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Quantum control of electron spins in the two-dimensional electron gas of a
CdTe quantum well with a pair of Raman-resonant phase-locked laser pulses
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We demonstrated optical spin control of a two-dimensional electron gas in a modulation-doped CdTe quantum
well by driving a spin-flip Raman transition with a pair of phase-locked laser pulses. In contrast to single-pulse
optical spin control, which features a fixed spin-rotation axis, manipulation of the initial relative phase of the
pulse pair enables us to control the axis of the optical spin rotation. We show that the Raman pulse pair acts like
an effective microwave field, mapping the relative optical phase onto the phase of the electron spin polarization
and making possible ultrafast, all-optical, and full quantum control of the electron spins.
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I. INTRODUCTION

Full quantum control of individual electron spins and spin
ensembles is important for spin-based quantum information
processing. Full quantum control can be achieved by driving
the transition between the two spin states with a microwave
pulse, as demonstrated in gate-defined quantum dots (QDs)
fabricated from a two-dimensional electron gas (2DEG).1,2

Quantum control of electron spins can also be realized via
coherent optical interactions. Optical spin control can take ad-
vantage of ultrafast laser technologies to enable spin rotations
in a picosecond timescale. Coherent optical interactions can
also be exploited for the generation of spin-photon quantum
entanglement in atomic as well as solid-state spin systems.3–6

Optical spin control using ultrafast laser pulses has been
demonstrated in various semiconductor systems7–13 and also
in trapped ions.14 In these experiments, individual off-resonant
laser pulses act like an effective direct current (DC) magnetic
field along the optical axis, inducing a spin rotation about the
fixed axis. Full quantum control of spins, however, requires
spin rotation about two orthogonal axes.15 For spin rotations
about an axis orthogonal to the optical axis, recent studies have
exploited spin precession about an external magnetic field9,12

and have also attempted the use of additional laser pulses to
induce a geometrical phase shift.16,17

An all-optical approach to achieve full quantum control
of electron spins involves driving a spin-flip Raman transi-
tion with a pair of Raman-resonant and phase-locked laser
pulses that are detuned from the respective dipole optical
transitions.18 Here, we report the first experimental demon-
stration of this approach using a 2DEG in a modulation-doped
CdTe quantum well (QW). In comparison with single-pulse
optical spin control, a Raman pulse pair acts like an effective
microwave pulse with a phase given by the relative optical
phase of the pulse pair. By manipulating the initial relative
phase of the pulse pair with an optical pulse-shaping technique,
we are able to control the axis of optical spin rotation.
We show that the phase-locked pulse pair maps the relative
optical phase directly onto the phase of the electron spin
polarization, enabling all-optical, full quantum control of
the electron spins. The experimental results, including Rabi
oscillations of electron spins in the 2DEG, are well described
by a theoretical analysis based on optical Bloch equations
(OBEs).

Among various semiconductor spin systems, optical spin
control in 2DEGs is especially challenging. 2DEGs do not
feature atomic-like, spectrally sharp optical transitions. In
addition to the rapid dipole decoherence, coherent optical pro-
cesses in 2DEGs are also complicated by inherent manybody
interactions. The successful experimental demonstration of the
Raman pulse pair approach in a 2DEG indicates the feasibility
of extending the all-optical spin control to systems, such
as gate-defined QDs, that do not feature atomic-like optical
transitions.

II. PHYSICAL MECHANISMS OF OPTICAL
SPIN ROTATION

The basic physical mechanism of optical spin rotations and
the difference between the Raman pulse pair approach and the
single-pulse approach can be elucidated by an effective Hamil-
tonian for spin-flip Raman transitions. Figure 1(a) shows two
spin states, |+〉 and |−〉, with frequency separation ωB , cou-
pling to an excited state, |e〉, via two dipole optical transitions.
The two transitions feature the same polarization selection rule
such that an individual optical pulse can couple to both dipole
transitions. In the limit that the excited state dynamics adiabat-
ically follow the external optical fields as well as the dynamics
of the two spin states, the three-level system can be reduced to
a two-level spin system driven by effective magnetic fields.18

The effective Hamiltonian of the two-level system after the
adiabatic elimination of the excited state dynamics is given by:

Heff = h̄ωB

2
σz − h̄�R cos(δt + ϕ)σx − μ2

(
E2

1 + E2
2

)
4h̄�

σx,

(1)

where the two incident optical fields feature nearly equal
amplitudes, E1 and E2, a frequency difference of δ, and an
initial relative phase of φ. � is the average detuning of the
optical fields from the dipole transitions [see Fig. 1(a)], and
�R = μ2E1E2/(2h̄2�) is the effective Rabi frequency for the
spin-flip Raman transition. For simplicity, we assume that the
two dipole transitions have the same dipole matrix element, μ.

Optical spin rotations can be understood in terms of the
effects of effective DC and alternating current (AC) magnetic
fields. The third term in Eq. (1) results from individual laser
pulses. This term corresponds to spin rotations induced by a
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FIG. 1. (Color online) (a) A three-level system interacting with a
Raman pulse pair and the equivalent effective two-level spin system
under the adiabatic approximation. (b) and (c) Trajectory of a Bloch
spin vector initially along the −z-axis driven by a Raman pulse pair
with θ = π . The trajectory is calculated with the effective two-level
Hamiltonian in Eq. (1). Effects of the effective DC magnetic field are
included in (c), but not in (b).

DC magnetic field along the x-axis, as extensively investigated
in earlier studies.7–14 The second term in Eq. (1) results from
the Raman pulse pair. This term corresponds to spin-rotations
induced by an AC magnetic field or, equivalently, a microwave
with a phase given by the relative optical phase of the Raman
pulse pair. As shown in Eq. (1), the resonance condition for
the spin-flip Raman transition is |δ| = ωB . Spectrally sharp

spin-flip Raman resonances have been observed in frequency-
domain coherent Raman experiments in GaAs QWs19,20 and
also in CdTe QWs.21 Note that for a �-type three-level system,
where the two dipole transitions have orthogonal polarization
selection rules, the effective AC magnetic field remains nearly
the same as in Eq. (1) (see the Appendix).

III. EXPERIMENTAL RESULTS

The sample used in our studies consists of 10 periods of
10 nm CdTe wells and 45 nm Cd0.84Zn0.16Te barriers.22 The
modulation doping density is estimated to be 3 × 1010 cm−2. In
the presence of an in-plane external magnetic field (the Voigt
geometry), a three-level system as shown in Fig. 1(a) can be
formed in the 2DEG, with the excited state being a trion state,
for which an exciton is bound to an electron.22 As illustrated in
Fig. 2(a), we define the direction of the external magnetic field
as the z-axis and the normal of the QW plane as the x-axis.
For our experimental studies, σ+ circularly polarized Raman
pulse pairs couple the two electron spin states to a trion state
that contains a heavy-hole with Jx = 3/2 and two electrons
with opposite spins, as shown schematically in Fig. 2(a). At
low temperature, the trions in the CdTe QW sample feature an
absorption line width of 1.6 meV (0.8 nm) and a binding energy
of 2.5 meV (1.25 nm), as shown in Fig. 2(b). Experimental
studies presented here were all carried out at T = 5 K and B =
5T in a superconducting magnetic cryostat, unless otherwise
specified. Under these conditions, kBT /(h̄ωB) = 0.8, leading
to a small but net spin polarization along the z-axis, which we
use for the experimental demonstration of optical spin control.
Note that in addition to the Voigt geometry, a three-level system
involving the two electron spin states can also be formed for
the light-hole transitions in the Faraday geometry, for which
the external magnetic field is normal to the QW plane.23,24
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FIG. 2. (Color online) (a) Experimental geometry and schematic of the three-level system used, as discussed in the text. (b) Exciton and
trion absorption spectrum at 5 K, along with the spectrum of a Raman pulse pair. (c) Schematic illustrating the use of a grating-based optical
pulse shaper and a spatial light modulator to generate phase-locked Raman pulse pairs.
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FIG. 3. (Color online) (a) Spin polarization projected along the
x-axis as a function of the delay between the probe and the Raman
pulse pair, as the initial relative phase, φ, of the pulse pair is stepped
incrementally from −2π to 2π . (b) The spin beats obtained with a π

phase difference in φ are π out of phase. (c) Theoretically calculated
spin polarization projected along the x-axis, with φ varied from −2π

to 2π .

We used optical pulse shaping to generate phased-locked
pulse pairs. As shown schematically in Fig. 2(c), the output
from a picosecond mode-locked Ti:Sapphire laser with a rep-
etition rate of 80 MHz is sent through a grating-based optical
pulse shaper. For our experimental setup, a 2200 line/mm
grating, a cylindrical lens with a focal length of 1m, and a
phase-only liquid-crystal spatial light modulator (LCSLM)
from Holoeye, Inc., are used. The LCSLM diffracts two
components of the input spectrum toward the top of the
diffraction grating. The rest of the spectrum is terminated at
a beam stop (not shown in the diagram). The two diffracted
spectral components are then collimated and combined by the
lens and the diffraction grating into a single output beam. The
initial phase difference of the two pulses in the pulse pair is
set by the optical path length of one pulse relative to the other.
The spectral width, spectral separation, intensity, and relative
phase of the two optical pulses can all be controlled with the
programmable LCSLM. Figure 2(b) shows the spectrum of
a Raman pulse pair used in the spin rotation experiment. The
two laser pulses feature nearly the same intensity and a spectral
width of 0.1 nm (corresponding to a duration of approximately
15 ps). The spectral separation of the two pulses (0.25 nm or
0.5 meV) is set to match the spin splitting. The spot size of
the Raman pulse pair on the sample is estimated to be 5 ×
10−5 cm2. The two pulses in the pulse pair travel through
nearly identical paths, avoiding relative phase fluctuations

in the propagation process. Note that off-resonant spectrally
shaped laser pulses, instead of phase-locked pulse pairs, have
been used in an earlier study to manipulate electron spins in
CdTe QWs.25

We used the Raman pulse pair to directly excite the electron
spin system. Figure 3(a) shows the dynamics of Sx, the electron
spin polarization projected along the x-axis, as the initial
relative phase of the pulse pair, φ, is stepped from −2π to
2π . For this experiment, Raman pulse pairs with θ near π/2
were detuned 1 nm below the trion resonance. The projection
of the electron spin polarization along the x-axis (the growth
axis) was measured via differential transmission with a probe
pulse that is 2 ps in duration and is resonant with the trion
transition. The change in the transmission of the probe induced
by the precessing spin polarization was detected with a lock-in
amplifier as a function of the delay between the probe and the
center of the Raman pulse pair. The spectral line width of
the circularly polarized probe pulse is much greater than the
electron Zeeman splitting, enabling the measurement of the
electron spin polarization projected along the x-axis.

The spin dynamics in Fig. 3(a) feature a Larmor spin
precession about the external magnetic field with a period of
8 ps, corresponding to an electron spin splitting of 0.5 meV.
As shown in Fig. 3(a), the phase of the spin beats varies
linearly with φ, while the amplitude of the spin beats remains
independent of φ. Figure 3(b) highlights two traces of the spin
beats, which are π out of phase for a π phase difference in φ.

Figures 4(a) and 4(b) show the dynamics of Sx as a function
of the average power of the Raman pulse pair, with a fixed
initial relative phase, obtained at a detuning of � = 1.05 nm
and 1.7 nm, respectively. Figure 4(c) plots the amplitude of
the spin beats for the fourth period of the spin beats (counting
from the center of the Raman pulse pair) as a function of
the average power obtained at three different detunings. The
power dependence of the beat amplitude shows damped Rabi
oscillations of the electron spins. In Fig. 4(c), the average
power is normalized to the detuning, demonstrating that
the effective pulse area associated with the Rabi oscillation
is inversely proportional to the detuning. Note that optical
excitations of trions or excitons in a 2DEG can lead to a
large increase in the spin as well as dipole decoherence
rates.26,27 As shown in Fig. 4(c), the fidelity of the optical
spin rotation deteriorates with increasing optical power, and
especially when the Raman pulse pair is tuned close to the trion
resonance. The fidelity can be further improved with greater
detuning from respective dipole transitions and with the use of
longer laser pulses.

IV. DISCUSSION

For a detailed theoretical analysis, we used the OBEs for
the three-level system without the adiabatic approximation,
where experimentally determined parameters including dipole
and spin decoherence times (1 ps and 0.5 ns, respectively),
spin splitting, effective pulse area, and pulse duration are used.
For simplicity, effects of inhomogeneous broadening are not
included. Figure 3(c) plots the calculated Sx as a function of
time, as φ is varied from −2π to 2π . The calculated spin
dynamics agree well with those in Fig. 3(a). Theoretically,
the effective AC magnetic field, which is equivalent to a
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FIG. 4. (Color online) (a) and (b) Spin polarization projected
along the x-axis as a function of the delay between the probe and
the Raman pulse pair, with increasing average power for the Raman
pulse pair and with � = 1.05 nm for (a) and 1.7 nm for (b). (c) The
amplitude of the spin beats for the fourth period as a function of the
average power of the Raman pulse pair normalized to the detuning,
with the detuning indicated in the figure. (d) Theoretically calculated
spin polarization projected along the x-axis, with increasing effective
pulse area.

microwave with its phase given by the relative optical phase,
induces a spin polarization in the x-y plane characterized by
the density matrix element,

ρ+−(t) ∝ �N exp[−i(ωBt + ϕ)], (2)

where �N is the initial population difference between the two
spin states. The dependence of the spin-beat phase on φ shown
in Fig. 3(a) demonstrates that the phase-locked pulse pair maps
the relative optical phase onto the phase of the electron spin
polarization, as expected from Eq. (2).

The mapping between the relative optical phase and the
spin beat phase as shown in Fig. 3(a) is a direct manifestation
showing that the relative optical phase controls the axis of
optical spin rotation. Within the rotating-wave approximation
(RWA) for the spin-flip transition, the spin rotation induced

by a microwave is governed by the Bloch equation in the
precessing frame of the electron spins (effects of decay
processes are not included), ds/dt = s × �, where s is the
Bloch vector for the electron spins in the precessing frame,
and � = (�Rcos φ, �Rsin φ, 0), which determines both the
axis and rate of the spin rotation. A microwave pulse induces
a spin rotation about an axis along (cos φ, sin φ, 0), with a
rotation angle given by the effective pulse area θ = ∫

�R(t)dt .
In this case, a spin flip from |−〉 to |+〉 corresponds to a π

spin rotation about an axis set by the initial relative optical
phase, along with spin precession about the z-axis, as shown
in Fig. 1(b). In general, for a spin polarization initially along the
z-axis, a microwave pulse induces a spin polarization in the
x-y plane by rotating or tipping the polarization away from the
z-axis. The phase of the induced polarization in the x-y plane is
determined by φ and the subsequent spin precessing process,
as indicated in Eq. (2).

Spin rotations induced by a Raman pulse pair are also
influenced by the effective DC magnetic field that results from
individual laser pulses. In the absence of the DC magnetic field,
a Raman pulse pair with θ = π rotates a Bloch vector initially
along the −z axis to the +z-axis, at which spin precession stops.
Figure 4(b), however, shows that as θ goes through π , the spin
beat amplitude does not vanish, and furthermore the phase of
the spin beats varies gradually instead of flipping by π . Note
that these behaviors are not as prominent in Fig. 4(a) due to the
degradation of the spin-rotation fidelity at the relatively small
detuning. The non-vanishing spin beats and the gradual phase
variation of the spin beats near θ = π are caused by the DC
magnetic field. To illustrate these effects, we show in Fig. 1(c)
a calculated trajectory of a Bloch vector initially along the −z
axis driven by a Raman pulse pair with θ = π . The calculation
includes both the effective DC and AC fields in Eq. (1), but
it does not include effects of spin decoherence. The DC field
induces a spin rotation about the x-axis in the non-precessing
frame. As a result, the Bloch vector remains slightly away
from the z-axis and continues to precess after the passage of
the π pulse. Figure 4(d) shows the calculated Sx as a function
of time, as θ is varied from 0 to beyond 1.5π , for which the
OBEs for the three-level system were used. The calculated
spin dynamics reproduce all key features of the experimental
results in Fig. 4(b).

Note that the effective DC magnetic field does not lead
to decoherence and therefore does not degrade the fidelity
of the optical spin rotation. The effects of single-pulse spin
rotations can be compensated with a proper choice of two
Raman pulse pairs. In the limit that the electron spin splitting
far exceeds both the spin decoherence rate and the spectral
width of individual pulses in the pulse pair, effects of single-
pulse spin rotation become negligible.

Optical spin control with Raman pulse pairs can overcome
inherent limitations of the single-pulse approach. As discussed
earlier, Raman pulse pairs can enable all-optical, arbitrary
spin rotation. Perhaps equally important, the Raman pulse pair
approach can function with relatively long laser pulses, while
the efficient operation of the single-pulse approach requires the
use of laser pulses that have a short duration compared with
the spin precession period. For spin systems such as 2DEGs
or gate-defined QDs that do not feature atomic-like optical
transitions, the use of relatively long laser pulses in optical spin
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control is crucial in order to avoid strong optical excitations
that can lead to excessive dipole decoherence. In addition, the
ability to programmably manipulate Raman pulse pairs with
spectral pulse shaping also makes it possible to optimize the
spin rotation process with feedback control.28

V. CONCLUSION

In conclusion, we have successfully demonstrated the
optical control of electron spins in a 2DEG by driving a
spin-flip Raman transition with a pair of phase-locked laser
pulses. In comparison with the single-pulse approach, a
phase-locked Raman pulse pair behaves effectively like a
microwave pulse, with a phase given by the relative optical
phase, mapping the relative optical phase onto the phase of the
electron spin polarization. The Raman pulse pair approach can
overcome inherent limitations of the single-pulse approach,
opening up an avenue for ultrafast, all-optical, full quantum
control of electron spins and potentially extending optical spin
control to systems such as gate-defined QDs that do not feature
atomic-like optical transitions.
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APPENDIX

Here, the effective two-level Hamiltonian for spin-flip
Raman transitions is presented.

1. Introduction

Here, we derive the effective two-level Hamiltonian for a
spin-flip Raman transition in the limit of adiabatic approxima-
tion. For the three-system shown in Fig. A1, the two spin
states couple to the common excited state via two dipole
optical transitions. The Hamiltonian for this three-level system
interacting with two external optical fields can be written in
the form:

H =

⎛
⎜⎝

h̄ωe V+ V−
V ∗

+ h̄ωB/2 0

V ∗
− 0 −h̄ωB/2

⎞
⎟⎠ , (A1)

where V+ and V− are the matrix elements for the relevant
dipole optical interactions. No assumptions are made at this
point with respect to the polarization selection rule of the
dipole transition. In the rotating frame, the state vector of the
three-level system can be written as

|ψ(t)〉 = Ce exp(−iωt)|e〉 + C+|+〉 + C−|−〉, (A2)

+

−

e

ωB

eω

+

−

e

ωB

eω

FIG. A1. Schematic of a three-level system where the two lower
spin states couple to the common excited state via two dipole optical
transitions.

where ω = (ω1 + ω2)/2 is the average frequency of the two
external optical field. Within the rotating wave approximation,
the Schrödinger equation for the state vector is given by

ih̄
d

dt

⎛
⎜⎝

Ce

C+
C−

⎞
⎟⎠ = h̄

⎛
⎜⎝

� �+ �−
�∗

+ ωB/2 0

�∗
− 0 −ωB/2

⎞
⎟⎠

⎛
⎜⎝

Ce

C+
C−

⎞
⎟⎠ , (A3)

where � = ωe − ω is the average detuning for the dipole
transition, and we define V+ = h̄�+ exp(−iωt) and V− =
h̄�− exp(−iωt).

For sufficiently large �, the dynamics of the excited state
follow adiabatically the external optical fields as well as the
dynamics of the two lower-level spin states. Decoherence
related to the excited state can also become negligible. In this
adiabatic limit, we have

i
d

dt
Ce = �Ce + �+C+ + �−C− ≈ 0. (A4)

The three-level system can then be reduced effectively to a
two-level system,

ih̄
d

dt

(
C+
C−

)
= Heff

(
C+
C−

)
, (A5)

with an effective Hamiltonian given by

Heff = h̄

(
ωB

2 − |�+|2
�

−�∗
+�−
�

−�+�∗
−

�
−ωB

2 − |�−|2
�

)
, (A6)

where |�+|2 /� is the optical Stark shift induced by the
external fields.

2. Three-level system with orthogonal polarization
selection rules

For three-level systems where the two dipole transitions
have orthogonal polarization selection rules, two optical fields,
with amplitude E1 and E2 and frequency ω1 and ω2, couple to
two separate dipole transitions, respectively. In this case, we
have

�+ = μ+E1

2h̄
exp

(
− i

δt

2
− iφ

)
,

�− = μ−E2

2h̄
exp

(
− i

δt

2

)
, (A7)
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where μ+ and μ− are the respective dipole matrix elements
(assumed to be real), φ is the initial phase difference between
the two optical fields, and δ = ω1 − ω2. The effective two-
level Hamiltonian is now given by

Heff = h̄

(
ωB

2 − |�+|2
�

−�R

2 exp[i(δt + φ)]

−�R

2 exp[−i(δt + φ)] −ωB

2 − |�−|2
�

)
,

(A8)

where �R = μ+μ−E1E2/(2h̄2�) is the effective Rabi fre-
quency for the spin-flip Raman transition. In the limit of equal
optical Stark shifts for the two spin states, the two optical fields
are equivalent to a microwave field with the phase determined
by the relative phase of the two optical fields.

3. Three-level system with same polarization selection rules

For three-level systems where the two dipole transitions
have the same polarization selection rules, each optical
field couples to both dipole transitions. In this case, we
have

�+ = −μ+
2h̄

[
E1 exp

(
δt

2
− iφ

)
+ E2 exp

(
i
δt

2

)]
(A9a)

and

�−=−μ−
2h̄

[
E1 exp

(
− i

δt

2
− iφ

)
+ E2 exp

(
i
δt

2

)]
.

(A9b)

The effective two-level Hamiltonian is now given by

Heff = h̄

(
ωB

2 − |�+|2
�

−�R cos(δt + φ)

−�R cos(δt + φ) −ωB

2 − |�−|2
�

)

+
(

0 −μ+μ−
4h̄2�

(E2
1 + E2

2)

−μ+μ−
4h̄2�

(E2
1 + E2

2) 0

)
.

(A10)

The second term in the Hamiltonian is due to the effects of
individual optical fields and corresponds effectively to a DC
magnetic field, leading to single-pulse spin rotation about the
optical axis.

In the limit that |δ| ≈ ωB , μ+ ≈ μ−, and ωB is large
compared with both the spectral bandwidth of the individual
laser pulse and the spin decoherence rate, the effects of the
individual laser fields become negligible, and the two external
fields are equivalent to a microwave field with the phase
determined by the relative optical phase of the two optical
fields, as is the case for three-level systems with orthogonal
polarization selection rules.
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