
PHYSICAL REVIEW B 84, 075305 (2011)

Charge inhomogeneities and transport in semiconductor heterostructures with a Mn δ-layer

Vikram Tripathi,1 Kusum Dhochak,1 B. A. Aronzon,2,3 V. V. Rylkov,2,3 A. B. Davydov,2 Bertrand Raquet,4

Michel Goiran,4 and K. I. Kugel3
1Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai 400005, India

2Russian Research Center “Kurchatov Institute”, Kurchatov Square 1, Moscow 123182, Russia
3Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Izhorskaya Street 13, Moscow 125412, Russia

4CNRS INSA UJF UPS, UPR 3228, Laboratoire National des Champs Magnétiques Intenses, Université de Toulouse,
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We study experimentally and theoretically the effects of disorder, nonlinear screening, and magnetism in
semiconductor heterostructures containing a δ-layer of Mn, where the charge carriers are confined within a
quantum well and hence both ferromagnetism and transport are two dimensional (2D) and differ qualitatively
from their bulk counterparts. Anomalies in the electrical resistance observed in both metallic and insulating
structures can be interpreted as a signature of significant ferromagnetic correlations. The insulating samples turn
out to be the most interesting as they can give us valuable insights into the mechanisms of ferromagnetism in
these heterostructures. At low charge carrier densities, we show how the interplay of disorder and nonlinear
screening can result in the organization of the carriers in the 2D transport channel into charge droplets separated
by insulating barriers. Based on such a droplet picture and including the effect of magnetic correlations, we
analyze the transport properties of this set of droplets, compare them with experimental data for insulating
samples, and find a good agreement between the model calculations and experiment. Our analysis shows that
the peak or shoulder-like features observed in the temperature dependence of resistance of 2D heterostructures
δ-doped by Mn can appear even in the absence of a phase transition at nonzero temperatures. Furthermore, the
anomaly can lie significantly below the mean-field Curie temperature TC. This is unlike the three-dimensional
case, where it lies close to the critical temperature T0, which is often not very far from TC . We also discuss the
consequences of our description for understanding the mechanisms of ferromagnetism in the heterostructures
under study.
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I. INTRODUCTION

Dilute magnetic semiconductors (DMS), incorporating
semiconducting and magnetic properties within a single com-
pound, are very promising materials for spintronics (and spin-
tronic devices) and are also important for understanding many
fundamental problems such as the origin of ferromagnetism
in a semiconductor.1–7 The interesting properties of DMS
arise from the significant role played by magnetic exchange
interactions in addition to the interactions widely studied
in the conventional semiconductor structures, namely, the
electron-electron Coulomb and electron-phonon interactions,
interactions with strains and random potentials resulting from
the defects and inhomogeneous distribution of impurities. The
currently most widely studied DMS materials are those based
on III-V semiconductors, in particular Mn-doped GaAs.3–5 In
such materials, if the Mn concentration is not too high, Mn
substitutes Ga acting as an acceptor, so doping GaAs with Mn
yields both local magnetic moments and free holes.4–6 One of
the important lines of research here should be evidently related
to the low-dimensional and, especially, two-dimensional struc-
tures given the planar character of existing microelectronic
devices. In addition, heterostructures δ-doped by Mn will
exhibit 2D ferromagnetic behavior, which is qualitatively
different from 3D ferromagnetism as there may not be any
ferromagnetic transition in 2D below the Curie temperature.
Nevertheless, only a limited number of studies dealing with the
2D DMS structures have been reported in the literature.8–17 In

Refs. 9 and 10 concerning the GaAs/AlGaAs heterostructures
δ-doped by Mn, the ferromagnetic (FM) state was found at
rather high temperatures. However, the hole gas in these het-
erostructures was not quite two-dimensional since the mobility
of charge carriers was so low9 that broadening of the quantized
subband levels (≈300 meV) exceeded even the depth of the
quantum well (150–260 meV) in this case. Such low mobility
values were the result of a high density of Mn, which is
responsible not only for the magnetism of the system but is also
an acceptor and thus an efficient scattering center. In addition,
the authors of Refs. 9 and 10 aimed to provide the highest hole
density just in the vicinity of Mn ions to maximize the Curie
temperature TC.

The GaAs/InxGa1−xAs/GaAs quantum-well structures δ-
doped by Mn exhibiting ferromagnetic ordering and a true
2D carrier energy spectrum were obtained by selective doping
that ensured a high hole mobility (more than 2000 cm2/V · s
at 5 K).11–13 The true 2D behavior in DMS heterostructures
was also observed in similar structures elsewhere; however,
in these cases, the FM ordering manifested itself only at the
millikelvin range of temperatures.14,15,17

Two mechanisms underlying the FM ordering in the 2D
GaAs/InGaAs/GaAs heterostructures δ-doped by Mn have
been proposed in the current literature.18,19 The first model18

attributes the FM ordering to the indirect interaction of Mn
atoms by means of holes in a 2D conducting channel. The
efficiency of this mechanism is based on the large mean-free
path of 2D carriers due to their remoteness from the Mn layer.
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In the second model, FM ordering arises within the Mn layer,
possibly mediated by the holes in the layer as in usual DMS
structures.19

One of the most relevant issues is the effect of FM ordering
on the temperature dependence of resistivity, in particular, the
relation of the FM ordering to the resistance anomaly (a peak or
shoulder) near TC .20 Several theories have been proposed21–26

for explaining the resistivity in bulk DMS but we are not aware
of any theoretical work on transport properties of 2D DMS
heterostructures. In addition to magnetism, the disorder plays a
significant role in the DMS transport properties,27 but again the
parameters of the disorder and its effect on transport properties
of the 2D DMS structures have not yet been thoroughly
investigated. In particular, a theoretical analysis providing
quantitative agreement with measurements and taking into
account disorder effects and peculiarities in the temperature
dependence of resistivity is still required.

In this paper, we study the effect of spatial disorder
of dopant concentration in the δ-layer on the electronic
properties of the 2D hole gas and show how at low carrier
density, the competition of disorder and nonlinear screening
results in the formation of “metallic” droplets separated by
insulating regions. We make estimates for the droplet sizes and
interdroplet distance, the energy level spacing in these droplet
structures, and the potential barrier separating neighboring
droplets. Using these as parameters in a simple model for the
resistivity that incorporates the effect of ferromagnetism on
interdroplet tunneling, we obtain a quantitative explanation
of the temperature dependence of resistivity in the DMS
ferromagnetic structure with the 2D quantum well.

The rest of the paper is organized as follows. Section II
describes the experimental setup and the samples studied in
this paper. In Sec. III, we discuss the available experimental
evidence proving the two-dimensionality of the hole gas and
the existence of ferromagnetic correlations in our samples.
The model of nanoscale inhomogeneities of the hole gas is
developed in Sec. IV. In Sec. V, we introduce a simple model
for the resistivity that incorporates the effect of energy level
quantization in the droplets and ferromagnetic correlation
of electrons in neighboring droplets. Section VI contains
a discussion of our findings and their implications for the
mechanisms of ferromagnetism in the DMS heterostructures.

II. SAMPLE AND SETUP DETAILS

A schematic layout of the studied structures is shown in
Fig. 1. The structure consists of an InxGa1−xAs quantum well
(QW) inside a GaAs matrix with a Mn δ-layer separated from
the QW by a GaAs spacer of width 3 nm. The QW thickness
W was about 10 nm and the In fraction in it was x ≈ 0.2. A
carbon δ-layer (≈2 × 1012 cm−2) was introduced at a distance
10–15 nm below the QW just at the top of the buffer layer to
compensate the hole depletion of the QW by the (undoped)
buffer layer. The quantum well and the surrounding GaAs
layers were grown by MOCVD at 600 ◦C while the Mn δ-layer
and GaAs cap layers were prepared by laser plasma deposition
at 450 ◦C.

A detailed description of such structures was obtained
from x-ray studies reported in Ref. 11, and the methods of
their growth were described in detail in Ref. 13. The x-ray

FIG. 1. (Color online) Schematic layout of the heterostructure
δ-doped by Mn.

results of Ref. 11 demonstrate that the Mn layer is slightly
smeared forming a Ga1−yMnyAs region 3–5 nm thick and with
a maximum Mn content y � 0.05–0.08 and not overlapping
significantly with the quantum well. This is also confirmed by
the values of hole mobility in the studied structures, which
we find to be more than by two orders of magnitude higher
than those in traditional bulk Mn-doped GaAs samples.28 The
mobility and other electrical and structural parameters of the
studied structures are presented in Table I.

As we have already mentioned, the main feature of these
structures is that they are really two dimensional and exhibit
FM ordering at relatively high temperatures.11,29 The two-
dimensionality is confirmed by our observation of Shubnikov–
de Haas oscillations and of the quantum Hall effect. We expect
that the transport is mostly due to light holes because of the
large splitting between the light and heavy hole �8 subbands
(about 90 meV for InxGa1−xAs for x ≈ 0.2).30,31 This splitting
arises from the biaxial strain caused by the lattice mismatch
of GaAs and InxGa1−xAs and results in light mass behavior of
holes (see Ref. 32 and references therein).

To find the actual value of the effective mass in our
structures, which is important for calculations of the energy
levels in quantum wells and for the adequate interpretation
of the transport data, we performed cyclotron resonance
and Shubnikov–de Haas (ShdH) oscillations measurements
(see Fig. 2). The cyclotron resonance measurements were
performed at the Toulouse High Magnetic Field Laboratory
(LNCMP) using a long-pulse coil, delivering magnetic fields
up to 40 T with a total pulse length of 800 ms. The obtained
values of the hole effective mass m∗ � 0.14me are in agree-
ment with m∗ determined in nonmagnetic GaAs/InGaAs/GaAs
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TABLE I. Parameters characterizing the samples under study. Samples 1–4 are δ-doped by Mn. Sample 5 is δ-doped by carbon instead of
Mn. All the samples have a carbon layer too, as shown in Fig. 1. We also present the model estimates for the fluctuation potential Vfluc at the
quantum well edge facing the Mn dopant layer, and the overlap probability of the hole wave function with a 1 nm thick region centered at the
δ-layer of Mn situated 3 nm away from the quantum well. Here, Rc is the screening length. At each In content, the quantum well depth was
estimated using the known experimental results, according to which the valence band discontinuity is about 1/3 of the band gap discontinuity
(Ref. 33).

Overlap Overlap
probability probability

Mn Quantum Vfluc of the hole Hole Hole of the hole Hole Hole
content, In well (z = 0, Rc) wave function mobility μp density wave function mobility density

monolayers content depth at 77 K with Mn (77 K) p (77 K) with Mn μp (5 K) p (5 K)
Sample [cm−2 × 1014] x V0 [meV] [meV] layer (77 K) [cm2/ V·s] [cm−2 × 1012] layer (5 K) [cm2/V·s] [cm−2 × 1012]

1 1.2 (6.0) 0.18 85 260 0.15 × 10−2 1350 1.8 0.15 × 10−3 180 0.3
2 0.5 (3.0) 0.21 100 170 0.51 × 10−2 1860 2.0 0.52 × 10−3 2950 0.71
3 0.4 (2.5) 0.23 115 160 0.39 × 10−2 1930 1.8 0.63 × 10−3 3240 0.79
4 0.35 (2.0) 0.17 70 145 0.72 × 10−2 2370 1.4 0.9 × 10−3 3400 0.46
5 0 0.18 85 1600 0.5

heterostructures from the ShdH oscillations30 as well as from
the recent cyclotron resonance measurements.32

In our opinion, such samples are optimal for studies of
disorder and magnetic properties in a two-dimensional hole
gas. We have performed measurements using samples with
different Mn content to understand the effect of disorder and
doping on the crossover from the metallic-like to insulating
behavior. This crossover is also affected by the degree of
ionization of the Mn dopants as we will see below. Samples for
transport measurements were prepared by photolithography
and have a Hall-bar geometry of width 0.3 mm between the
Hall probes and 1.5 mm between resistance probes. Mea-
surements of the temperature and magnetic field dependence
of sample resistance and Hall effect were performed in the
5–300 K temperature range at magnetic fields up to 3 T.

III. EXPERIMENTAL OBSERVATIONS
AND THEIR CONSEQUENCES

The main purpose of this paper is the quantitative descrip-
tion of disorder and peculiarities of temperature dependence
of the resistance R(T ) in 2D DMS structures. In this part

FIG. 2. (Color online) Effective mass dependence on magnetic
field for Sample 2 (red circles) measured by ShdH oscillations and
for Sample 4 (blue diamonds) measured by cyclotron resonance. Solid
black line corresponds to m∗/me = 0.14.

of the paper, we summarize and present experimental results
needed for this quantitative explanation. For that, we need,
first, to recall that the metal to insulator transition occurs in
dilute magnetic semiconductors with increase of Mn content,
to present the data confirming that it indeed takes place in
2D heterostructures, such as our samples, and to provide
arguments for its percolative nature; second, to illustrate the
2D character of the electron energy spectrum in our case;
third, to provide evidence for FM correlations; and fourth,
to present experimental data on peculiarities of R(T ) related
to FM ordering. Here we will present experimental data in
accordance with each of these items.

(1) The temperature dependence of resistance R(T ) for all
samples listed in Table I is plotted in Fig. 3 (some of these data
were also presented in Ref. 11).

It is seen that the low-temperature resistance of these
samples ranges from 10 kOhm to 500 kOhm and the ratio
R(5 K)/R(70 K) also drastically changes for samples with
different Mn content [about 30 for Sample 1 and 1.1(5) for
Sample 3]. This suggests that we have a set of samples

FIG. 3. (Color online) Resistance data for the Mn δ-doped
heterostructures (1, 2, 3, and 4) for different carrier and doping
densities (see Table I) and a carbon δ-doped heterostructure (5).
Note the absence of any resistance anomaly in the carbon δ-doped
sample, while the Mn δ-doped samples exhibit an anomaly (hump or
shoulder), which is likely due to the magnetic ordering.
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FIG. 4. (Color online) Magnetic field dependence of the re-
sistance of Sample 3 at different temperatures. The inset shows
Shubnikov–de Haas (ShdH) oscillations indicating metallicity.

ranging from quite insulating to nearly metallic. Note that
strictly speaking even the most “metallic” samples are not
the classical metals since their resistance, although rather low,
increases with lowering temperature in the range 40–100 K.
Samples 2 and 3 also show a larger mobility at 5 K compared to
77 K, which is indicative of metallic behavior, while Sample
1 has lower mobility at 5 K, as should be the case with an
insulator. Note also that the resistivity of our samples (except
Sample 1) turns out to be of the same order of magnitude as
the value ρ ∼ 0.2h/e2, at which the metal–insulator transition
occurs in 2D DMS structures.34

The existence of pronounced Shubnikov–de Haas (ShdH)
oscillations in Samples 2 and 3 tells us that these two samples
are on the metallic side of the percolation transition. In Fig. 4,
we show the magnetic field dependence of the resistance
at two values of the temperature. The inset shows ShdH
oscillations previously discussed in Ref. 11. In general, the
magnetic field dependence of the resistance is determined by
both the proximity to the ferromagnetic transition and quantum
corrections. Our low-temperature (T � TC) negative magne-
toresistance occurs evidently not due to any spin phenomenon
but is related to the destructive effect of the magnetic field
on quantum corrections to the sample conductivity related to
interference of scattered carriers as was pointed out for bulk
DMS materials in Ref. 22. In fact, in the range 0.04–0.3 T,
the observed conductivity is proportional to log(B) as it
should be for weak localization corrections in 2D. In contrast
to the results of Ref. 31, where quantum corrections to
conductivity were studied in a similar structure doped by
C instead of Mn, we did not observe antilocalization. In
our case, the absence of antilocalization is due to the hole
spin splitting caused by ferromagnetic ordering. The negative
magnetoresistance presented in Fig. 4 resulting from weak
localization is a signature of the important role of disorder in
transport properties of the studied samples.

In contrast to Samples 2 and 3, Sample 1 is quite insulating,
with R(5 K)/R(70 K) ≈ 30. The resistance R(T ) exhibits an
Arrhenius behavior (activation energy ≈ 110 K for T � 30 K)
with crossover to the hopping regime at temperatures less than
30 K (see Fig. 5).

Sample 4 with a smaller carrier density compared to
Samples 2 and 3 is closer to the percolation transition
having high enough values of R(5 K) = 19.7 k� and

FIG. 5. (Color online) Plot of log R(T ) vs T for Sample 1
demonstrating an Arrhenius behavior for temperatures higher than
about 30 K and a hopping behavior at low temperatures.

R(5 K)/R(70 K) ≈ 1.5. We found that the temperature de-
pendence of the resistivity can be fitted to the Arrhenius law
(activation energy ≈ 20 K for T � 30 K).

Thus, we have a wide enough set of samples on both sides of
the metal–insulator transition. We believe that this transition is
of the percolation type because, as we find below, the parameter
kF l near the percolation threshold is greater than unity (l is
the hole mean-free path or scattering length). For the above-
mentioned set of samples, we will calculate in theoretical
part parameters of fluctuation potential (or disorder) and
the electronic structure in the quantum well, which consists
of metallic droplets separated by insulating barriers. The
insulating samples are most interesting as they can give us
valuable insights into the mechanism of ferromagnetism in
these DMS heterostructures and we will concentrate on these
samples. We believe all the studied samples are close to the
percolation transition since all of them demonstrate some
features of both metallic and insulating behavior.

(2) For comparison with the theoretical calculations, we
need to prove that the hole gas in our samples has a 2D energy
spectrum.

The 2D character of Samples 2 and 3 is proved by ShdH
oscillations, which are observed only when the magnetic field
is perpendicular to the sample plane as seen in the inset
of Fig. 4. Manifestations of the quantum Hall effect (QHE)
were observed even in the most insulating Sample 1 (see
Ref. 11), which establishes its 2D nature. The existence of
the QHE on the insulating side of the percolation transition
can be explained following the arguments presented in Ref. 35.
Near the percolation transition, a sample consists of “metallic”
droplets and insulating regions, and in 2D, the Hall constant
R(xm) is related to the conductivity σ (xm)11,36 as

R(xm) ≈ Rm

[
1 − σ 2

d

σ 2(xm)

]
, (1)

where xm is the fraction of the metallic phase, and the
subscripts d and m refer to the insulating and metallic regions.
Under conditions of finite tunneling between metallic droplets,
the Hall constant is approximately equal to Rm in some region
near the percolation transition even when the sample is in
the insulating phase.11 Experimental observation of QHE in
disordered insulators has also been reported elsewhere.37,38
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FIG. 6. (Color online) Magnetic field dependence of the AHE for
Samples 1, 2, and 4. The temperature of measurements and sample
number are shown near the corresponding curves. For insulating
samples (1 and 4), the temperature of measurements is higher than
the peak temperature, while for the metallic Sample 2, they are close.
For insulating samples, the AHE curves can be seen to saturate, while
for metallic samples, saturation is not reached or will be reached at
higher fields. The solid lines indicate the saturation of AHE.

(3) The evidence for ferromagnetic (FM) correlations
comes from the observation of a hump or shoulder in the
temperature dependence of resistivity as presented in Fig. 3.
The fact that this feature is observed for all samples doped
by Mn but is absent for Sample 5 doped by C instead of Mn
shows that it has a magnetic origin. The direct evidence of
FM ordering for Samples 1 and 4 was through the observation
of a hysteresis loop in the magnetization curve.12,39,40 The
observation of the anomalous Hall effect (AHE) in all
mentioned samples11,12,29 is yet further evidence. The results of
the AHE measurements are presented in Fig. 6 for samples 1,
2, and 4. The main feature of these results is that for insulating
samples, the AHE saturates at temperatures higher than the
hump/shoulder temperature for resistivity, while for metallic
Sample 2, it does not saturate at temperature 32 K, which
is slightly above the peak temperature showing paramagnetic
behavior implying that TC is not reached yet, which is not
surprising since the resistivity peak in metallic samples lies
closer to TC than in insulating samples (see the discussion of
this issue in Sec. V). The observations for insulating samples
are in accordance with theoretical results presented later in
Sec. V.

(4) The temperature dependence of resistivity R(T ) is pre-
sented in Fig. 3. It is commonly accepted that the “anomalous”
hump or shoulder of this temperature dependent resistance
could be used as a measure of the Curie temperature.4,20,23

There are differing opinions on whether the anomaly in R(T )
or dR/dT should be accepted as TC .41 While it is justified for
the case of bulk metals to associate the temperature, at which
the anomaly occurs, with TC, we will show below that in the
2D case, the situation is quite different. A comparison of our
experimental results and theoretical calculations of R(T ) for
Samples 1 and 4 is presented below in Fig. 12.

Thus, now we have a good basis to formulate a theoretical
model for the charge distribution in 2D δ-doped DMS
heterostructures, which can be used further on for calculations
of the temperature dependence of resistivity.

IV. MODEL OF NANOSCALE INHOMOGENEITIES

For the purpose of analysis, we can consider the following
system, which captures the main physics. The two-dimensional
hole gas (2DHG) is formed within the InGaAs quantum
well. The holes in the 2DHG are provided by Mn acceptors
distributed in a δ-layer with density na , which is spatially
separated from the quantum well by a GaAs spacer with
thickness λ. We thus have two interacting subsystems—the
δ-layer, where the Mn atoms are a source of holes as well as of
magnetism owing to their spins, and the quantum well, where
the behavior of the holes is affected by the charge and spin
of Mn atoms. In addition, the holes in the 2DHG are known
to affect the distribution of magnetization in the δ-layer. This
will be particularly true for the more metallic samples.18

The parameters characterizing the samples under study are
listed in Table I. The table shows the total Mn content in the δ-
layer, the quantum well depth V0 in the absence of fluctuations,
the hole densities p, and mobilities μp in the 2DHG layer at
two different temperatures on either side of the ferromagnetic
transition.

At low carrier density, it has been shown42–46 that the
interplay of disorder (due to random potentials of the charged
Mn atoms) and nonlinear screening by the holes can lead to
inhomogeneities in the carrier density. The physical picture of
droplet formation and metal–insulator transition is as follows.
Charge fluctuations of the ionized Mn acceptors create a
fluctuating potential for the hole gas in the quantum well.
The holes begin filling the deepest energy levels in the
potential relief. Introduction of holes also affects the size of
the potential fluctuation because of screening. We assume
a Gaussian white noise distribution for the charge density
ρ(r,z) = en(r)δ(z + λ) of the Mn atoms in the δ-layer (z axis is
directed perpendicular to the δ-layer, z = 0 corresponds to the
GaAs/InGaAs interface). For points r, r′ lying in the δ-layer
we have

〈n(r)n(r′)〉 − 〈n2〉 = n′
aδ(r − r′), (2)

where n′
a is the total density of negative ionized acceptors and

positively charged compensating donors in the Mn δ-layer:
n′

a = n−
a + n+

d . In actual heterostructures, the ionization is
usually partial due to several causes: (a) Mn atoms could sub-
stitute Ga being acceptors or enter interstitial positions acting
as donors, thus leading to a compensation. Comparing Mn
content in the Mn doped layer, which is in fact Ga1−yMnyAs,
with results for bulk material, it is natural to suggest that
the percentage of Mn in the interstitial position is about
10%; such results are summarized in review articles Refs. 4
and 6. (b) Mn atoms could form compounds with Ga and As.
(c) There also exists the density correlation of the dopants
related to their frozen nonequilibrium distribution.46 Accord-
ing to the latter effect, for example, for Sample 4, we have
estimated n′

a ∼ 0.06na , mimicking an ionization degree of
0.06. In the further calculations, for simplicity and consistency,
we take a typical value of n′

a and hence assume that n′
a =

0.1na , which is in agreement with the effective ionization of
about 0.1 observed in Ga1−yMnyAs samples,4,6 although the
actual degree of ionization can be even smaller.

From Eq. (2), it is easy to see that the variance of the
fluctuation charge density in a circular region of size R is
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〈δn2(R)〉 = n′
a/(πR2). The random distribution of charges

creates a fluctuating potential φ at the interface. In the
presence of holes in the 2DHG, the potential fluctuations are
screened beyond a length scale Rc where the fluctuation charge
density

√
〈δn2(Rc)〉 = √

n′
a/π/Rc becomes less than the hole

density p. The variance of the potential fluctuations at the
interface is45

〈δφ2〉 = n′
ae

2

8πκ2ε2
0

{
ln

[
4d2

λ(2d − λ)

]

− 2 ln

[(
λ2 + R2

c

(2d − λ)2 + R2
c

)1/4

+
(

(2d − λ)2 + R2
c

λ2 + R2
c

)1/4
]}

. (3)

Here, κ = 12.9 is the permittivity of GaAs, Rc = √
n′

a/π/p

is the characteristic screening length described above, and
ε0 is the electric constant. Parameter d is a length scale,
beyond which the potential fluctuations get screened even in
the absence of holes in the quantum well. Often there is a
metallic gate on the sample, in which case d is equal to the
distance from the quantum well to the gate.

In cases where the inequality 2d � Rc,λ is met, the
potential fluctuations can be expressed in a much simpler form,

〈δφ2〉 ≈ n′
ae

2

16πκ2ε2
0

ln
[
1 + (

Rc

λ

)2
]
. (4)

The holes in the quantum well are centered at a distance
z0 (measured from the interface closest to the Mn layer) in
the direction perpendicular to the interface. To obtain z0, we
solve the Schrödinger equation in the quantum well taking into
account the (z-dependent) fluctuating potential,[

− h̄2

2m∗
d2

dz2
+ V (z)

]
ψn = Enψn. (5)

Here V (z) is the quantum well potential together with the
fluctuations (see Fig. 7). n = 1,2,3 . . . refers to the subband
index. For holes, we use the approximation of the parabolic
dispersion with the effective mass m∗ = 0.14me as measured
from cyclotron resonance for these structures. We approximate
V (z) as follows. For z < 0, V (z) = α(|z + λ| − λ), α =
ep/κε0. For z > W, we have V (z) = 0, where W is the
quantum well thickness. For 0 < z < W, we have V (z) =
VQW (z) − e

√
〈δφ2(Rc,z)〉, where VQW (z) = −V0 + αz. For

the present devices, we have taken W = 10 nm and λ = 3 nm,
and the values of V0 are as shown in Table I. We also assume
that the spatially varying fluctuation potential does not affect
the valence band position away from the quantum well. The
condition for existence of a subband is En < 0. Table I shows
the overlap probability

∫
δz

dz|ψ1(z)|2, where δz is a 1 nm thick
region centered at the δ-layer.

We also find that the amplitude of the hole wave function in
the GaAs region decreases away from the quantum well with
a localization length ξz having a value ranging from 1 nm to
2 nm. This is comparable to the localization length estimated
in Ref. 18. We will henceforth use λ + z0 as the distance of
the hole gas from the δ-layer for the purpose of calculating the
potential fluctuations. For a given subband n, we determine

)(2
0 zeV δφ−−

GaAs

-V0

W0-λ z

GaAsInGaAs

Mn

FIG. 7. (Color online) Schematic of the quantum well potential
(shown inverted). Dashed (blue) line represents the quantum well
potential in the absence of fluctuations and the solid (red) line shows
the potential well with an attractive fluctuation potential. The dotted
line indicates the Mn dopants at a distance λ from the left face of
the quantum well. The quantum well of thickness W is defined in the
InGaAs layer sandwiched between GaAs regions.

z0,n as z0,n = ∫
dz z|ψn(z)|2. Tables II and III represent the

values of En and z0,n for the first two subbands. For simplicity,
we will from now on denote e

√〈δφ2(d + z0,n,λ + z0,n,R)〉 by
Vfluc(z0,n,R). The values of the fluctuation potential are also
shown in Table I.

Now, we describe how at low enough density, the holes in
the 2DHG can get organized into charge droplets. Let Rp,n be
the size of a droplet. The potential fluctuations associated with
this length scale are given by Vfluc(z0,n,Rp,n). Suppose that the
holes fill this potential well up to a wave vector kmax. From the
virial theorem,

h̄2k2
max,n

2m∗ = 1
2Vfluc(z0,n,Rp,n), (6)

where the factor of 1/2 is for a linear-in-Rp,n confining
potential, which is approximately the case here. The number of
occupied states in the droplet is approximately (kmaxRp)2/2,

which can be equated with the fluctuation charge Nh =
πR2

p × √
n′

a/π/Rp = √
πn′

aRp, if only the lowest subband is
occupied. We will discuss below the case where more than one
subband is occupied. If only the lowest subband is occupied
and 2d � Rc,λ, Eq. (6) yields a very simple solution for the
droplet size,

Rp,1 ≈ √
2aB (λ + z0,1). (7)

Equation (7) is valid when λ + z0 is much larger than aB. The
Bohr radius corresponding to these parameters is aB ≈ 5.3 nm.
In our case, λ + z0 ≈ aB, and this approximation does not give
the correct values. Therefore we solve for Rp numerically
using Eqs. (6) and (8). The droplet size Rp and the number of
holes per droplet are only weakly dependent on p.

Now, let us discuss the case where two subbands are
occupied. The energy of the highest occupied state measured
from the bottom of the lowest subbands (n = 1) is of the order
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FIG. 8. (Color online) A schematic picture of the dispersion
curves E(k) (at small k) corresponding to the two lowest subbands
n = 1 and n = 2. E1 and E2 are the fluctuation potentials correspond-
ing to z0,1 and z0,2, respectively, and R = Rc. The shaded region
represents filled states. The two subbands have a common chemical
potential.

of (we will obtain a better estimate below)

Emax,1 = h̄2kmax,1

2m∗ = h̄2
√

πn′
a

m∗Rp,1
. (8)

From this estimate of Emax,1 and the energies E1 and E2, we
can see that the second subband is also partially occupied for
Sample 1. It may seem natural to estimate the droplet sizes Rp,n

of the two subbands independently, in which case we would get
the droplet sizes Rp,n ≈ √

2aB(λ + z0,n). However, the filling
of the two subbands is not independent and the following two
conditions need to be satisfied in addition to the relations in
Eq. (6). First, the chemical potential of the droplets corre-
sponding to the two subbands should be the same (see Fig. 8):

Emax,1 − Emax,2 = h̄2

2m∗
(
k2

max,1 − k2
max,2

) = E2 − E1. (9)

Second, the total number of bound holes is now distributed
over the two bands. This effectively results in the transfer
of some of the higher energy holes in the lower subband to
lower energy empty states in the upper subband. This would
lead to a decrease of the droplet size corresponding to the
lower subband, and a finite droplet size in the upper subband.
The transfer of charge from the lower subband to the upper
subband naturally makes higher the concentration of charge in
the droplet since the charge carriers can occupy two bands in
the same region.

We must now satisfy the following relationship:

√
πn′

aRp,1 = (kmax,1Rp,1)2

2
+ (kmax,2Rp,2)2

2
. (10)

Equations (9), (10), and (6) form a system of coupled nonlinear
equations that may be solved for Emax,n and Rp,n. Tables II
and III show the calculated values of Emax,1, Rp,1, and Rp,2.

Now we analyze the conditions for a metal–insulator
crossover. The localization length, which characterizes the
spread of the hole wave function outside the droplets, is

ξ = h̄√
2m∗[|E1| − |VQW (z0)| − |Emax,1|]

. (11)

A percolation transition to a more conducting regime is
expected when the droplets begin to overlap. The droplets
are said to “overlap” once the interdroplet tunneling becomes
significant; in other words, the localization length ξ of holes
in the droplets becomes comparable to the separation D1

between the surfaces of neighboring droplets (D1/ξ ∼ 1). To
obtain the separation of the droplets, we note that the total
number of holes in a droplet with both bands considered is
Nh = √

πn′
aRp,1. These holes are “drained” from an area

of size R such that Nh = πR2p. We thus get the size of
the catchment area of a droplet, R = √

Rp,1Rc. The distance
D1 between the surfaces of neighboring droplets is then
D1 = 2(

√
Rp,1Rc − Rp,1). Assuming that the potential well

corresponding to the second subband is also centered at the
well corresponding to the first subband, we find the distance
between the droplets corresponding specifically to holes in the
second subband, D2 = 2(

√
Rp,1Rc − Rp,2).

From Tables II and III, it is clear that the droplet size is
fairly constant for different temperatures and hole densities.
Sample 1 is insulating at all temperatures. The behavior of
the remaining samples differs significantly for T = 77 K and
T = 5 K. For these samples at 77 K, the interdroplet separation
is comparable to the localization length ξ which means that
they are more “metallic.” Note that the interdroplet distance
is larger for Sample 4, which gives rise to an Arrhenius-type
behavior in a wide enough temperature range. At T = 5 K,
the interdroplet separation far exceeds ξ so that all the
samples are in the insulating regime. That does not agree
with experimental results because Samples 2 and 3 exhibit
a quasimetallic behavior even at T = 5 K. This could result
from the strong dependence of D1 on the sample parameters
(the carrier density, for example) at low temperatures. Thus,
the droplet picture following from our calculations, being
quite reasonable at T = 77 K, may give overestimated values
of the interdroplet distances at T = 5 K. Since D1 is very
sensitive to the carrier density p, and p changes rapidly with
temperature, the insulator to metal crossover will take place in
Samples 2–4 as the temperature is increased from 5 K. We also

TABLE II. Calculated values at a temperature of 77 K for the screening length Rc, droplet sizes Rp,n, droplet separations Dn corresponding
to Rp,n, penetration depths z0,n, energy levels En, the maximum energy, Emax,1, of occupied states measured from the bottom of the potential
well for the lowest subbands (n = 1), and the localization length ξ. The calculations are for an effective n′

a = 0.1na. Note that in the last three
samples, the separation of the droplets is comparable with the localization length, implying proximity to the “metallic” phase.

Sample Rc (nm) z0,1 (nm) E1 (meV) z0,2 (nm) E2 (meV) Rp,1 (nm) Rp,2 (nm) Emax,1 (meV) D1 (nm) D2 (nm) ξ (nm)

1 24.28 1.79 −203 3.62 −80 8.96 0 83 11.58 1.82
2 15.45 1.57 −142 0.78 −33 8.79 0 60 5.72 3.50
3 15.67 1.71 −147 2.30 −40 8.90 0 54 5.82 3.70
4 18.02 1.71 −106 1.34 −17 8.90 0 48 7.53 3.46
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TABLE III. Calculated values at a temperature of 5 K for the same quantities as described in Table II for an effective n′
a = 0.1na. Note that

all the samples are found to be good insulators at this temperature. The interdroplet distance D1 is very sensitive to the hole density p, and
since p increases rapidly with temperature, the ratio D1/ξ can become comparable to unity at relatively low temperatures enabling a transition
to the “metallic” phase.

Sample Rc (nm) z0,1 (nm) E1 (meV) z0,2 (nm) E2 (meV) Rp,1 (nm) Rp,2 (nm) Emax,1 (meV) D1 (nm) D2 (nm) ξ (nm)

1 145.7 2.99 −275 5.37 −204 9.8 0.6 76 55.59 73.59 1.45
2 43.52 2.64 −206 5.16 −128 9.57 0 55 21.68 1.93
3 35.71 2.58 −198 5.10 −119 9.51 0 51 17.83 2.13
4 54.85 2.93 −155 5.36 −91 9.77 0 41 26.75 2.11

find that in contrast to the usual situation encountered in GaAs
heterostructures, where the contribution of all but the lowest
subbands can be neglected, in Sample 1, the second subband
is also occupied.

The energy level spacing, �, of a droplet can be found by
noting that addition of a hole to a droplet increases Rp,1 by an

amount 1/
√

πn′
a. The difference of the values of Emax,1 of the

droplets of size Rp,1 + 1/
√

πn′
a and Rp,1 respectively gives us

the level spacing at the chemical potential. The level spacing
is of the order of 30 K, which falls within the range of the
measured activation energies for resistivity. As one approaches
the metal–insulator crossover, the potential barrier separating
neighboring droplets [see Eq. (11)] decreases. Holes near the
Fermi level in the potential wells can be thermally excited
above the potential barrier to energies above the percolation
threshold; this is an alternate mechanism for transport as
against the usual interdroplet tunneling followed by Coulomb
blockade. Figure 9 shows the dependence of the interdroplet
potential barrier on the dimensionless parameter Rc/Rp. The
dependence is approximately linear in Rc, similar to the
findings in Ref. 47.

We end this section with a few more words on the effect
of partial ionization of the dopants. Using the reduced dopant
density n′

a does not affect the droplet sizes significantly but it
does reduce Rc by a factor

√
n′

a/na, thus bringing the system
closer to the metallic percolation transition. Therefore, even
small variations of n′

a can strongly affect the potential barrier
separating the droplets. In Fig. 10, we show the interdroplet

FIG. 9. (Color online) Plot of the potential barrier (for Sample 3)
Vbarrier for holes at the Fermi levels in the droplets as a function of the
parameter Rc/Rp .

separation (in units of the localization length) as a function
of the degree of ionization for Sample 3 at 77 K. The
metal–insulator transition occurs when the effective degree
of ionization is in the range from 0.05 to 0.1.

Since we are looking at the charge distribution at the
moment, we have ignored magnetism. Magnetism, and its
effect on transport, will be considered in the next section.

V. RESISTIVITY

The droplet picture developed in the previous section can be
used to understand the experimentally observed temperature
dependence of the resistivity of the insulating samples. We will
specifically study the resistivity of Samples 1 and 4 where the
holes are well localized in a droplet phase. In addition to
localization effects, we will also need to take into account the
effect of ferromagnetic correlations.

To our understanding, temperature dependent transport in
insulating 2D DMS heterostructures has not yet been theo-
retically studied although numerous studies of corresponding
nonmagnetic heterostructures exist in the literature. In the
absence of magnetism, as in many disordered insulators, the
temperature dependence of resistivity is expected to be of
variable-range hopping type at very low temperatures and
of Arrhenius type at higher temperatures. In the Arrhenius
regime, one could either have nearest-neighbor tunneling
together with an activation energy of the order of the mean

0.1 0.2 0.3 0.4 0.5

1.0

0.5

0.5

1.0

log
D1

ξ

Degree of ionization

FIG. 10. (Color online) Plot of the calculated value of log(D1/ξ )
against the degree of ionization for Sample 3 at 77 K. The metal–
insulator transition corresponds to log(D1/ξ ) = 0.
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droplet level spacing, �, or the classical thermal excitation
over the barrier (see Fig. 9) separating neighboring droplets.
Our resistivity measurements will not distinguish the two
mechanisms and we will henceforth denote the Arrhenius
energy fitting the data by EA, and EA = � for the tunneling
mechanism, which was estimated in the previous section. Next,
we analyze the behavior of resistivity across the mean-field
Curie temperature TC , below which the ferromagnetic corre-
lations increase rapidly. There is no continuous transition to a
ferromagnetic state in two dimensions at a finite temperature
and TC is a characteristic energy scale of the order of the
exchange interaction associated with the ferromagnetism.
Since the resistivity peak is in the vicinity of 30 K, we are
in the Arrhenius regime. This was experimentally observed
for Samples 1 and 4.

In the absence of magnetism, the resistivity would behave as
ρ(T ) ∼ eEA/T . When the droplets are magnetically polarized,
there is an additional energy cost associated with introducing
an extra charge into a given droplet if the spin orientation
of the electrons in the droplet differs from that of the extra
charge. Suppose the droplets are individually polarized (with
different orientations) and let θij be the angle between the
magnetizations in the droplets at sites i and j. When a hole
tunnels between these two droplets, the extra energy cost �mag

ij

at the destination droplet depends on the relative orientations
of the magnetizations

�
mag
ij = J (1 − cos θij ). (12)

If the magnetic order in the droplet is induced by the Mn
layer, then J is related to local magnetization in the Mn layer.
If the magnetic order is mainly determined by interaction of
holes in the quantum well, then J is related to the exchange
interaction in the droplets. Our analysis is not dependent
on the mechanism of ferromagnetism since J and TC are
phenomenological parameters. The temperature dependence
of resistivity is governed by the total energy EA + �

mag
ij

associated with introducing an extra charge carrier into the
droplet j from a neighboring droplet i,

ρ(T ) ≈ AeEA/T +J (1−〈cos θij 〉)/T , (13)

where we have approximated 〈e− cos θij /T 〉 ≈ e−〈cos θij 〉/T .

For a two-dimensional ferromagnet, 〈cos θij 〉 = e−D1/ξM (T ),

where48–50

ξM (T ) =
{

a/
√

1 − TC/T , T � TC,

a exp[πTC/2T ], T � TC.
(14)

Here a ∼ 1/
√

nd is a length scale of the order of interatomic
separation of the Mn dopants for the first ferromagnetic mech-
anism and interdroplet distance for the second mechanism
and TC is the mean-field Curie temperature, below which the
ferromagnetic correlations increase rapidly. If ferromagnetism
is intrinsic to the Mn layer, then because of disorder we
expect the local ferromagnetic interaction J to be larger than
the global transition temperature TC. For a homogeneous
distribution of Mn atoms, J ∼ TC for the same mechanism of
ferromagnetism. If ferromagnetism is due to indirect exchange
mediated by the holes, then TC falls with interdroplet tunneling
probability and is smaller than J in general.

10 20 30 40 50
T

2

3

4

5

ρ T

(K)

FIG. 11. (Color online) Calculated resistivity (in arbitrary units)
as a function of temperature. Parameters from Sample 1 were used.
We assumed a degree of ionization of 0.1, ferromagnetic transition
temperature TC = 30 K, and exchange integral J = 70 K. The peak
in the resistivity occurs at a temperature lower than TC.

Figure 11 represents the calculated resistivity as a function
of temperature. While we assumed a TC of 30 K, the peak
in the resistivity appears at a significantly lower temperature.
This is a characteristic feature of the 2D DMS heterostructures
in contrast with bulk DMS where the peak appears near the
critical temperature T0, which for Heisenberg ferromagnets
is not very different from the Curie temperature TC. In the
bulk case, while the peak does not also coincide with T0, it is
nevertheless possible to obtain the critical temperature based
on resistivity measurements.4 The key physical difference is
that the magnetic correlation length for bulk DMS diverges
upon approaching T0 from higher temperatures, whereas in
2D, the magnetic correlation length remains finite except
at T = 0 [see Eq. (14)] due to the absence of true long-
range ferromagnetic order at finite temperatures. The peak
is related to the temperature when the magnetic correlation
length becomes comparable to the interdroplet separation. The
temperature corresponding to this peak is determined by the
specific values of parameters of the sample and not only by
TC. In Fig. 12, we show the observed resistance and a fit
based on our model for Samples 1 and 4. Figure 13 shows
that the shoulder in the resistivity of Sample 1 occurs near the
temperature where ξM/D1 ∼ 1.

While making the fits, we made a number of observations.
The position of the peak or shoulder is sensitive to TC and
D1, while J and EA determine the sharpness of the resistance
anomaly. If D1 is reduced, then 〈cos θij 〉 = e−D1/ξM (T ) changes
from 0 to 1 at a higher temperature, which shifts the resistance
anomaly to a higher temperature. However, reducing D1 also
decreases the sharpness of the anomaly since then e−D1/ξM (T )

changes much more slowly with temperature. While this can
be addressed to some extent by increasing J, that in turn
corresponds to a much larger (Arrhenius) activation energy
at higher temperatures. Increasing TC also shifts the anomaly
to a higher temperature but this happens without making the
anomaly less sharp or increasing the Arrhenius energy. We
found that values of D1 and EA chosen near the calculated
values generally gave good fits.

Here we would like to mention a recent theoretical study
of the insulating phase of bulk DMS systems.51 In this paper,
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FIG. 12. (Color online) Observed temperature dependence of
resistance for (a) Sample 4, in units of the resistance at 70 K, and (b)
Sample 1, in units of the resistance at 90 K (points), and theoretical fits
(solid lines). Sample 4 is near the percolation threshold and Sample 1
is a good insulator. The fits were made using Eq. (13). Parameters such
as the activation energy EA and the droplet separation D1 were chosen
close to the values obtained from the droplet model. The magnetic
parameters J and TC were then varied to obtain the above fits. In both
cases, the best-fit value of TC was significantly larger than the tem-
perature, at which the resistance anomaly (hump or shoulder) was ob-
served. At lower temperatures, the resistivity becomes variable-range
hopping type (not taken into account in our model). For Sample 4
in panel (a), the values used for the fit are D1 = 2 nm, EA = 9 K,
J = 39 K, and TC = 30 K; for Sample 1 in panel (b), the parameters
are D1 = 9.4 nm, EA = 51 K, J = 56 K, and TC = 49 K.

the decrease in resistivity was predicted to occur near the
(nonzero) critical temperature T0. The magnetization depen-
dence of inter-impurity hopping t was modeled by a mean-field
approximation, t2

eff = t2(1 + m2)/2. The physical origin of
the resistivity anomaly was that the onset of ferromagnetic
order leads to a rapid enhancement of teff, which consequently
increases the localization length abruptly across T0. In our
case, while we do not have a phase transition at a nonzero
temperature, the hopping is nevertheless enhanced by magnetic
correlations between neighboring droplets, which of course
increase rapidly once the temperature falls below the Curie
temperature TC. This accounts for our resistivity anomaly
even in the absence of a phase transition. For 3D samples,
our approach would also give a resistivity anomaly near the

(K)

FIG. 13. (Color online) Plot of log(ξM/D1) showing the variation
of magnetic correlation length ξM for Sample 1 as a function of
temperature (solid line). The dots show log[ρ(T )/ρ(77 K)] for the
same sample. The anomaly in the resistivity ρ(T ) occurs in the
vicinity of the temperature where ξM/D1 ∼ 1.

critical temperature T0 since the magnetic correlation length
will diverge rapidly upon approaching T0.

We conclude this section with some observations about the
metallic Samples 2 and 3 in the context of existing work on bulk
metallic DMS systems. Temperature-dependent resistivity of
bulk metallic DMS samples in the vicinity of the Anderson
transition has been analyzed in Ref. 21. Such an approach
may be generalized to our two-dimensional heterostructures.
In essence, we make use of the 2D scaling equation for the
conductance,

g(Lϕ) = g(ξ0) − e2

π2h̄
ln(Lϕ/ξ0), (15)

where Lϕ ∼ (h̄2kF /kBT m∗)kF l/ ln(kF l) is the electron phase
breaking length52 and ξ0 is a short length scale corresponding
to g(ξ0), together with an assumption for the dependence of
g(ξ0) on ferromagnetic correlations,

g(ξ0,T ) = g0(1 + q(ξM/Lϕ)2). (16)

Here, we note that the mean square magnetization 〈M2(L)〉 ∼
(kBT )χ (T )/L2 ∝ (ξM/L)2. At high temperatures, ξM is small
(of the order of inter-Mn distance) while Lϕ is much larger (of
the order of the mean-free path). As the temperature crosses
TC , ξM increases rapidly and ultimately becomes comparable
to Lϕ. Further increase of g(ξ0,T ) at lower temperatures
is not possible in terms of this mechanism since the spins
within the length scale Lϕ are all aligned. This rapid increase
and saturation of g(ξ0,T ) is responsible for the resistance
anomaly (a steep decrease in resistivity), which occurs near
the resistance minimum where ξM ∼ Lϕ . For the metallic
Sample 2, we estimated kF using the experimental value of
the hole density at 5 K and found the hole mean-free path
l near the steep decrease in resistivity based on the Drude
formula. As a result, we get Lϕ ≈ 450 nm, for which we
will see the resistance anomaly near TC/2. Note that here we
have kF l > 1 at the metal–insulator transition, so the transition
should be regarded as percolative and not Anderson-like (for
which kF l ∼ 1). A complete analysis of the resistivity for
metallic samples is beyond the scope of this paper.
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VI. DISCUSSION AND CONCLUSIONS

We studied the effect of disorder, Coulomb interaction, and
ferromagnetism on the transport properties of 2D heterostruc-
tures δ-doped by Mn.

The observation of Shubnikov–de Haas oscillations for
fields perpendicular to the 2D direction of the quantum well
confirmed the two-dimensionality of our samples. Resistivity
measurements as well as previously measured magnetic
hysteresis12,39,40 and the anomalous Hall effect11,29 established
magnetic ordering at low temperatures. Our samples spanned
the percolative metal–insulator transition region ranging from
a good insulator to metallic behavior. We put the main
emphasis on the two most insulating samples. The insulating
samples are particularly interesting to us for they provide
valuable insights into the mechanism of ferromagnetism in
the DMS heterostructures.

We have demonstrated how at low carrier density the
interplay of disorder in the spatial distribution of the dopant
atoms and screening effects by the holes in the 2D quantum
well leads to electronic phase separation in the quantum
well. For this phase, we obtained the typical size of the hole
droplets, their mean separation, and their energy levels. Unlike
conventional nonmagnetic GaAs/AlGaAs heterostructures, a
two-subband model was used here as the carrier density
was much larger in these heterostructures. We introduced a
simple nearest-neighbor hopping model for the resistivity of
this droplet phase taking into account the discreteness of the
energy levels in the droplets and the effect of ferromagnetic
correlations between spins on neighboring droplets. The values
of the parameters in the resistivity model were obtained from
droplet model where possible. The ferromagnetic parameters
such as the mean-field Curie temperature TC were varied to
fit the observed data. A good agreement with the experiments
was obtained. To our understanding, ours is the first theoretical
study of the transport properties of 2D DMS heterostructures.

An important understanding that emerged from our study
is that a resistance anomaly is possible in 2D even if there
is no magnetic transition. The second finding concerns the
relation between the position of the peak or shoulder in
the resistivity data and the Curie temperature. Unlike 3D
DMS systems where such resistance features are found in
the vicinity of the critical temperature T0 (which is not
very different from the mean-field Curie temperature TC

for 3D Heisenberg ferromagnets), we have demonstrated
that in 2D DMS heterostructures, the peak or shoulder-like
feature does not directly give the Curie temperature, and
furthermore, the Curie temperature can be substantially larger
than the temperature at which such features are observed. This
statement is supported by the AHE results presented in Fig. 6.
It is seen that for insulating Samples 1 and 4, the AHE saturates
at temperatures above the peak temperature which means that
TC is higher than this temperature. Physically, this is because
the resistivity changes once the magnetic correlation length
becomes comparable to the interdroplet separation. Clearly,
the divergence between the Curie temperature and the position
of the resistivity peak will be stronger for the more insulating
samples. However, if our approach is adapted to insulating 3D
DMS systems, we would expect, like other works, a resistivity
anomaly in the vicinity of the critical temperature.

Our calculations of the resistivity are independent of the
microscopic mechanism of ferromagnetism since J and TC

are phenomenological parameters. Nevertheless a study of the
dependence of J and TC on sample parameters such as p,na,

λ can give us crucial clues. Two main possibilities are that
(a) the ferromagnetic ordering takes place in the Mn layer by
some intrinsic mechanism such as the Zener indirect exchange
mediated by holes in the δ-layer,19 whereas the holes in the
2D transport layer merely respond to the Mn spin polarization,
and (b) the ferromagnetic ordering of Mn atoms is mediated
significantly by the holes in the 2D transport layer.18 For
mechanism (a), the transition temperature will be insensitive to
the spacer thickness λ as well as p. However, one must be very
careful in obtaining the transition temperature information
from the resistance data. The position of the anomaly in
resistance is sensitive to both D1 and TC, and D1 is affected
by the spacer thickness λ. Thus, even if TC is independent
of λ, the position of the anomaly in the resistance data does
depend on λ. A better test of mechanisms (a) and (b) is possible
with the insulating samples. Note that as the sample becomes
more insulating, the separation D1 of the droplets will increase
and the interdroplet tunneling will decrease exponentially with
D1. If the magnetism is mediated by the holes in the 2D layer,
then TC , which is of the order of the strength of the magnetic
interaction will be proportional to the interdroplet tunneling
probability, which depends on the carrier density as e−C/

√
p

since D1 + 2Rp1 ∝ 1/
√

p.
Another clue is provided by the values of TC , which we

extracted from the fits of the resistance data for Samples
1 and 4 with our model. We found that TC for the more
insulating Sample 1 was significantly larger than that of
Sample 4. One way to understand this result is by observing
that the Mn doping density na is larger in Sample 1, which
implies stronger magnetic interaction of the Mn atoms. This
seems to support the possibility (a) of an intrinsic mechanism.
“Metallic” samples discussed here are more likely to have
both mechanisms contributing to ferromagnetism. We have
seen that the localization length ξz for the hole wave function
in the GaAs region is of the order of 1 nm in all our samples.
This compares well with the estimated localization length
in Ref. 18. An RKKY mechanism of ferromagnetism in a
metallic sample leads to a TC for Mn atoms in the δ-layer that
decreases exponentially with the distance to the spacer layer as
TC(λ) ≈ TC(0)e−4λ/ξz . Mn atoms lying closer to the quantum
well can however give larger Curie temperatures.

We thus believe that the insulating samples are ideally suited
for resolving the question of mechanism of ferromagnetism. In
addition to resistivity measurements, the temperature depen-
dent anomalous Hall effect measurements can give us valuable
clues to the mechanism of ferromagnetism. It would be very
interesting to compare the values of the Curie temperature
extracted from our resistivity fits and from the temperature
dependence of the anomalous Hall effect. It would also be rel-
evant to study the effect of spin-orbit interaction on the nature
of magnetic order.53
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17U. Wurstbauer, C. Śliwa, D. Weiss, T. Dietl, and W. Wegscheider,
Nature Phys. 6, 955 (2010).

18E. Z. Meilikhov and R. M. Farzetdinova, Pis’ma Zh. Eksp. Teor.
Fiz. 87, 568 (2008) [JETP Lett. 87, 482 (2008)].

19V. N. Men’shov, V. V. Tugushev, S. Caprara, P. M. Echenique, and
E. V. Chulkov, Phys. Rev. B 80, 035315 (2009).

20F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B
57, 2037(R) (1998).

21C. P. Moca, B. L. Sheu, N. Samarth, P. Schiffer, B. Jankó,
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(2005).
52A. Yacoby, U. Sivan, C. P. Umbach, and J. M. Hong, Phys. Rev.

Lett. 66, 1938 (1991).
53G. A. Fiete, G. Zaránd, and K. Damle, Phys. Rev. Lett. 91, 097202

(2003).

075305-13

http://www.jetp.ac.ru/cgi-bin/dn/e_048_01_0095.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_048_01_0095.pdf
http://dx.doi.org/10.1103/PhysRevB.41.7929
http://dx.doi.org/10.1103/PhysRevB.69.121409
http://dx.doi.org/10.1103/PhysRevB.69.245321
http://dx.doi.org/10.1103/PhysRevB.70.129902
http://dx.doi.org/10.1103/PhysRevB.74.195334
http://dx.doi.org/10.1103/PhysRevB.74.195334
http://www.jetp.ac.ru/cgi-bin/dn/e_069_03_0558.pdf
http://www.jetp.ac.ru/cgi-bin/dn/e_069_03_0558.pdf
http://dx.doi.org/10.1103/PhysRevB.47.2233
http://dx.doi.org/10.1103/PhysRevB.47.2233
http://dx.doi.org/10.1103/PhysRevB.38.316
http://dx.doi.org/10.1143/PTP.83.815
http://dx.doi.org/10.1103/PhysRevB.44.4467
http://dx.doi.org/10.1103/PhysRevLett.94.247202
http://dx.doi.org/10.1103/PhysRevLett.94.247202
http://dx.doi.org/10.1103/PhysRevLett.66.1938
http://dx.doi.org/10.1103/PhysRevLett.66.1938
http://dx.doi.org/10.1103/PhysRevLett.91.097202
http://dx.doi.org/10.1103/PhysRevLett.91.097202

