into lead α

during the pumping cycle,11

�Sα = h̄

2π

∫ T

0
dt Im tr([dRα/dt]R†

α �σ ), (2)

is invariant under a U(1) gauge transformation and depends
only on the particle-hole symmetric SU(2) = U(2)/U(1) � S3

part of the reflection matrix, denoted by R̃, where we have
dropped the lead index α for brevity. Hence, the pumping
cycle can be visualized as a loop which R̃(t) forms on the
three sphere S3.

The symmetry constraints (1) lead to similar constraints on
the reflection matrix

R̃(t) = σ2R̃T (−t)σ2, R̃(t + T ) = R̃(t). (3)

These constraints ensure the existence of two time-reversal
invariant moments (TRIM) t1 = 0 and t2 = T/2, at which
R̃(ti) = ±1, which corresponds to the occurrence or absence
of a pair of resonances that occur precisely at the TRIM
in the presence of particle-hole symmetry, which fixes the
U(1) part of R to be unity.12 [For a generic U(1) phase, the
pair is symmetrically split around the TRIM and related by
time reversal.] Following Ref. 5, the parity of resonance pairs
around the TRIM defines a Z2 index:

R̃(t1)R̃(t2) = ±1z2 . (4)

Any loop R̃(t) on the three sphere characterized by z2 = 0
can be contracted onto a single point and, hence, corresponds
to a trivial pump. Alternatively, paths with z2 = 1 cannot be
contracted.5

III. GENERALIZATION TO INTERACTING SYSTEMS

Extending the considerations presented above to systems
in which the gap arises due to many-body interactions
requires that the description of transport in terms of a unitary
scattering matrix remains meaningful. As interactions may
lead to inelastic scattering, the unitarity of the scattering
matrix is not ascertained in general. In the presence of a
finite energy gap � for bulk excitations, bulk charge and
spin excitations are absent at sufficiently low temperatures
β−1 � �. Nonetheless, inelastic scattering can still arise
due to ground-state degeneracies or mid-gap states at the
edge of the wire. Inelastic scattering involving the excitation
of boundary states at energy ε < � are suppressed in the
weak-coupling limit 	 � ε. A more subtle effect may arise
in the presence of (Kramers) degenerate edge states, where a
Kondo effect may develop. For the purpose of classification,
we may restrict the discussion to degeneracies protected by
time-reversal symmetry. Such degenerate states generically
occur at a finite distance μ from the Fermi energy in the leads
if there are no additional discrete symmetries (such as particle-
hole symmetry). This leads to an exponentially small Kondo
temperature β−1

K ∼ e−μ/	 .13 In the perturbative limit, βK � β,
transitions between the Kramers degenerate pair occur at a
rate 	2/(μ2ν0) � 	, where ν0 is the density of states in the
lead. Therefore, in order to avoid inelastic scattering from
transitions between boundary states, we restrict our analysis
throughout this work to weak coupling, and operate the pump
in the limit β−1

K ,	2/(μ2ν0) � h̄/β, h̄/T � 	 � �, where

a scattering-matrix description is appropriate. [We remark
that inelastic scattering may also occur due to transitions
between (nearly degenerate) bulk ground states. However, the
typical transition rates for such processes are exponentially
smaller than the edge excitations due to orthogonality of the
many-body ground states. This is a manifestation of the fact
that in 1 + 1 dimensions it is possible to spontaneously break
a discrete symmetry.14 Hence, inelastic scattering arising from
bulk degeneracies is absent in the above limit.]

We note that while a finite chemical potential is imperative
to ensure the scattering matrix remains unitary, for the purpose
of classification, we need only consider the particle-hole
symmetric part of the reflection matrix, R̃.5 Hence, similar
to their noninteracting counterparts, interacting spin pumps
may be classified by the topology of the loop which R̃(t)
forms on S3.

While the existence of a bulk energy gap ensures the
description in terms of a reflection matrix remains valid, its
many-body nature gives rise to a richer variety of classes.
Notably, interactions can change the Fermi sea of noninter-
acting electrons into multiple many-particle ground states.
The (near) degeneracy of these states is not protected by
symmetry, and is therefore split by small perturbations, such
as the coupling to the leads, unlike in non-Abelian systems,
which have a topologically nontrivial H (t) at all times. In
the following we show that multiple ground states may alter
both the periodicity and the time-reversal restriction given in
Eq. (3), thus modifying the classification of pumps.

To understand the implication of d nearly degenerate
ground states, we note that the ground state of the macroscopic
system spontaneously breaks the symmetry of the Hamil-
tonian. The reflection matrix will therefore depend on the
specific ground state φa that the system is prepared in at the
beginning of the cycle, R̃a(t) = R̃[φa(t)], typically the true
ground state. The periodicity of the Hamiltonian ensures that
the ensemble of ground states {φa}a=1,...,d is restored after a
period T , but the system need not return to the ground state
φa it was in at t = 0 (as discussed above, relaxation to the
true ground state occurs at times exponentially larger than T ).
There are d possible scenarios: After a full cycle of the pump,
the system may either return to the original ground state φa ,
or it may evolve to one of the d − 1 other ground states. The
latter scenario will result in an extended periodicity of the
pump. In particular, the reflection matrix R̃a(t) can have d

different periods R̃a(t + nT ) = R̃a(t), where 1 � n � d. (In
the presence of a symmetry that relates the ground states to
each other, n would typically divide d, however, in the absence
of such a symmetry, there is no fundamental reason why this
should be the case.)

Due to the multiplicity of the ground state, the time-
reversal restriction (1) applies to the ensemble of ground
states only; it does not directly imply the relation (3) on the
reflection matrix R̃a of a particular physical realization. To
find the corresponding time-reversal restriction of a general
nT periodic pump, we look at all the TRIM of the Hamiltonian
during the extended cycle, tk = kT /2 for 0 � k � 2n. If the
ground state is not time-reversal symmetric at any of these
points φa(tk) �= �φa(tk)�−1, the reflection matrix does not
have any restrictions on the pumping cycle arising from
time-reversal symmetry. Such a loop R̃a(t) can be contracted
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FIG. 1. (Color online) The three different classes of pumps for
systems with two ground states corresponding to (left to right) the
trivial class with z3 = n × 0 = 0, the integer pump with z3 = 1 × 1,
and the fractional pump with z3 = 2 × 1. Here, the upper circles
depict the extended cycle in parameter space, and for illustration
purposes we restrict the reflection matrix to the two-sphere.

onto a single point, and is therefore in the trivial class
of pumps. Conversely, if there exists a point tk ≡ 0 at
which φa(0) = �φa(0)�−1, then φa(−t) = �φa(t)�−1 and
consequently, R̃a(−t) = �R̃a(t)�−1 for all t .15 Combined
with the extended periodicity nT of the reflection matrix,
this ensures that the loop R̃a(t) is restricted by exactly two
TRIM, ti = 0,nT /2.16 The existence of two TRIM allows
one to distinguish two classes of loops for each nT -periodic
pump, Eq. (4): A trivial pump which forms a loop that can
be contracted to a single point, and a non-trivial pump that
completes an uncontractable loop after n cycles of the pump.
Hence, spin pumps with a d ground states can be classified by
a Zd+1

17 index

zd+1 = n z2 ∈ {0,1, . . . ,d}, (5)

with 1 � n � d and z2 = 0,1. This index discerns a trivial
class of pumps that do not pump quantized spin, from d

nontrivial classes (Fig. 1).

IV. PUMPING OF QUANTIZED SPIN

The Zd+1 classification of the reflection matrix (5) has a
direct effect on the spin pumped during a cycle. In the weak-
coupling limit, the d nontrivial pumps characterized by z2 = 1
allow, in contrast to their trivial counterpart, for the noiseless
pumping of quantized spin, even in the absence of a fixed
spin quantization axis during the entire pumping cycle.5 The
extended periodicity nT , on the other hand, determines the
averaged spin that is pumped during a cycle.

The class of nontrivial pumps that traverse a single
resonance during the extended pumping cycle nT can be
described by a rotation around a fixed axis �eϕ(ti):5

R̃a(t) = eiϕ(t)�eϕ (ti )·�σ . (6)

Here ti = 0 or nT/2 is the TRIM at which the resonance
occurs and �σ are the spin Pauli matrices. Consequently, the
average spin per cycle T injected into lead α by these pumps
is a fraction 1/n of the total spin pumped in the noninteracting
case

〈�S〉T = h̄

2πn
�eϕ(ti)

∫ nT

0
dt ϕ̇(t) = h̄

n
�eϕ(ti). (7)

Conversely, a trivial pump either remains insulating during the
entire cycle, or traverses two resonances at the TRIM. In the

weak-coupling limit, the former group can be approximated by
a constant reflection matrix R̃a(t) ≈ 1, and thus does not pump
spin, while the latter cannot be described by a time-independent
spin direction that would lead to a quantized spin pumped. The
Zd+1 classification (5) of interacting pumps together with the
average fractional spin pumped during a cycle (7) constitute
the main result of this paper.

The extended periodicity of the pumping cycle in the
fractional spin pumps is reminiscent of the Aharonov-Bohm
periodicity in a ring made of a material in the fractional
quantum Hall state at ν = 1/3: The ground state of the ν = 1/3
is (nearly) threefold degenerate. Threading the ring by a single
flux quantum φ0 = h/e interchanges these ground states and
the system returns to its initial state after the flux changes by
3φ0, giving rise to an Aharonov-Bohm periodicity of 3φ0.6–9

We note that pumps constructed out of different physical
systems with different ground-state degeneracies but with the
same periodicity nT pump the same average spin per cycle.
This is related to the observation that topological orders in
fractional quantum Hall states cannot be characterized by the
Hall conductance alone.

V. EXAMPLE

As an example of a spin pump characterized by z3 = 2,
we study the one-dimensional system with a half-filled energy
band where interactions give rise to a bulk gap,

Hint =
∑

i

Uni,↑ni,↓ + [U/2 − δV (t)]nini+1

+ UH (t)(ni,↓ψ
†
i↑ψi+1,↑ − ni,↑ψ

†
i↓ψi+1,↓ + H.c.). (8)

Here δV (t) = δV cos (2πt/T ), UH (t) = UH sin(2πt/T ) set
the strength of the time-dependent interaction terms in the
Hamiltonian. The ground state of this system adiabatically
switches between spin- and charge-ordered insulating and
interaction-driven dimerized phases (see Fig. 2). For UH = 0

ρ(x)

0

T/4

T/2

3T/4

T

5T/4

3T/2

7T/4

2T

x

FIG. 2. An interaction-driven pump described by the Hamiltonian
in Eq. (8) characterized by a z3 = 2 index. The two ground states at
t = 0 and t = T can be obtained from one another by creating a
single spin flip in the bulk which then propagates to the edges of
the wire. The system returns to its original state after two pumping
cycles. After a single pumping cycle the spin-density waves for the
the two orientations have shifted by half a wavelength, corresponding
to the transfer of 1/2[h̄/2 − (−h̄/2)] spin from the left to the right
edge of the system, without transferring charge.
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and δV (t) > 0 the electrons occupy different sites and the
system is in the spin-density wave (SDW) ground state. At
δV (t) < 0 the electrons pair up on the same site resulting in a
charge-density wave (CDW) ground state. The third interaction
term UH breaks time-reversal symmetry and can, e.g., be
generated in the presence of a staggered magnetic field and
alternating bond strength.18 Similar models have been studied
in Refs. 19–21.

Interacting systems in one dimension are conveniently
described in bosonization formalism. Here, the opening of
the excitation gap arises due to the pinning of the bosonic
degrees of freedom. In our example the pinning of spin degree
of freedom φσ follows from the bosonized expression for Hint,

Hint[φσ ] ∼ δV (t) cos 4φσ + UH (t) sin 4φσ . (9)

The four multiples of the bosonic phase 4φσ reflect the
nature of the gap arising due to interaction terms containing
four fermion operators. This results in a doubled periodicity
compared to single-particle gapped phases and consequently,
two ground states. For δV = UH these correspond to the
pinning of the bulk phase at

2φ(1,2)
σ, min(t) = ±π/2 + πt/T . (10)

These two ground states are interchanged after one period of
the pump, T , and the system corresponding to a particular
ground state is recovered after 2T . In addition to the bulk
pinning, weak coupling to the leads pin the bosonic phase at
the edge of the wire. This single-particle potential contains two
multiples of the bosonic phase 2φσ . Due to the time depen-
dence of the bulk pinning potential, Eq. (10), the phase 2φσ

changes by 2π during the extended cycle, 2T , while the
boundary pinning remains unchanged. As a result, during the
course of the extended cycle, 2T , the bosonic phase develops
a single kink close to the edge, giving rise to a resonance in
the tunneling density of states at the edge of the wire.22

Figure 2 illustrates the ground state of the system described
by Eq. (8). Due to the ground-state multiplicity, the system
returns to its original state after two pumping cycles. (A similar
observation was made in Ref. 21.) After a single pumping cycle
the spin-density waves for the two orientations have shifted by
half a wavelength, resulting in the transfer of a spin of h̄/2 from
the left to the right edge of the system, without transferring
charge.

VI. SUMMARY

We have studied the topological classification of one-
dimensional insulators with a time-reversal restriction on the
pumping cycle, in which the bulk excitation gap arises due
to electron-electron interaction. Our classification holds in
the weak-coupling limit, where common sources of inelastic
scattering can by avoided and a description in terms of a unitary
scattering matrix is possible. We found that a system with
d many-body ground states can give rise to d + 1 different
classes of spin pumps. These include a trivial spin pump,
which does not pump quantized spin, a quantized integer
spin pump, and d − 1 fractional spin pumps that allow for
the average pumping of fractional spin h̄/n through the
insulator. Recent works show that interactions may lead to
new fractional topological insulators in the presence of a
ground-state degeneracy.23,24 The relation of our findings to
the existence of a fractional quantum spin Hall state remains
an interesting question.
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