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Tunable and abrupt thermal quenching of photoluminescence in high-resistivity Zn-doped GaN
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Tunable and abrupt thermal quenching of photoluminescence by increasing temperature has been observed for
the blue band in high-resistivity Zn-doped GaN. The photoluminescence intensity dropped by several orders of
magnitude within a few Kelvins, and the temperature at which that drop occurred could be tuned by changing
the incident light intensity. Modeling the system with rate equations for competing electron-hole recombination
flows through three defect species, one of which is a nonradiative deep donor, gives results consistent with these
observations.
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I. INTRODUCTION

Gallium nitride (GaN) has attracted great interest over the
past two decades as a material for blue and ultraviolet light
emitting devices. There has been significant progress in both
the preparation of high quality samples and the characteriza-
tion of the properties of this semiconductor. However, point
defects in GaN are not well understood. Photoluminescence
(PL) provides one way of studying them, but only a few
defect-related PL bands are identified with certainty.

Among these bands is the Zn-related blue luminescence
(BL) band that exhibits the sharp drop in PL intensity reported
here. This band has a maximum at 2.9 eV, a zero-phonon
line at 3.1 eV, and a characteristic fine structure.1–7 It is often
observed in undoped n-type GaN that is grown either by metal-
organic chemical vapor deposition (MOCVD) or hydride vapor
phase epitaxy (HVPE) methods. In such samples, the BL band
arises from uncontrolled contamination of GaN with Zn during
growth.8 It is also observed in Zn-doped GaN as the dominant
PL band, where it is usually structureless. In both undoped
and Zn-doped GaN this band is attributed to transitions from
a shallow donor (at low temperature) or from the conduction
band (at elevated temperatures) to the ZnGa acceptor.8

The energy level of the ZnGa acceptor above the valence
band edge has been estimated to be 0.40 eV at 15 K and
∼0.34 eV from 200 to 300 K (Ref. 8). Thus one would expect
a p-type conductivity in GaN:Zn. However, all attempts to
achieve such a p-type semiconductor have failed, and instead,
semi-insulating samples with an unknown type of conductivity
were produced in the past.9–12 A reasonable but unconfirmed
explanation of this failure is self-compensation of ZnGa

acceptors by unknown deep donors during growth of GaN.
In previous works that reported less dramatic decreases of

PL in GaN with increasing temperature, the thermal quenching
of the BL band has been described in terms of an activation

energy, and that approach has been controversial for many
years. In undoped or Zn-doped n-type GaN, the Arrhenius plot
reveals an activation energy of 300–400 meV (Refs. 2 and 13),
which is consistent with the ionization energy of ZnGa. In sharp
contrast, in some GaN:Zn samples an “activation energy” of
640 meV has been reported,14 which is already unreasonably
high. In the data reported here, for high-resistivity GaN
samples doped with Zn, if one interprets the slope of the
quenching of the BL band as an activation energy, that value
would be about 1 eV, which makes no sense physically. In
addition, the temperature of the quenching shifts significantly
to higher temperatures with increasing excitation intensity.
This behavior has never been reported for any defect-related
PL in GaN. The unusual quenching of the BL band in Zn-doped
GaN is consistent with a rate-equation model using acceptors,
shallow donors, and deep nonradiative donors.

II. EXPERIMENT

A. Sample characterization

We studied nine Zn-doped GaN layers grown by the HVPE
method on the c-plane sapphire (Table I). Seven of these (with
prefixes of s and ap) were grown by TDI, Inc. in the period
from 2001 to 2007, and two samples (1393 and 1394) were
grown at the MIT Lincoln Lab in 2001. The thicknesses of the
GaN layers given in Table I were estimated based on growth
conditions and were verified in some cases by measurements of
Fabry-Perot interference oscillations. The concentration [Zn]
of Zn atoms in Table I has been determined by secondary ion
mass-spectrometry (SIMS). The only sample that did not show
the dramatic thermal quenching of PL reported in this paper
was the one with the lowest concentration of Zn (ap275).

Some of the Zn-doped GaN samples from both TDI
and MIT have been shown to have a high-resistivity
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TABLE I. Characteristics of the GaN samples.

Quantum efficiency for PL bands (%)

Sample Source Growth method Doping Thickness (μm) [Zn] (cm−3) YLa BLa UVLa Excitonb

s451 TDI HVPE Zn 2.9 5 × 1018 30 0.4 0.02
s452 TDI HVPE Zn 2.9 2 × 1019 25 0.1 0.004
s454 TDI HVPE Zn 2.9 6 × 1019 1 10−4 3 × 10−4

s560 TDI HVPE Zn 5.0 unknown 25 1.5 0.03
ap269 TDI HVPE Zn 6.6 2.5 × 1018 30 0.01 0.006
ap274 TDI HVPE Zn 4.8 1.7 × 1017 25 0.07 0.03
ap275 TDI HVPE Zn 4.5 2.3 × 1016 20 0.3 0.03
1393 MIT HVPE Zn ∼10 ∼1018 20 <0.005 0.003
1394 MIT HVPE Zn 17.6 ∼1018 20 <0.005 0.003
th1011 TDI HVPE undoped 6.0 <5 × 1015 20 2 0.1
svt750 VCUc MBE undoped 3.0 unknown 1.0 0.05 0.01
r6623 VCUc MBE Si 7.6 unknown 0.1 80 0.15

aAt 15–100 K and 10−4–10−2 W/cm2.
bAt 100 K and 0.3 W/cm2.
cSamples grown in the group of H. Morkoç.

(109–1012 ohm-cm) (Refs. 11 and 14). Exact resistivity values
and whether the samples were p type or n type could not
be unambiguously established since such measurements are
difficult because of low hole mobility, poor Ohmic contacts
in high-resistivity GaN, and possible potential fluctuations
typical of compensated semiconductors.15 Moreover, in GaN
grown by the HVPE method, a highly conductive n-type
layer is sometimes formed near GaN/sapphire interface
due to contamination with oxygen.16 This layer shunts the
high-resistivity bulk region in the electrical measurements.
However, in sample s560 we were able to establish weak
p-type conductivity at room temperature with the hot probe
method.

We also characterized several undoped n-type GaN samples
grown by TDI under similar conditions. To compare the
behavior of the BL band in Zn-doped and undoped sam-
ples, we have chosen a typical sample (th1011), for which
the concentrations of free electrons, acceptors, and shallow
donors were estimated from an analysis of the temperature-
dependent Hall effect.17 The free electron concentration was
n = 1.5 × 1017 cm−3 at T = 300 K and n = 5 × 1016 cm−3

at T = 200 K. The concentrations of the shallow donors and
of all types of acceptors were ND = 6.1 × 1017 cm−3 and∑

i NAi = 3.1 × 1017 cm−3, respectively. The shallow donors
in undoped GaN are usually ON and SiGa centers.8 Zn was
not detected by SIMS in undoped GaN, which means that its
concentration must be less than ∼5 × 1015 cm−3.

B. Photoluminescence measurements

Steady-state PL was excited with a continuous-wave
He-Cd laser (50 mW, photon energy 3.81 eV). The PL
signal was dispersed by a 1200 rules/mm grating in a 0.3 m
monochromator and detected by a cooled photomultiplier tube.
By using neutral density filters and an unfocussed laser beam
with a diameter of 4 mm, the excitation power density (Pexc)
was varied from 2 × 10−7 to 0.3 W/cm2, while a focused
beam with a diameter of 0.1–0.2 mm was used to obtain
Pexc up to 200 W/cm2. A closed-cycle optical cryostat and a

high-temperature cryostat were employed for the temperature
ranges of 13–330 K and 295–650 K, respectively. The PL
spectra were corrected for the response of the optical system
by comparing the spectrum of a tungsten lamp with a standard
spectrum.

The absolute internal quantum efficiency η of PL is defined
as η = I PL/G, where I PL is the PL intensity (the number
of photons emitted per second from unit volume) integrated
over a specific spectral region and G is the concentration of
electron-hole pairs created by above-band-gap illumination
per second in the same volume. G was estimated from the
excitation power density by taking the PL active layer to be
α−1 ≈ 0.1 μm thick, where α ≈ 105 cm−1 is the absorption
coefficient for GaN at 325 nm (Ref. 18).

To find η, we first estimated, using the method described
in Appendix A, the absolute internal quantum efficiency from
PL bands in the Si-doped GaN sample (r6623). This sample
was later used as a standard to estimate the absolute internal
quantum efficiency of the BL band and other PL bands (Table I)
in GaN samples studied in this work by comparing integrated
intensities of the PL bands with those obtained from the
calibrated standard. All the samples were measured under
identical conditions, and we assumed that the light extraction
efficiency is the same for the samples and the standard. We
estimate that possible errors in the absolute internal quantum
efficiency of PL determined by this method do not exceed 30%.
The shape and position of the BL band and other defect-related
bands in GaN as a function of temperature are known from
previous studies.8 We used this information to deconvolute PL
spectra where several PL bands overlapped. The errors due
to this procedure are insignificant when compared with the
changes in PL intensity observed in this work.

Additional information on defects in GaN is obtained
from time-resolved PL measurements. We have estimated that
the lifetime for the BL band is τ ≈ 3 μs and τ ≈ 40 μs
at 180 K in HVPE-grown Zn-doped and undoped GaN,
respectively. We have similarly estimated the lifetime for the
yellow luminescence (YL) band to be τ ≈ 600 μs at 400 K
in undoped GaN (sample svt750) grown by molecular-beam
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FIG. 1. (Color online) PL spectra from undoped GaN (sam-
ple th1011) and Zn-doped GaN (ap274), where T = 13 K and
Pexc = 0.002 W/cm2. Arrows indicate the zero-phonon lines for the
BL and UVL bands and for the ZnXA exciton. The Zn-doped data
have been multiplied by 0.5.

epitaxy (MBE). The electron- and hole-capture coefficients,
CnA and CpA, for acceptors responsible for the BL and YL
bands are known from previous studies.8

III. RESULTS

A. PL spectra in undoped and Zn-doped GaN

Although the abrupt quenching reported in this paper is
observed only in Zn-doped samples, it is useful to compare PL
data for Zn-doped samples with that for undoped samples to
appreciate how dramatic the new effect really is. Figure 1
shows typical PL spectra at low temperature for undoped
and Zn-doped GaN. In undoped GaN layers (the red curve),
the excitonic luminescence (from 3.3 to 3.5 eV) includes
a sharp and intense line at 3.47 eV attributed to the A

exciton bound to a neutral shallow donor (DXA) and a weaker
peak at 3.455 eV attributed the exciton bound to the neutral
ZnGa acceptor (ZnXA). These peaks are followed by LO
phonon replicas. The defect-related PL spectrum includes the
ultraviolet luminescence (UVL) band (from 3.1 to 3.3 eV)
with the main peak at 3.26 eV and an LO phonon replica,
the BL band (from 2.2 to 3.1 eV) peaking at 2.9 eV, and a
structureless red luminescence band (from 1.5 to 2.2 eV) with
a maximum at 1.8 eV (not shown). The BL band reveals a
characteristic fine structure. This includes a zero-phonon line
at 3.085 eV and other peaks attributed to electron-phonon
coupling involving two phonon modes, which are an LO mode
with phonon energy of 91 meV and a local or pseudolocal
mode with phonon energy of 36 meV (Ref. 6). This BL band
is often observed in undoped n-type GaN grown either by
the MOCVD or the HVPE method where it appears due to
uncontrolled contamination of GaN with Zn during growth.8

In MBE-grown undoped GaN, there is no BL band, and the YL
band, with a maximum at 2.2 eV, is the dominant defect-related
band.8

The PL spectrum from Zn-doped GaN (the blue curve in
Fig. 1) is similar to that of undoped samples, but with the
donor-bound exciton line and the UVL band greatly reduced.

FIG. 2. (Color online) PL spectra from Zn-doped GaN (sample
s451) at Pexc = 10 W/cm2, for several temperatures. At 13 K, the
ZnXA exciton band consists of the zero-phonon line at 3.46 eV and
three LO phonon replicas, at multiples of 92 meV at lover energies.
At energies above ZnXA, the DXA and XA zero-phonon lines can
be seen as a peak and a shoulder, respectively. At 100 K and above,
the exciton band consists of only the XA line and its first LO phonon
replica.

The fine structure in the BL band could only be resolved
in the samples with a low concentration of Zn. Because
the same characteristic fine structure is observed in both
Zn-doped and undoped GaN, the BL band is attributed to the
same transitions involving the ZnGa acceptor for both. These
transitions are from a shallow donor (at low temperature) or
from the conduction band (at elevated temperatures) to the
ZnGa acceptor.8

For the Zn-doped GaN samples considered in this paper,
the interesting range of temperatures is above 100 K and range
of excitation intensities is below 10 W/cm2. As can be seen in
Fig. 2, at Pexc = 10 W/cm2 and T > 100 K, the BL band is
the dominant PL band. That is, the integrated intensity for the
BL band is much larger than the integrated intensities of all
the other bands combined. It becomes even more dominant as
the excitation intensity decreases or the temperature increases.
The exciton emission decreases superlinearly with decreasing
excitation intensity. Note that the ZnXA and DXA bands
quench at relatively low temperature, so that only the free
exciton (XA) and the UVL band contribute to the emission
spectrum above 3.2 eV for temperatures above 100 K. These
have relatively small quantum efficiencies (Table I) and quench
rapidly above 100 K.

B. Thermal quenching in undoped GaN

To appreciate the dramatic results of the tunable abrupt
quenching we have found in Zn-doped GaN, it is useful to
review the typical features of thermal quenching that are com-
monly observed in conductive n-type GaN. For this purpose,
we will analyze the BL band in HVPE-grown GaN (sample
th1011) and the YL band in MBE-grown GaN (svt750). In
conductive GaN the concentration of free electrons is nearly
constant in the temperature range of quenching and much

075212-3



MICHAEL A. RESHCHIKOV et al. PHYSICAL REVIEW B 84, 075212 (2011)

FIG. 3. (Color online) Temperature dependence of the BL band
quantum efficiency in conductive undoped GaN (th1011, red squares)
and high-resistivity Zn-doped GaN (s452, blue triangles). The
temperature dependence of the YL band quantum efficiency in
another undoped GaN sample (svt750) is shown for comparison
(green circles). Pexc = 3 × 10−5 W/cm2. Lines are calculated using
Eq. (1) with the following parameters: η(0) = 0.15, EA = 0.34 eV,
τ = 4 × 10−5 s, and CpA = 10−6 cm3/s (ν = 3.8 × 1012 s−1 at
200 K)(curve 1); η(0) = 0.01, EA = 0.90 eV, τ = 6 × 10−4 s, and
CpA = 10−6 cm3/s (ν = 4.4 × 1012 s−1 at 200 K)(curve 2); and
η(0) = 0.15, EA = 0.90 eV, τ = 3 × 10−6 s, and ν = 1038 s−1

(curve 3).

larger than the concentration of photogenerated electrons.
For this reason, the concentration of holes in the acceptor
determines the temperature dependence of the quenching.

The quenching of the BL band in undoped GaN is shown in
Fig. 3 as red open squares, and the linear slope on the semilog
plot of quantum efficiency versus inverse temperature suggests
that there is an activation energy EA ≈ 0.35 eV. In other words,
the quantum efficiency is proportional to exp(EA/kT ), where
k is Boltzmann’s constant. Increasing the temperature reduces
the hole concentration in the acceptor level, and this decreases
the PL intensity. Similarly, the quenching of the YL band,
which is shown in Fig. 3 as green filled circles, has an activation
energy of EA = 0.9 eV. This quenching, which begins at T ≈
200 K for the BL band and T ≈ 450 K for the YL band,
can be explained by thermal emission of holes from ZnGa

and VGa-related acceptors, respectively, to the valence band
and their consequent recombination via other radiative and
nonradiative centers.6,8,13 Therefore, for both these cases a
simple model with a single activation energy for emission of
holes explains the data, with the quantum efficiency η(T ) for
a particular band given by13

η(T ) = η(0)

1 + ντ exp (−EA/kT )
, (1)

with

ν = 1
2 [1 − η(0)]CpANv, (2)

and

CpA = σpA〈v〉, (3)

where η(0) is the low-temperature quantum efficiency, τ is the
PL lifetime, ν is the characteristic frequency associated with
the acceptor, EA is the ionization energy of the acceptor, CpA

and σpA are the hole-capture coefficient and cross section for
the acceptor, respectively, 〈v〉 is the mean velocity of free holes
(∼107 cm/s in GaN at 200 K), and Nv is the effective density
of states in the valence band (∼1019 cm−3 in GaN at 200 K).

Fits of Eq. (1) to the quantum efficiency data for the BL and
YL bands in n-type GaN are shown in Fig. 3 by the solid red and
long-dashed green curves, respectively, with parameters given
in the figure caption. In agreement with experiment, Eq. (1)
predicts that the PL intensity is independent of temperature for
T < T0 and is proportional to exp(EA/kT ) for T > T0, where
T0 is

T0 = EA

k ln (ντ )
. (4)

In the Arrhenius plot, T0 is the temperature where two lines,
corresponding to the temperature-independent and exponential
parts, cross when extrapolated.

According to Eq. (4), there is nearly a linear dependence
between T0 and EA (i.e., PL via deeper defects should start
quenching at higher temperatures and will have a steeper
slope). A good example is the YL band, which is attributed to
an acceptor with ionization energy of EA = 0.9 eV (Ref. 8).
Parameters ν and τ are not much different for various
acceptors in n-type GaN, and typical values of the hole-capture
coefficient CpA fall in the range of 10−7–10−6 cm3/s (Ref. 8).
Thus, we expect that for larger EA, PL quenching will begin at
a higher temperature and with a larger slope in the semilog plot.

C. Thermal quenching of the BL band in Zn-doped GaN

The BL band in high-resistivity Zn-doped GaN samples
exhibits strikingly different behavior from that in undoped
samples. For low excitation intensity, the quenching of the
BL band is extremely steep (with a slope ≈ 0.9 eV), and
the quenching starts at temperatures much lower than for the
undoped samples (see blue filled triangles in Fig. 3). The
PL intensity decreases by two orders of magnitude over an
interval that is only 10 K wide. Figure 4 shows the evolution
of the PL spectrum in this temperature region. The shape and
position of the BL band do not change in the process of the
abrupt quenching. The abrupt quenching of the BL band was
observed in eight Zn-doped GaN samples, as shown in Fig. 5
at a higher excitation intensity. As can be seen in this figure,
the abrupt quenching is, in some samples, followed by much
slower decrease of PL at temperatures above 250 K.

An important feature to note is that the sudden drop in PL
shifts to higher temperatures with increasing generation rate
(i.e., the quenching is tunable). This effect is demonstrated in
Fig. 6, where we show several curves of quantum efficiency,
one for each excitation intensity. In the initial analysis of the
data we extrapolated the low-temperature part (which is almost
horizontal) and the part with the largest slope to the point where
they cross and defined the temperature of this crossing as the
characteristic temperature T0 at which the sudden quenching
begins. This temperature is plotted in Fig. 7 as a function of
the generation rate G for high-resistivity GaN:Zn samples. The
slope of the dependence of 1/T0 on ln G is about the same for
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FIG. 4. Evolution of PL spectrum in high-resistivity Zn-doped
GaN (sample s452) with increasing temperature from 140 to 152 K.
Pexc = 3 × 10−5 W/cm2. The weak oscillations with the period of
about 0.08 eV are due to the interference effect in the 3-μm-thick
GaN layer.

all the samples. The abrupt and tunable thermal quenching of
the BL band has been observed in all Zn-doped GaN samples
except for the sample ap275, which has very low concentration
of Zn (Table I) and is apparently conductive n type. This
behavior is very different from typical quenching of PL in
conductive n-type samples as discussed in Sec. III B.

Although Eq. (1) can be forced to fit the high-resistivity
GaN:Zn data, as shown by the blue dot-dashed curve in Fig. 3,
this is only done at the cost of a ridiculously large value of the
parameter ν ∼ 1038 s−1. The hole capture cross section would
then be σpA ∼ 1012 cm2, which is several square kilometers.

FIG. 5. (Color online) Temperature dependence of the quantum
efficiency of the BL band for high-resistivity Zn-doped GaN samples.
Pexc = 0.3 W/cm2. As an example, for sample s454, dashed lines are
shown that cross at temperature defined as T0.

FIG. 6. (Color online) Temperature dependence of the quantum
efficiency of the BL band in high-resistivity Zn-doped GaN (ap269)
for excitation power densities Pexc between 2 × 10−7 and 0.3 W/cm2.
The solid curves are from the numerical solution of Eqs. (7)–(12) with
the following parameters: NA = 3 × 1017, NS = 1.5 × 1017, ND =
1.3 × 1017, Nc = 5 × 1014T 3/2, Nv = 3.2 × 1015T 3/2 (all in cm−3);
CnS = 10−7, CnD = 10−8, CpS = 3 × 10−6, CpA = 10−6, CnA =
4 × 10−13, CDA = 8 × 10−12 (all in cm3/s); ED = 30 meV, EA =
350 meV, and g = 2. G = 1.6 × 1023 × Pexc cm−3s−1. The upper
dashed line is calculated with Eq. (B29) and the lower dashed line
with Eq. (24) and N+

S = NS . All other parameters are the same as for
numerical solution.

Even if one tries to invoke another model of the form of
Eq. (1), the parameters are equally absurd. For example, PL
quenching for defects in semiconductors is often explained
by the so-called configuration-coordinate model, in which the
defect converts from radiative to nonradiative above a certain

FIG. 7. (Color online) Dependence of the characteristic temper-
ature T0 on excitation intensity for high-resistivity Zn-doped GaN
samples. The lines are calculated using Eq. (22) with EA = 350 meV
and different values of parameter B: 1030 (dotted line), 1031 (solid
line), and 1033 cm−3s−1 (dashed line).
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temperature.19,20 In this model, ν is the phonon frequency of
the excited defect state and EA is the energy barrier between
the minimum of the excited state of the defect and the point
where the adiabatic potentials of the excited and ground states
cross.21,22 Since a typical phonon frequency is ν ∼ 1013 s−1,
the fitted value of 1038 is equally absurd for this model. Thus
a new model is needed to explain the PL quenching in high-
resistivity Zn-doped GaN.

D. Thermal quenching of the exciton band in Zn-doped GaN

Additional evidence for the necessity of a new model
comes from the behavior of the quenching of the free exciton
band. Typically, the quenching of defect-related bands causes
a rise in the intensity of the exciton band, as explained in
Appendix A. For example, in conductive n-type GaN the
exciton emission intensity slightly increases simultaneously
with the quenching of the BL band.13

However, in high-resistivity Zn-doped GaN, the free exciton
band intensity decreases abruptly by orders of magnitude in
the same temperature region as the BL band, as can be seen in
Fig. 8, where the data for the BL band and the exciton band are
shown by blue-filled circles and red triangles, respectively. The
quantum efficiency of the exciton band decreases by orders
of magnitude at about 220 K at Pexc = 10 W/cm2. Unlike
the BL band, the exciton band has an additional quenching
behavior at lower temperatures with an apparent activation
energy of about 25 meV. These features were observed in

FIG. 8. (Color online) Temperature dependence of the quantum
efficiency of the BL band (filled circles) and exciton band (empty
triangles) for sample s451 with Pexc = 10 W/cm2. The solid blue
curve is calculated using Eqs. (7)–(12) with NA = 4.6 × 1017,
NS = 2.7 × 1017, ND = 1.6 × 1017 (all in cm−3); CpS = 2.5 × 10−6,
CDA = 4 × 10−12 (all in cm3/s); and G = 1.6 × 1024 cm−3s−1. Other
parameters are the same as for Fig. 6. The dashed red curve is
calculated for the exciton emission quenching by using Eq. (29)
with Ex = 33 meV, τx = KT 3/2 with K = 1.3 × 10−12 s K−3/2,
Ncv = 3.4 × 1014T 3/2 cm−3, Cx = 10−4 cm3/s, and with n and p

calculated with the same parameters as for the solid blue curve.

several high-resistivity Zn-doped GaN samples in which the
exciton emission was strong enough to be analyzed reliably.

IV. RATE EQUATION MODEL

To explain the dramatic behavior of PL in Zn-doped GaN,
we propose a phenomenological rate-equation model for a
semiconductor that could either be p type or n type. From
characterization of the samples, as discussed in Sec. II A, the
minimal set of centers participating in carrier recombination
in both the HPVE-grown undoped and the Zn-doped GaN
samples must include three types of point defects: the ZnGa

acceptor, the ON shallow donor, and an unknown nonradiative
center. The ZnGa acceptor has an ionization energy of about
0.35 eV at temperatures between 100 and 300 K and is
the dominant acceptor participating in PL process in these
samples. Its electron- and hole-capture coefficients CnA and
CpA, are known from previous studies (4 × 10−13 and 1 ×
10−6 cm3/s, respectively),8 and its upper limit of concentration
is roughly known from SIMS measurements (Table I). The ON

shallow donor, having the ionization energy of about 30 meV,
is the dominant shallow donor causing n-type conductivity in
undoped GaN.8 Its concentration is typically in the 1017 cm−3

range. It is expected that incorporation of oxygen due to
contamination during growth only increases when the sample
is doped with an acceptor impurity such as Zn. Thus, the
expected range of the ON centers is 1017–1018 cm−3. A
nonradiative center should be included to explain less than
100% quantum efficiency of radiative recombination (from all
PL bands). While the identity of the nonradiative center is
unknown, for certainty we will assume that it is a simple deep
donor with unknown but reasonable capture parameters and
concentration.

As illustrated by the band diagram shown in Fig. 9, our
model describes a semiconductor with a direct band gap Eg ,
shallow donors D, acceptors A and nonradiative centers S, and
these have total concentrations ND , NA, and NS , respectively.
The ionization energies for the shallow donors and acceptors
are ED and EA. The thermal emission of electrons from
the shallow donor D to the conduction band is indicated by
an upward solid arrow, and the emission of holes from the

Valence Band p

Conduction Band n

G

D0

S0

A0

CnA NA
0 n

CnD ND n ND
0 QD

CnS NS n

CDA ND
0 NA

0

CpA NA p NA
0 QA

CpS NS
0 p

FIG. 9. (Color online) Band diagram and main transitions for
a semiconductor with a shallow donor (D), acceptor (A), and a
nonradiative deep donor (S). Transitions of electrons and holes are
shown with solid and dashed arrows, respectively.
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acceptor A to the valence band is indicated by a downward
dashed arrow in Fig. 9. The rates of these transitions are
described by the emission coefficients

QD = CnDNcg
−1 exp(−ED/kT ), (5)

and

QA = CpANvg
−1 exp(−EA/kT ), (6)

where Nc and Nv are the effective densities of states in
the conduction and valence bands, respectively, and g is the
degeneracy factor of the donor and acceptor levels (assumed
to be equal to 2 for both). These emission coefficients, which
have units of s−1, play an essential role in PL quenching. The
nonradiative centers S have sufficiently deep donor level(s)
that carriers cannot escape from them at temperatures used
in our experiments. Otherwise we would see a simultaneous
increase of the intensities of all PL bands, as discussed in
Appendix A, but this was never observed. Therefore, our model
does not include any thermal emission coefficients for these
centers.

In high-resistivity GaN there are no free electrons and holes
under dark conditions at low temperature. Illumination of a
sample with a laser with energy greater than the band gap
creates electron-hole pairs at a rate G per unit volume, as
indicated by the large vertical upward arrow on the left-hand
side of Fig. 9. These become the free electrons and holes with
charge densities n and p, respectively. Although these charge
carriers may form excitons, this process is only appreciable
at low temperatures and high excitation intensities, as we
discussed in Sec. III D. Because of their low concentrations,
excitons play no role in the abrupt quenching of the BL
band, and so are not included in the model. However, the
free electrons may be captured nonradiatively by the shallow
donors D and deep donors S, as indicated by the downward
vertical solid arrows to D and S. Holes may be captured
nonradiatively by A and S centers, as indicated by the upward
dashed arrows. The only radiative transitions shown in Fig. 9
as downward green and purple solid arrows, are those from the
shallow donor D and from the conduction band to the acceptor
A, both of which combined give the BL band in GaN.

We use the traditional description of transition rates as
the product of the concentrations of available carriers and
available empty sites, multiplied by a constant factor called
the capture coefficient.22,23 In particular, CnD , CnA, and CnS

are the electron-capture coefficients for the donor, acceptor,
and nonradiative defect, respectively; CpA and CpS are the
hole-capture coefficients for the acceptor and nonradiative
defect, respectively; and CDA is the effective coefficient for
donor-acceptor pair (DAP) recombination. N+

D , N0
D , N+

S , N0
S ,

N0
A, and N−

A are the concentrations of the D, S, and A centers
in different charge states.

The rate equations under steady-state conditions can easily
be written down from the band diagram in Fig. 9. Several terms
contribute to the rate of change of free electron concentration
n. Free electrons are generated by incident light at a rate G per
unit volume and by thermal emission from the shallow donor
at rate QDN0

D . The conduction band loses electrons when they

make transitions to the shallow donor D at rate CnDN+
Dn and

to the deep donor at rate CnSN
+
S n. Our first equation is thus

∂n

∂t
= G − CnSN

+
S n − CnDN+

Dn − CnAN0
An + QDN0

D = 0.

(7)

The next equation describes the rate of change of the free hole
concentration p. Holes are created at generation rate G and by
thermal emission from the acceptor A at rate QAN0

A. They are
captured by the acceptor A at rate CpAN−

A p and by the deep
donor at rate CpSN

0
Sp, so that

∂p

∂t
= G − CpSN

0
Sp − CpAN−

A p + QAN0
A = 0. (8)

A third equation describes the gain and loss of electrons by
the shallow donors D. Donors gain electrons by capture from
the conduction band at rate CnDN+

Dn. They lose electrons by
radiative transitions to the acceptor at rate CDAN0

DN0
A and by

thermal emission to the conduction band at rate QDN0
D , so that

∂N0
D

∂t
= CnDN+

Dn − QDN0
D − CDAN0

DN0
A = 0. (9)

We also need the rate of change of electron concentration at
the deep donor S, which can gain electrons by capturing them
from the conduction band with rate CnSN

+
S n. It also loses

electrons due to hole capture from the valence band at rate
CpSN

0
Sp, yielding,

∂N0
S

∂t
= CnSN

+
S n − CpSN

0
Sp = 0. (10)

The last rate equation describes the rate of change of electron
concentration at the acceptor A. Electrons are gained by
radiative transfer from the donor D at rate CDAN0

DN0
A and

from the conduction band at rate CnAN0
An and by thermal

excitation from the valence band at rate QAN0
A. Electrons

are lost by transfer to the valence band at at rate CpAN−
A p.

Equivalently, these last two terms can be regarded as thermal
emission of holes to the valence band and capture of holes
from the valence band. The resulting rate equation is

∂N0
A

∂t
= CDAN0

DN0
A + CnAN0

An − CpAN−
A p + QAN0

A = 0.

(11)

Finally, charge is conserved, and equating the sums of positive
and negative charges gives

p + N+
S + N+

D = n + N−
A . (12)

The radiative DAP transition is actually a tunneling transi-
tion of an electron from a shallow donor D to an acceptor A.
The probability of tunneling depends on the size of the electron
wave function and the distance between D and A. Since there
is a random distribution of these distances, this causes the
transition rate to vary widely for pairs separated by different
distances. We use here the average capture coefficient CDA

to describe all such DAP transitions. Although in conductive
n-type GaN electron transitions from the conduction band to
an acceptor (eA transitions) are much less probable than the
DAP transitions below 50 K and become substantial above,8

in high-resistivity Zn-doped GaN the DAP transitions are
expected to dominate up to considerably higher temperatures.
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This is because, first of all, the concentration of free electrons
is very small, and second because the wave-function overlap
between the shallow donor electrons and the acceptor holes is
relatively large due to their high concentrations.

The DAP and eA transitions are often unresolved in the PL
spectrum, especially in the case of broad PL bands, because
the value of ED is typically much smaller than the PL band
width. Thus the quantum efficiency of the BL band is the sum
of the two contributions and is given by

η = ηDAP + ηeA, (13)

where

ηDAP = CDAN0
DN0

A

G
(14)

and

ηeA = CnAN0
An

G
. (15)

This equation assumes that G is a constant over the depth of
penetration of light, given by the inverse absorption coefficient
α−1. The quantum efficiency can also be written in terms of
the net flow of electrons from the acceptor to the valence band
as

η = CpAN−
A p − QAN0

A

G
. (16)

We solve numerically the set of nonlinear equations (7)–
(12) and find good agreement with the experimental data
shown in Fig. 6, where the solid curves are the numerical
solution using the parameters given in the caption. As can be
seen, the model explains both the abruptness of the quenching
and the excitation dependence. As we mentioned in Sec. II
many of these parameters are experimentally measured and
others have quite restrictive ranges of reasonable magnitudes.
All the nonradiative transitions have lifetimes of the order of
10−10 s, while the radiative transitions have lifetimes that are
several orders of magnitude larger. For most of the defects in
GaN, radiative lifetimes are of the order of 1 μs or more,8

which provides a constraint on the relative values of all
the capture coefficients. The parameters EA, CnA, and CpA

were determined from the quenching of the BL band and
time-resolved PL in conductive n-type GaN samples, and
the value of ED ≈ 30 meV is known from the exciton PL
spectroscopy.8 From the temperature-dependent Hall effect
in undoped n-type GaN, we have determined the reasonable
order of magnitude of concentrations of shallow donors and
acceptors to be of the order of 1017 cm−3. Therefore, the
flexibility in choosing parameters to fit the data is very limited
due to this large body of experimental information about these
samples. It is clear that the model explains both the abruptness
of the quenching and the excitation dependence, which was
not possible with the simpler model described by Eq. (1) of
Sec. III B.

The tunable abrupt quenching actually represents a
crossover from one type of behavior of the system to another
at a characteristic temperature T ∗. Just below T ∗, all of the
deep donors S are neutral (i.e., filled with electrons) and the
quantum efficiency of this nonradiative channel is about 80%,
with the other 20% through the radiative DAP transition, and

a negligible fraction through the eA transition. Above T ∗,
almost all deep donors are empty (i.e., depleted of electrons or
filled with holes), and nearly 100% of carrier recombination
occurs through the S center, resulting in a drop of orders of
magnitude in the radiative DAP and eA transitions.

To gain insight into the reasons for this crossover in
behavior, the abruptness of the crossover, and the temperature
dependence of T ∗, it is useful to analyze Eqs. (7)–(12) and
obtain approximate analytic solutions for various temperature
ranges, and especially for the temperature region around the
crossover. We have given detailed derivations in Appendix B,
and here we will summarize the main points. We first describe
the case of a high-resistivity p-type semiconductor (Sec. IV A).
For comparison, since there is not absolute certainty that
all the samples were indeed p type, we will consider in
Sec. IV B an n-type high-resistivity semiconductor. To show
that this model encompasses the usual PL quenching, we will
consider a conductive n-type semiconductor in Sec. IV C.
In Sec. IV D, we will show that the temperature depen-
dence of the exciton-band quenching is consistent with the
model.

A. High-resistivity p-type semiconductor

Here we consider a high-resistivity p-type semiconductor
with a shallow donor, a relatively deep acceptor, and a
nonradiative donor. This specific model, in which NA >

ND + NS , yields the solid curves in Fig. 6. We begin the
discussion with the region of temperature below T ∗, which
for Pexc = 0.3 W/cm2 is the approximate temperature range
100 K< T < 200 K shown in Fig. 10. Figures 10 and 11
show the various concentrations along with the resulting
quantum efficiencies calculated numerically. Figure 10 is
plotted with concentrations and quantum efficiencies on a

FIG. 10. (Color online) Calculations for a high-resistivity p-type
semiconductor, showing temperature dependences of concentrations
of free electrons (n), holes (p), neutral shallow donors (N0

D) and
positively charged S centers (N+

S ), and quantum efficiencies of the
DAP and eA emission. The parameters are the same as were used in
Fig. 6 with Pexc = 0.3 W/cm2 (G = 4.8 × 1022 cm−3s−1).
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FIG. 11. (Color online) Calculations for a high-resistivity p-type
semiconductor, showing temperature dependences of concentrations
of charged and neutral defects. All parameters are the same as in
Fig. 10.

logarithmic scale versus inverse temperature, and Fig. 11 is a
linear plot of the larger concentrations over a smaller range
of inverse temperatures. These plots illustrate the relative
importance of each variable as the temperature approaches the
crossover.

In the dark the S centers are completely empty, but for
an excitation power Pexc < 1 W/cm2 they are 99.5% filled
with electrons at 100 K, while the shallow donors are almost
completely depleted of electrons (N+

D ≈ ND). The S centers
become almost completely filled (N0

S ≈ NS) with increasing
temperature, as exemplified by the decrease of N+

S with
the activation energy of ED , as shown by the dotted black
curve in Fig. 10. This is because the free electrons, after
being captured by shallow donors, may escape back to the
conduction band before they recombine with holes via the DAP
transition. This leads to a gradual increase of n with the same
activation energy ED . The increased concentration of electrons
in the conduction band, combined with their fast capture by S

centers, leads to the corresponding decrease in N+
S . However,

when the temperature increases sufficiently, holes can be
emitted by the acceptor, and this breaks the bottleneck in the
S channel.

Although the dramatic change in concentrations results
from a complicated interaction between the acceptors, free
holes, and S centers, one can see evidence for what happens
by considering the changes in concentration of free holes. Up
to a temperature very close to the crossover T ∗, the only holes
in the valence band are those that are optically generated, with
a concentration

p ≈ p0 = G

CpSNS + CpAND

, (17)

which is obtained from Eq. (B11) of Appendix B with N+
S and

QA set to zero.

As the temperature approaches T ∗, the thermal emission
of holes from the acceptor level to the valence band cannot
be ignored and the thermal contribution pth can be included
approximately by keeping the term containing QA(NA − NS)
in Eq. (B11) and substituting for QA from Eq. (6), with the
result

p = p0 + pth

= p0

[
1 + CpA(NA − ND)Nv

gG
exp

(
−EA

kT

)]
. (18)

The hole concentration p increases with temperature and, as
T → T ∗, it approaches a characteristic value

p → plim = G

CpSNS

, (19)

above which the concentration of electrons at the S centers
must become much less than NS . This is because, according to
Eq. (8), the hole capture rate CpSN

−
S p must be less than G at

any temperature. In such a situation, the entire recombination
current would be through the S channel, assuming that the S

level were filled with electrons.
Therefore, as the concentration of holes approaches plim,

the value of N+
S starts increasing dramatically because ad-

ditional holes are available to open the bottleneck in the S

channel. The concentration of ionized S centers (N+
S ) changes

by orders of magnitude, from N+
S � NS to N+

S ≈ NS , in
a narrow temperature range (close to 1000/T ∗ = 4.43 K−1

in Figs. 10–12). In this same temperature range p changes
by about 20%. This abrupt change in N+

S is accompanied
by a drastic decrease in the concentration of free electrons
because many more holes are now available at S centers
for recombination. There is also an abrupt decrease in
the concentration of electrons at donors. The drops in the
concentrations of electrons in the conduction band and at
donors result in drops in the DAP and eA quantum efficiencies
because the availability of free electrons is crucial for these
transitions, as is evident from Eq. (13).

In Appendix B, we show that Eqs. (7)–(12) can be reduced
to a cubic equation in N+

S , given by Eq. (B12), and that the
other concentrations can be obtained from this. The quantum
efficiency obtained from the solution of this cubic equation,
Eq. (B18), is indistinguishable from the numerical solution,
which is the black solid curve in Fig. 12. Below and up to
a few degrees above the crossover temperature T ∗, the cubic
equation can be reduced to a quadratic solution for N+

S , given
by Eq. (B26), and the quantum efficiency obtained from that
solution is shown by the blue dashed curve with squares. From
less than 1 K above the crossover to above 300 K, the cubic
equation reduces to a different quadratic, with the solution
given by Eq. (B20), and the quantum efficiency obtained from
that is shown as the red dotted curve. The flat black dotted line
at the top is the linear extrapolation of the lower temperature
solution, given by Eq. (B29) and the lower black dotted line
is the linear extrapolation from higher temperatures, given by
Eq. (B24) with N+

S = NS .
With a slight change in notation, the approximate PL

quantum efficiency in the temperature range from 100 K to
very close to T ∗, from Eq. (B28) in Appendix B, is

η = η0[1 − ξ exp (−EA/kT )], (20)
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FIG. 12. (Color online) Temperature dependence of the quantum
efficiency η of PL including DAP and eA components near T ∗. The
black solid curve is the numerical solution of Eqs. (7)–(12). The
dashed blue curve with squares is approximate solution obtained
using Eq. (B18) with N+

S from Eq. (B26). The dot-dashed green
curve for T < T ∗ is obtained with Eq. (20). The dotted red curve
for T > T ∗ is obtained with Eq. (24) with N+

S from Eq. (26). The
top dotted black curve is obtained with Eq. (B29) and the bottom
dotted black curve is obtained with Eq. (B24) with N+

S = NS . All
parameters are the same as in Figs. 10 and 11.

where

ξ = CpSNS(NA − ND)Nv

gGND

. (21)

and η0 is given by Eq. (B29) in Appendix B. The green dot-
dashed curve in Fig. 12 is calculated with Eq. (20).

The crossover temperature T ∗ at which the abrupt quench-
ing of the acceptor-related PL takes place can be found by
equating Eqs. (18) and (19) and rewriting in terms of η0 from
Eq. (B29), which gives

T ∗ = EA

k ln (B/G)
, (22)

with

B = CpA

(
1

η0
− 1

)
(NA − ND)

Nv

g
. (23)

As explained in Appendix B, this is the same temperature at
which the zeroth order approximation for N+

S at a temperature
above T ∗ drops to zero and leads to Eqs. (B22) and (B23).
Of course, substituting Eq. (22) into the expression for the
quantum efficiency in Eq. (20) causes η to become zero,
which is unphysical, but this equation is only the zeroth order
approximation at this temperature. Since N+

S increases rapidly
in the crossover region, it can no longer be ignored, and
when a more accurate expression is used, as in Eq. (B18)
of Appendix B, this problem never arises.

According to Eq. (22), the characteristic temperature T ∗
increases with excitation intensity, and the region of PL
quenching shifts to higher temperatures (Fig. 6). The solid
curve in Fig. 7 is obtained with Eq. (22) with EA = 350 meV

and B = 1031 cm3/s. The data for all high-resistivity samples
can be fit fairly well with the same activation energy and
parameter B within the range of 1030–1033 cm3/s.

After the abrupt drop, the quantum efficiency of the S

channel becomes almost 100%. At temperatures above T ∗,

η ≈ ζ

(
NA − ND − N+

S

N+
S

)
(24)

with

ζ = CDA

CnS

gND

Nc

eED/kT + CnA

CnS

, (25)

and

N+
S = 1

2 (NA − ND + NS + N2)

− 1
2

√
(NA − ND − NS + N2)2 + 4N2(ND + NS),

(26)

where N2 = (CpAG)/(CpSQA), and QA is defined with
Eq. (6). These are the same as Eqs. (B24), (B8), and (B25),
respectively, in Appendix B.

The value of the drop R∗ in η at T ≈ T ∗ can be estimated
as the ratio of the values given by the two linear extrapolations
from low and high temperature, respectively, as shown in
Fig. 12. This results in

R∗ = η0NS

ζ ∗ (NA − NS − ND)
, (27)

where ζ ∗ is the value of ζ in Eq. (25) evaluated at T ∗. For
the parameters of Fig. 12, ζ ∗ ≈ 6 × 10−5 and R∗ ≈ 3 × 104.
It is useful to write Eq. (27) in terms of η0 instead of using
its expression given by Eq. (B29) because this value can be
determined experimentally. From Eq. (27) we can see that
the value of the drop in quantum efficiency is large when
ζ ∗ is small. This occurs when CDA and CnA are both small
compared with CnS , which is typical for optical transitions that
are much slower than nonradiative capture. It is also favorable
to have a sample with a high degree of compensation (i.e.,
when NS + ND → NA). The value of the drop also increases
with increasing excitation intensity because then T ∗ increases.

The steepness of the slope can be estimated by considering
the solution of the equations at T ∗. The log slope of the
quantum efficiency is

d(ln η)

d(1/T )
≈ EA/k

2
√

ζ ∗λ
, (28)

where λ is given by Eq. (B35). For the parameters of Fig. 12,
λ ≈ 15.4, and d(ln η)/d(1/T ) ≈ 16EA/k, which corresponds
to an “activation energy” of 5.7 eV. In Fig. 13, the long-dashed
line has this slope, and it agrees with the slope of the calculated
curve, shown as the solid black curve, at the crossover
temperature T ∗ We see that it is the small quantity ζ ∗ in the
denominators of both R∗ and of the logarithmic slope that
leads to both the large drop and the steepness of the slope in
the abrupt quenching.

The experimentally observed PL drop at T = T ∗ is less
abrupt than the calculated one, and it is sample dependent, as
can be seen in Figs. 6 and 5. In different GaN:Zn samples,
for different excitation intensities, the slope of the abrupt
quenching versus temperature corresponds to an “activation
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FIG. 13. (Color online) The acceptor-related PL quantum effi-
ciency at temperatures close to the abrupt quenching for a high-
resistivity p-type semiconductor. The solid black and dotted red
curves are the numerical solution of Eqs. (7)–(12) with parameters
as in Fig. 12, with the assumption that the excitation intensity is not
changing in the effective depth equal to inverse absorption coefficient
α−1 (solid black curve) and with the assumption that the excitation
intensity decreases as α exp (−αx) where α = 105 cm−1 and x = 0
at semiconductor surface (dotted red curve). The dashed line shows
the dependence I PL ∝ exp (Eeff/kT ) with Eeff = 5.7 eV.

energy” varying between 600 and 1000 meV. This rounding
or blurring of the drop might be due to a decrease in
incident light intensity with depth. Indeed, for the calculations
discussed earlier in this section, we have assumed that within
an active layer of thickness α−1, where α is the absorption
coefficient, the generation rate G is constant. This corresponds
to the calculated curves in Figs. 6 and 10–12 and to the
solid black curve in Fig. 13. However, if we account for
the exponential decrease of the excitation light intensity
inside the semiconductor by integrating the PL intensity
arising from different depths,24 the position and shape of the
abrupt transition change only slightly, as shown by the red
dotted curve in Fig. 13 (the slope decreases by only 25%
and the value of 1/T ∗ increases by less than 10−5 K−1).
Diffusion of photogenerated carriers was disregarded because
the diffusion length of holes in high-resistivity GaN at low
excitation intensity is expected to be less than 0.1 μm (Refs. 25
and 26).

There are other possible explanations for the blurring of
the crossover. One is that there may be several types of
nonradiative defects present in the samples, with one of them
dominant in the competition between recombination channels.
Another explanation is that there may be potential fluctuations
in high-resistivity semiconductors that occur because of a
random distribution of charged defects.15,27 Both of these
would be sample dependent and might explain why the largest
slope of the drop in PL in the semilog plot versus temperature is
sample dependent with the effective energy of the “activation”
varying between 600 and 1000 meV in different GaN:Zn
samples.

B. High-resistivity n-type semiconductor

An inspection of Fig. 6 shows that we were unable to
confirm in all cases that the high-temperature slope approached
the lower dashed line with slope ED , particularly in cases of
low incident power levels. For this reason, we now consider
a high-resistivity n-type semiconductor in which ND + NS >

NA > ND and the Fermi level is close to the S level in the
dark. For these conditions, acceptors are completely filled
with electrons, shallow donors are empty, and the S centers
are partially filled with electrons. Under illumination, as for
the p type, the electron population of the S centers increases
and the acceptors become partially filled with holes. The
sharp drop in the curves occurs at about the same crossover
temperature T ∗ (Fig. 14). However, at higher temperatures
beyond this drop, the computed quantum efficiency decreases
as exp [(EA + ED)/kT ], that is, with an activation energy
EA + ED in place of ED .

Compared with the p-type case, the concentrations of
various carriers are similar below the crossover but quite
different above the crossover, as can be seen from Figs. 15
and 16, as compared with Figs. 10 and 11. Above the crossover,
T > T ∗, N0

A decreases as exp (EA/kT ), and the concentration
p of free holes is independent of temperature. Both the
DAP and eA quantum efficiencies decrease with activation
energy close to EA, and the total PL signal decreases as
η ∝ exp (EA + ED)/kT .

The PL quantum efficiency can still be approximated
by Eqs. (20) and (24) for a temperature below and above
T ∗, respectively. The quenching of the PL in this case is
reminiscent of the PL quenching in a conductive n-type
semiconductor in that it shows an activation energy close to
EA (when EA � ED) and continues without any saturation.
However, the overall behavior of the PL is quite different
because the PL quantum efficiency above the crossover is much

FIG. 14. (Color online) Temperature dependence of the quantum
efficiency of the BL band in high-resistivity Zn-doped GaN (ap269),
where the experimental points are the same as in Fig. 6. The solid
curves are the numerical solution of Eqs. (7)–(12) for the case of a
high-resistivity n-type semiconductor with NA = 2.7 × 1017 cm−3.
Other parameters are the same as in Fig. 6.
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FIG. 15. (Color online) Calculations for a high-resistivity n-type
semiconductor for the same quantities as in Fig. 10, for ND + NS >

NA > ND , with NA = 2.7 × 1017 cm−3. Other parameters are the
same as in Fig. 6 with Pexc = 0.3 W/cm2 (G = 4.8 × 1022 cm−3s−1).

smaller than it would be for the conductive case and strongly
depends on excitation intensity, in contrast to T0 in Eq. (4).

The abrupt quenching of PL with the crossover temperature
T ∗ tunable with excitation intensity is a signature of all high-
resistivity semiconductors. In addition, one can determine
whether the semiconductor is n or p type from the behavior
of the PL quantum efficiency at temperatures above the abrupt
drop. The experimental dependences shown in Fig. 5 indicate
that at least some GaN:Zn samples are p type since the data
do appear to approach a slope of ED rather than EA. This

FIG. 16. (Color online) Calculations for a high-resistivity n-type
semiconductor, showing temperature dependences of concentrations
of the same charged and neutral defects as in Fig. 11. All parameters
are the same as in Fig. 15.

could only be seen at the higher excitation powers for which
the sensitivity of our PL set-up allowed for reliable detection
beyond the crossover.

C. Conductive n-type semiconductor

In a conductive n-type semiconductor, ND > NA and the
Fermi level is close to the conduction band. Acceptors and
nonradiative defects are completely filled with electrons,
making N−

A = NA, while shallow donors are only partially
filled with electrons in the dark. At sufficiently low excitation
intensity, such that the PL intensity increases linearly with
excitation intensity, the concentration of holes at the acceptors
is negligible, and the PL quantum efficiency due to eA

transitions is given by Eq. (1), where τ = 1/CnAn (Refs. 8
and 13).

For conductive n-type semiconductors, in the case of low
excitation intensity (N0

A � NA and N+
S � NS), Eq. (1) can be

derived from Eqs. (7)–(12). Quenching of the acceptor-related
PL band begins when the second term in the denominator
of Eq. (1) becomes comparable to unity [i.e., at T0 defined
by Eq. (4)]. The activation energy of this quenching is
approximately equal to EA (reduced slightly due to the
temperature dependence of Nv).13 Since T0 is independent
of G, the temperature dependence of the defect-related PL
quantum efficiency is expected to be independent of excitation
intensity, which has, in fact, been observed in our experiments
on n-type GaN. Numeric calculations using Eqs. (7)–(12) give
essentially the same result as in the simplified model presented
in Ref. 13 because the differences in the models (the lack of
DAP luminescence in Ref. 13) are hidden in the parameter τ ,
which can be determined experimentally.

D. Quenching of exciton emission in high-resistivity
Zn-doped GaN

Our model also explains the sudden quenching of the
exciton luminescence at T ≈ T ∗ (Figs. 2 and 8). At low
temperatures (T < 50 K) the exciton emission is dominated
by annihilation of the acceptor-bound excitons ZnXA, and at
higher temperatures the free exciton emission XA dominates
(Fig. 2). The binding energies of the ZnXA exciton (24 meV)
and the XA exciton (26 meV) are close to each other,8 so
that when the intensity, integrated over the entire excitonic
spectrum, is plotted versus the inverse temperature, a single
slope corresponding to an activation energy of about 25 meV is
observed in the temperature range of 40–150 K (Fig. 8). How-
ever, the free exciton emission intensity should be proportional
to the concentration of free electrons, which, according to
our model, abruptly decreases when the temperature reaches
T ∗ (Fig. 8). To illustrate that the exciton emission behavior
supports our model, we will derive below an expression for
the free exciton emission intensity and compare its temperature
dependence with the experimental data.

From Eq. (A4) of Appendix A, within a commonly used
approach,28–32 we can obtain the following expression for the
integrated emission intensity related to free excitons

ηx = Nx

τxG
= Cxnp/G

1 + τxQx

, (29)
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where Nx and τx = KT 3/2 are the concentration and lifetime
of free excitons. K is a constant of the order of 10−12 s/K3/2

(Ref. 31), and Qx = 0.5CxNcv exp(−Ex/kT ), where Ncv =
2(2πmxkT )3/2/h3 is the density of states for free excitons
with mass mx (Refs. 31 and 32). The dashed red curve
in Fig. 8 shows a fit of Eq. (29) with Ex = 33 meV and
other parameters given in the figure caption. According to
Eq. (29), the decrease of the free exciton emission intensity
with increasing temperature from ∼50 to ∼150 K is caused
by the increase of Qx and τx , and this decrease is partially
compensated by an increase in n with temperature. The value
of Ex in this fit is larger than the value Ex = 26 meV obtained
for high-quality GaN from the exciton PL spectroscopy.33 This
indicates that we apparently overestimated the value of ED for
the shallow donor in GaN. Indeed, due to the relatively high
concentrations of donors and acceptors, the effective value
of ED in Zn-doped GaN should be smaller than in high-
quality undoped GaN. In fact, the temperature dependence
of the quantum efficiency of the BL band calculated with
Eqs. (7)–(12) is quite insensitive to the variation of ED in the
range from 5 to 50 meV.

V. DISCUSSION

A. Early reports on PL quenching in other materials

Indications of tunable PL quenching were reported in
studies of phosphors beginning in the 1940’s. Klasens34 and
Vergunas and Gavrilov35 observed a gradual PL quenching
from defects in ZnS that started at a characteristic temperature,
and that temperature shifted to larger values with increasing
excitation intensity. A similar shift was observed with de-
creasing concentrations of nonradiative defects (then called
“killer centers”) in ZnS.34 Both observations are consistent
with the shift of T ∗ with G given in Eq. (22) of our model.
At the time, these researchers interpreted this temperature
dependence using Eq. (1) by suggesting that the product ντ

is not constant but depends on excitation intensity as G−1/2.
Klasens,36 Garlick and Gibson,37 and Bube38 used ντ ∝ G1−n,
where n varies between 1 and 2, to explain extensive data on
PL from defects in ZnS. In all these papers the activation
energy EA in Eq. (1) was identified with the ionization energy
of a defect level not far from the valence band. There were
no observations of particularly abrupt quenching of PL with
increasing temperature, although Klasens36 suggested that this
might be possible. However, this speculation employed a rather
poorly justified two-center model consisting of a radiative
donor close to the valence band and a nonradiative acceptor
close to the conduction band. His model did predict a linear
increase of 1/T ∗ with 1/ ln G, but, beyond the drop, the PL
intensity was predicted to decrease as exp (EA/2kT ) with
increasing temperature.

Later, Maeda39 observed tunable quenching of PL attributed
to DAP transitions in GaP. In his experimental data, 1/T ∗
increased with excitation intensity as 1/ ln G, but the steepest
slope in his semilog plot versus inverse temperature was only
118 meV. Maeda40 also observed tunable although not abrupt
quenching of PL in semi-insulating CdS with activation energy
as large 140 meV and a shift of T ∗ with excitation intensity
in both PL and photoconductivity and only in high-resistivity

CdS. These observations appear consistent with our model,
which predicts both a drop in PL and a decrease in conduction
electron density n at T ∗. This last report is the most recent
mention of tunable quenching in PL of which we are aware.

B. Abrupt tunable quenching of PL in high-resistivity
Zn-doped GaN

We observed an abrupt tunable thermal quenching of PL in
high-resistivity Zn-doped GaN. The BL band intensity drops
sharply at a crossover temperature T ∗, the value of which
strongly depends on excitation intensity. This drop is much
steeper than is seen at comparable temperatures in n-type GaN,
and the PL quantum efficiency η decreases by several orders
of magnitude over an interval ∼10 K.

These observations of abrupt thermal quenching of PL are
consistent with a rate-equation model that is presented in detail
in Sec. IV. This model, in its basic form, supposes that the
samples are high-resistivity p type and contain three major
defect species. The numerical solutions of the rate-equation
model proposed in Sec. IV to describe high-resistivity GaN
agree well with the experimental observations, as can be seen
in Fig. 6, and the parameters needed are reasonable and are
consistent with the information that we could obtain from
other sources. The model allows us to identify the crucial
small parameter ζ defined in Eq. (25). As Eqs. (27) and (28)
show, the smaller the parameter ζ , the greater the drop and the
steeper the slope of the quenching on the semilog plot.

The model not only explains the position and steepness
of the slope for any given sample, but also accounts for the
dependence of the temperature of the abrupt quenching on the
generation rate G. This can be seen in Fig. 7. The characteristic
temperature of the quenching T0 represents a temperature at
which the constant low-temperature value of the quantum
efficiency, when extrapolated to higher temperatures, crosses
the largest slope of the dependence in its quenching region.
In Sec. IV we defined the characteristic temperature of the
quenching T ∗ more physically motivated as the temperature at
which the system crosses over from one simple, approximate,
type of behavior to another, in which different terms in
the rate equations dominate, as discussed in Appendix B.
The difference between 1/T0 and 1/T ∗ is small (about
3 × 10−4 K−1 for sample ap269) and is independent of the
excitation intensity. Thus, the use of 1/T0 instead of 1/T ∗ will
cause an overestimate of parameter B (by about a factor of 4
for sample ap269). However, the use of both 1/T0 and 1/T ∗
gives the same slope in their dependence on ln G, and this
slope can be used to determine the activation energy EA of
the acceptor in our model. It is easier to find T0 from a graph
such as seen in Fig. 5 since finding T ∗ requires performing a
precise fit similar to the one in Fig. 6. The fit in Fig. 7 allows us
not only to find EA, but also to find the parameter B and then
to estimate NA − ND from Eq. (23). By using data in Fig. 7
and the value of η0 for the BL band from Table I, we find that
the value of NA − ND for all high-resistivity GaN:Zn samples
lies in the range from 2 × 1017 (for sample ap274) to 5 × 1018

(for sample s452). Note that these values would be smaller by
approximately a factor of 4 if we used the more accurate value
1/T ∗ instead of the rough value 1/T0.
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Our model also explains the sudden quenching of the ex-
citon luminescence simultaneously with the sharp quenching
of the BL band (Fig. 8). This happens due to the abrupt drop
of the free electron concentration at T ≈ T ∗. These results
predict that under UV illumination the samples are conductive
n type at temperatures below T ∗ and become p type or
high-resistivity n type at higher temperatures. The model also
predicts that intensities of other defect-related PL bands caused
by transitions of electrons from the conduction band or from
the shallow donor should also drop at T ∗ because, similar to
the ZnGa-related BL band, they depend on the concentrations
of free electrons and of electrons bound to shallow donors in a
high-resistivity semiconductor. Remarkably, in samples where
the PL spectrum contained other PL bands, we observed their
quenching at T ∗ with a large activation energy.

Although the abrupt tunable quenching of PL, discovered
and explained in this work, may be observed in high-resistivity
semiconductors with n- and p-type conductivity, the exper-
imental dependences shown in Figs. 5 and 6 indicate that
at least some GaN:Zn samples are p type. The BL band,
weakly dependent on temperature, could be clearly observed
in several samples well above T ∗ when the sensitivity of our
PL setup allowed for reliable detection of PL. In the case of
high-resistivity n-type GaN:Zn we expect to see quenching
with an activation energy close to 0.4 eV immediately after
the abrupt transition, as shown in Fig. 14. The results of this
work show that PL can be used as contactless method for
distinguishing p- and n-type conductivity in high-resistivity
semiconductors in which abrupt quenching of PL is observed.

C. Nonradiative defects in GaN

Calculations based on density-functional theory predict
formation of donors in GaN doped with acceptors.41 The main
candidate is nitrogen vacancy VN which is expected to exist
in several charge states and most probably is a negative-U
defect.41,42 VN has a low formation energy in p-type GaN
and a relatively high diffusion probability when in the 3+
state.43 In this work we considered a simple deep donor as the
nonradiative S center. However, the behavior of PL in GaN
containing multicharged nonradiative donors is expected to be
similar because for the conditions of PL at low temperature
the multicharged nonradiative donor will be saturated with
electrons and will appear only in two charge states, + and
0. The details of thermal quenching of PL for the case of
the multicharged nonradiative defects were beyond the scope
of the present paper. Based on results of this work, we can
predict some properties of the unknown nonradiative defect
in GaN. It should be a deep donor (deeper than 0.4 eV),
with a concentration of 1017–1018 cm−3 in Zn-doped GaN.
It has large capture cross sections for both electrons and
holes (the electron-capture coefficient for its S+ state and the
hole-capture coefficient for its S0 state are of the order of
10−7–10−6 cm3/s).

We expect that during high-temperature growth VN is
mobile and forms complexes with hydrogen,44 ZnGa, and
other acceptors. To the best of our knowledge, the properties
of a complex such as VNZnGa, which is expected to be a
doubly charged donor, have not been investigated theoretically.

Therefore, the formation energy and energy levels of this
complex are unknown.

An obvious question is whether the tunable abrupt quench-
ing of PL found in Zn-doped GaN could also be seen in
Mg-doped GaN. Magnesium is the only impurity currently
available for reliable production of p-type GaN. In GaN
heavily doped with Mg (NMg > 1018 cm−3) a broad blue
band dominates in the PL spectrum. The blue band has a
maximum that shifts from ∼2.7 to 2.9 eV with increasing
excitation intensity, and this band is attributed to DAP-type
transitions involving a deep donor (ED ≈ 0.4 eV) and the
shallow MgGa acceptor (EA ≈ 0.15–0.20 eV) (Ref. 45). The
DAP transitions involving the deep donor become dominant
in PL from GaN:Mg due to the large concentration of Mg
acceptors and the relatively large size of the hole wave function
for the shallow acceptors. The deep donor is assumed to be
the VNMgGa complex.46 The intensity of the blue band in
Mg-doped GaN does not change much with temperature, and
no abrupt or tunable quenching of PL has been reported for this
material.8 If the same nonradiative donor, as in GaN:Zn, caused
the inverse population of energy levels and was the bottleneck
in recombination of electrons in GaN:Mg, we would expect,
according to numerical calculations, a small (by a factor of 10
at most) and not abrupt drop of the blue band at temperatures
around 100 K. This is because the value of the drop decreases
with decreasing T ∗ and with increasing ED , see Eq. (27).
Moreover, the expected drop may be considerably rounded due
to large potential fluctuations typical for GaN:Mg (Ref. 45).

It appears that GaN doped with Zn, moderately con-
taminated with oxygen, and containing a deep nonradiative
donor due to self-compensation, is an especially favorable
material for the observation of the abrupt and tunable
thermal quenching of PL. Apparently this material is not
appreciably contaminated with other defects and has moderate
potential fluctuations. Relatively intense exciton emission
containing sharp lines in these samples (at low temperature
and sufficiently high excitation intensity) supports the latter
assumption.

VI. SUMMARY

We observed dramatic thermal quenching of the blue
luminescence band in Zn-doped GaN layers. Namely the PL
intensity abruptly decreases at a characteristic temperature T ∗,
the value of which strongly depends on excitation intensity.
The phenomenon has been explained within a phenomeno-
logical model, with the assumption that the samples are
either high-resistivity n type or p type and contain three
major species: an acceptor ZnGa, a shallow donor ON, and an
unknown nonradiative deep donor. It is possible that the deep
donor is the anticipated nitrogen vacancy VN or the VNZnGa

complex in p-type GaN. In this work we also suggested a
method of how from the study of PL one can determine the
type of conductivity in semi-insulating semiconductors when
it is difficult to determine it by electrical methods.
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APPENDIX A: CALIBRATION OF
THE QUANTUM EFFICIENCY

A calibration of the optical setup is necessary to obtain a
reasonable estimate of the absolute internal quantum efficiency
of PL. The method of determination of the internal quantum
efficiency from the temperature dependence of PL was
suggested in Refs. 47 and 13 and will be described below
in more detail. The main idea of the method can be formulated
as follows: The thermal quenching of one of the radiative
recombination channels results in the simultaneous increase
of recombination rate (or PL intensity) via all other recom-
bination channels, and the magnitude of this relative increase
depends on the absolute internal quantum efficiency of the
quenching channel. If one can determine the absolute internal
quantum efficiency for one “calibration” sample, then the
internal quantum efficiency of different PL bands for other
samples can be estimated by comparing the integrated PL
intensities, provided that all the samples are measured under
identical conditions.

An analogy to the method of calibration of quantum
efficiency can be found in the determination of the magnitude
of the current in a parallel resistor network in which resistances
are unknown and the total current I is held constant. Suppose
that there is a switch in each branch that can be opened to cut off
the current through that branch. The switches are opened one at
a time, while one monitors the current in a branch for which the
switch remains closed. One then records the ratio Rk between
the current with k switches closed to that with k − 1 switches
closed, Rk = Ik/Ik−1. The initial current I through the network
can then be found, for k = 0,1,2, . . . , from the ratios Rk . In
the PL experiment, the generation rate G plays the role of
the constant current source, and the recombination currents
play the role of the currents through the individual resistors.
Thermal quenching of the electron recombination currents
sometimes produces clear steps in temperature dependences of
PL intensity.13,47,48 The latter process can be modeled with rate
equations that permit the current steps to be extrapolated back
to low temperature, and that is what we do in our calibration
procedure described below.

To estimate the internal quantum efficiency of PL bands
in this work, we have used as a calibration standard a
degenerate n-type Si-doped GaN sample r6623 grown by
MBE. This sample, having a free-electron concentration of
about n ≈ 3 × 1018 cm−3 and a relatively high concentration
of unidentified shallow acceptors, demonstrated an excep-
tionally high quantum efficiency for the UVL band at low
temperature.48 Si-doped GaN contains shallow donors D with
concentration ND , several acceptors A with concentrations
NAα , and nonradiative centers S with concentration NS .
In the sample r6623, chosen as a calibration standard, the
equilibrium concentration of free electrons is far larger than the
concentration of photogenerated electrons at any temperature.

Essentially all acceptors are ionized, and there are no free holes
in the valence band in the dark.

Under continuous illumination, electron-hole pairs are
produced with a generation rate G per unit volume, and this
produces a free hole concentration p, with a negligible increase
in free electron concentration n. Holes are then captured by
acceptors at a rate CpAαN−

Aαp, where CpAα is the hole-capture
coefficient for the αth acceptor and N−

Aα is the concentration
of negatively charged acceptors. Competing with this is the
formation of excitons of steady-state concentration Nx with
the rate Cxnp, where Cx is the exciton formation coefficient.
Also competing is the nonradiative recombination of electrons
and holes, which has the rate CpSN

−
S p, where CpS and N−

S are
the hole-capture coefficient and concentration of nonradiative
centers, respectively. For all these cases, holes captured by
defects or excitons may return to the valence band as a result of
thermal excitation. The rate of these processes is Qi , which is
proportional to exp(−Ei/kT ), where Ei is the binding energy
of the acceptors, nonradiative defects, or excitons. The rate of
change of the free hole concentration in the valence band is
then given by

dp

dt
= G −

∑
α

CpAα
N−

Aα
p − CpSN

−
S p +

∑
α

QAα
N0

Aα

+QSN
0
S − Cxnp + QxNx = 0. (A1)

The rates of change of concentration of neutral acceptors,
nonradiative centers, and excitons are then given by

dN0
Aα

dt
= CpAα

N−
Aα

p − CnAα
N0

Aα
n − QAN0

Aα
= 0, (A2)

dN0
S

dt
= CpSN

−
S p − CnSN

0
Sn − QSN

0
S = 0, (A3)

dNx

dt
= Cxnp − Nx

τx

− QxNx = 0, (A4)

respectively.
Since the free electron concentration is approximately

constant in these rate equations, we can define inverse
relaxation times τ−1

Aα
= CnAα

n and τ−1
S = CnSn, where CnAα

and CnS are the electron capture coefficients for the αth
acceptor and the nonradiative center. Because the sample is
degenerate, shallow donors are almost completely ionized,
and so do not contribute to the recombination currents. The
transitions that occur are shown schematically in Fig. 17. To
simplify the notation, in the first term on the right-hand side in
Eqs. (A2)–(A4), we let Ci represent CpAα

, CpS , and Cx , and
we let N−

i represent N−
Aα

, N−
S , and n. In the second and third

terms, we let N0
i represent N0

Aα
, N0

S and Nx . Using this compact
notation, with N recombination channels, then the rate of
change of the concentration of holes p in the valence band is
given by

dp

dt
= G −

N∑
i=1

CiN
−
i p +

N∑
i=1

QiN
0
i = 0. (A5)

The corresponding rate of change of the neutral species N0
i is

dN0
i

dt
= CiN

−
i p − N0

i

τi

− QiN
0
i = 0. (A6)
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FIG. 17. (Color online) Energy level diagram showing the model
used for evaluation of the absolute internal quantum efficiency of
PL in the calibration sample. Vertical solid lines indicate transitions
for electrons, dashed lines transitions for holes. Energy levels for the
exciton, shown with dashed lines, are not real.

One expression for the low-temperature quantum efficiency
ηi0 of channel i is given by CiN

−
i p/G. Since Qi ≈ 0 at low

temperature, we can see from Eq. (A5) that G is then equal
to the sum of this quantity over all channels, and the low-
temperature quantum efficiency, ηi0 becomes,49

ηi0 = CiN
−
i p∑N

j=1 CjN
−
j p

= CiN
−
i∑N

j=1 CjN
−
j

. (A7)

The quantum efficiency is related to the PL intensity of the
ith radiative channel, which can be written as N0

i /τi (which is
the same as Gηi0 at low temperature). We first solve for p from
Eq. (A5), and rewrite the result in terms of ηi0 from Eq. (A7)
to obtain

p = ηi0

CiN
−
i

⎛
⎝G +

N∑
j=1

QjN
0
j

⎞
⎠ . (A8)

We substitute this into Eq. (A6) and solve for QiN
0
i , yielding

QiN
0
i = γi(G + ζ ), (A9)

where

γi = τiQi

1 + τiQi

ηi0, (A10)

and

ζ =
N∑

j=1

QjN
0
j . (A11)

We now sum Eq. (A9) over all i, which now gives us an
additional ζ on the left-hand side of the equation, so that
Eq. (A9) becomes simply

ζ = (G + ζ )γ, (A12)

where

γ =
N∑

j=1

γj . (A13)

We solve this equation for ζ to obtain

ζ = γ

(1 − γ )
G. (A14)

We can substitute this back into Eq. (A9) to obtain an
expression for the bound hole concentration for species i.

N0
i = γi

Qi(1 − γ )
G. (A15)

It is now useful to define the quantity η∗
i , which we will

see later is the quantum efficiency of the ith channel at a
temperature just below its quenching temperature,49

η∗
i = ηi0 (1 − γ + γi)

−1 . (A16)

We now use Eq. (A10) to replace γi in Eq. (A16), and this
enables us to write (1 − γ )−1 in terms of η∗

i as

(1 − γ )−1 = η∗
i (1 + τiQi)

ηi0[1 + τiQi(1 − η∗
i )]

. (A17)

Then N0
i in Eq. (A15) can be written in terms of η∗

i as

N0
i = τiGη∗

i

1 + τiQi(1 − η∗
i )

. (A18)

We will use this to write the quantum efficiency of the ith
recombination channel as

ηi(T ) = N0
i

Gτi

= η∗
i

1 + τiQi(1 − η∗
i )

, (A19)

which is the same as Eq. (5) in Ref. 13. The characteristic
temperature of the quenching of the ith channel Ti can be
found from condition

τiQi(1 − η∗
i ) = 1. (A20)

Since τiQi is negligible compared with unity at T < Ti , the
quantity η∗

i is the quantum efficiency of the ith channel just
below its quenching temperature.

According to Eq. (A19), the quenching of any PL band
(or a nonradiative channel) should result in simultaneous
(and equal) stepwise increase in intensities of all other PL
bands, which is the manifestation of a competition for minority
carriers. The higher the quantum efficiency of a PL band, the
larger will be a rise of all other PL bands after its quenching.
In practice, however, observations of such steps in temperature
dependences of PL bands and their correct interpretation are
very rare. This is because usually the quantum efficiency of PL
is very low, and small steps are difficult to detect. Moreover, ηi0

in the expression for η∗
i may not be a constant because capture

coefficients Ci may depend on temperature. This will result
in a temperature dependence of η∗

i not related to quenching.
Then, a rise of η∗

i due to a rise in ηi0 may be confused with a
step caused by quenching of some channel in this temperature
region.

However, for some samples, very clear steps in temperature
dependences of PL bands were observed that could be fit well
by Eq. (A19) with constant or slowly changing parameters
ηi0 (Refs. 13,47, and 48). Such samples can be used for the
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calibration of the internal quantum efficiency. It is preferred
that one PL band (k) in a calibration sample has a very high
quantum efficiency and a weak or, even better, no dependence
of τk on temperature, while other PL bands (i) have orders of
magnitude lower but detectable intensities. In our calibration
sample r6623, the low-temperature integrated intensity of the
UVL band exceeds those of the exciton and YL bands by at
least two orders of magnitude, and the intensity of the UVL
band is exceptionally high when compared to any PL band in
any other GaN sample we have analyzed in the past decade.
The temperature dependences of the integrated PL intensities
are shown in Fig. 18 in relative units (right axis). Note that,
although this figure is similar to Fig. 2 in Ref. 48, these are
new experimental data and new fits to the data. Remarkably,
after five years of storing the sample in ambient conditions,
no significant degradation or any other changes in PL could
be noticed. For this sample, by using an approximation
η∗

i � η∗
k < 1, the following expressions could be readily

derived from Eq. (A19) for the exciton and YL bands, both
denoted with index i, and for the UVL band denoted with
index k:

ηi(T ) ≈ η∗
i

1 + τiQi

, (A21)

with

η∗
i ≈ ηi0

1 − ηk(0) τkQk

1+τkQk

, (A22)

and

ηk(T ) ≈ ηk(0)

1 + τkQk[1 − ηk(0)]
. (A23)

In these expressions we replaced ηk0 with its value ηk(0) at
low-temperature because the quantum efficiency of the UVL
band is temperature independent at temperatures below its
quenching.

The thermal quenching of the UVL band begins at ∼120 K
(Fig. 18). But below this temperature the quantum efficiencies
of the exciton and YL bands η∗

i already vary slowly with in-
creasing temperature for different reasons (thermal quenching
of the exciton emission and apparent small variation of the
coefficients Ci). These slowly varying dependences of the
exciton and YL intensities (or ηi0) can be extrapolated to
higher temperatures as if they were not affected by the
thermal quenching of the UVL band (by forcing Qk = 0).
We denote such extrapolated dependences by ηi0(T ) and show
them as dashed curves in Fig. 18. Instead of describing these
dependences with expressions of the form

ηi0(T ) = ηi0

1 + τiQi

, (A24)

that can be obtained from Eqs. (A22) and (A23) with Qk = 0,
and which do not account for variation of Ci with temperature,
we will formally fit them with the commonly used expression50

ηi0(T ) = ηi(0)

1 + A1e−(E1/kT ) + A2e−(E2/kT )
, (A25)

where ηi(0) is the quantum efficiency of the ith channel at zero
(or lowest) temperature, and constants A1, A2, E1, and E2 are
fitting parameters, which may have no physical meaning. We
fit Eq. (A25) to the experimental data in the region below

FIG. 18. (Color online) Temperature dependence of the absolute
internal quantum efficiency (left axis) and integrated PL intensity
in relative units (right axis) for the UVL, exciton, and YL bands
in Si-doped GaN sample r6623. Pexc = 3 × 10−4 W/cm2. Dashed
curves are fit with Eq. (A24) with the following parameters:
ηYL(0) = 2.16 × 10−3, A1 = 0.6, A2 = 0, and E1 = 10 meV for the
YL band; ηx(0) = 1.45 × 10−2, A1 = 8, A2 = 60, E1 = 4 meV, and
E2 = 30 meV for the exciton band; ηUVL(0) = 0.80, A1 = 5.4T 3/2,
A2 = 0, and E1 = 130 meV for the UVL band. Solid curves are
calculated with Eq. (A27) for the YL and exciton bands, both with
ηk(0) = 0.80.

the quenching of the UVL band and extrapolate it to higher
temperatures (dashed lines in Fig. 18).

Now, accounting for the quenching of the UVL band (kth
channel), the “real” dependences ηi(T ) can be expressed from
Eqs. (A21), (A22), and (A24) as

ηi(T ) = ηi0(T )

(
1 − ηk(0)

τkQk

1 + τkQk

)−1

. (A26)

Finally, from Eqs. (A23) and (A26), by eliminating τkQk , we
arrive at

ηi(T ) = ηi0(T )
1 − ηk(T )

1 − ηk(0)
, (A27)

or

I PL
i (T )

I PL
i0 (T )

= ηi(T )

ηi0(T )
=

1 − I PL
k (T )
I PL
k (0)

ηk(0)

1 − ηk(0)
, (A28)

where the I PL
k (T )/I PL

k (0) can be found from fitting experimen-
tal data for the UVL band with Eq. (A25). The only parameter
that was determined in the fitting of Eq. (A28) to the “real”
temperature dependences of PL from all ith channels is ηk(0).
In Fig. 18 the experimental data for the YL and exciton bands
are fitted by Eq. (A28) (solid curves) with ηk(0) = 0.80 for
both. Now the relative PL intensities scale (right axis in Fig. 18)
can be converted to the absolute internal quantum efficiency
scale (left axis). This fit and the value of ηk(0) are in excellent
agreement with our old data for the same sample.48 The fact
that both the YL and exciton bands increase by the same value
during the quenching of the UVL band [or require the same
ηk(0) to fit their temperature dependences] indicates that the
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stepwise rise of these bands is not accidental and is adequately
described by our model.

When the quenching regions for different channels do not
overlap, and the temperature dependence of ηi0 is negligible
[i.e., ηi0 = ηi(0)], it is possible to calibrate the system much
more simply and quickly, and with almost the same accuracy,
by a calculation that is similar to the parallel resistor analogy
mentioned earlier. Suppose that we number the channels in
increasing order of quenching temperature, so that the first
channel to be quenched is j = 1. Then the quantity τjQj

is much less than unity before channel j quenches and is
much greater than unity after it quenches. Since the quantum
efficiency of all channels added together must be unity, when a
channel k quenches, then it is clear that the quantum efficiency
must be redistributed to all the channels that have not yet
quenched. Therefore, if the kth channel quenched before the
ith channel, we need to determine the effect of its quenching
on PL intensity of the arbitrary ith channel. Therefore, the PL
of the radiative ith channel will be affected by the quenching
of all channels that quench at lower temperatures than it does.
In practice, the nonradiative channels often quench at much
higher temperatures than the radiative channels of interest,
and therefore in what follows, the quenched channels will be
assumed to be radiative ones.

Suppose that at a particular temperature Tk all the channels
for j < k have already quenched, and the channel j = k is
in the process of quenching. Therefore, from Eq. (A10), for
j < k, τiQi � 1 and γi ≈ ηi(0). For j > k, τiQi � 1 and
γi ≈ 0. Therefore, using Eq. (A19) for a radiative channel with
i > k, the intensity in the vicinity of the quenching temperature
for channel k can be written as

I PL
i = Gηi(0)

⎛
⎝1 −

N∑
j �=i,j=1

ηj (0) − γk

⎞
⎠

−1

. (A29)

Since γk ≈ ηk(0) before channel k quenches and zero after, the
ratio Ri,k of the intensity of channel i before the quenching of
channel k to that after its quenching is given by

Ri,k = Rk = I PL
i (T > Tk)

I PL
i (T < Tk)

= 1 − ∑k−1
j=1ηj (0)

1 − ∑k
j=1ηj (0)

. (A30)

Note that the right-hand side of this equation does not depend
on i, and so this must be the same for all channels that have
not yet quenched. This can be written in a more transparent
way as

Rk = 1 + ηk(0)

1 − ∑k
j=1ηj (0)

, (A31)

where now it can be seen that Rk > 1 since the second term
on the right must be positive. Using I PL

j (0) = Gηj (0), we can
rewrite this as

1

Rk − 1
= 1

ηk(0)
−

∑k
j=1I

PL
j (0)

I PL
k (0)

. (A32)

Solving for ηk(0), we have

ηk(0) =
(

1

Rk − 1
+

∑k
j=1I

PL
j (0)

I PL
k (0)

)−1

. (A33)

Therefore, using this expression, the quantum efficiency of the
kth channel at very low temperature can be found from the step
Rk and the measured integrated intensities of all the quenched
bands relative to that of the kth channel at low temperature.
Equation (A33) is the same as Eq. (13) of Reshchikov and
Korotkov,13 except that in that paper it was erroneously stated
that the sum should be taken over all the channels that had
been thermally quenched prior to the quenching of the kth
band. This is also the same as Eq. (12) of Reshchikov and
Morkoc,8 which also had the erroneous description and had
not written that the intensities should all be at low temperature.
In Eq. (3) of the conference paper by Reshchikov et al.,48 the
formula was rewritten correctly in such a way that the sum
over intensities included only bands that quenched prior to the
kth channel. It is possible to rewrite this expression as

ηk(0) = Rk − 1

Rk

⎛
⎝1 −

k−1∑
j=1

ηj (0)

⎞
⎠ . (A34)

This equation allows one to obtain a quick estimate of the
quantum efficiency of the kth channel. For instance, the first
band to quench would yield

η1(0) = R1 − 1

R1
, (A35)

so that only the size of the step is needed for an estimate of
the quantum efficiency. One could find the quantum efficiency
of the second channel by using this together with the second
step size R2 in Eq. (A34), and so on. If the first step is very
small compared to the second, then the η1(0) in Eq. (A34)
could even be neglected. In our example, Rk ≈ 5 for the YL
band in the region of quenching of the UVL band (Fig. 18).
Although the UVL band quenches after the exciton band, the
latter can be ignored since its relative intensity is very weak.
Then, Eq. (A35) gives ηk(0) ≈ 1 − 1/Rk = 0.8.

This form now makes the analogy with the simple parallel
resistor network clear, and one obtains exactly the results
given by Eqs. (A34) and (A35) if one defines the quantum
efficiency ηk0 to be the ratio between the current in the kth
wire to the constant current source when all the switches are
closed (currents in all wires). When one opens the first switch
(so that the first wire has zero current), the current in all the
other branches increases, and the quantum efficiency of the kth
branch is given simply by Eq. (A35). When the other switches
are opened successively, then the quantum efficiencies of those
branches can be found from Eq. (A34), just as in the PL case.

APPENDIX B: DERIVATION OF APPROXIMATE
ANALYTIC SOLUTIONS TO THE MODEL

NEAR THE CROSSOVER TEMPERATURE T ∗

The way in which the system switches from a deep
donor that is almost completely neutral to one that is nearly
completely ionized, thereby causing a dramatic decrease in
PL over a very small temperature interval, becomes more
apparent if we derive approximate analytical solutions in
the vicinity of the crossover temperature T ∗, that is, in the
range 100 K < T < 300 K. In explaining the approximations
that we make to get simple analytic results, we will use the
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parameter values that correspond to the calculated curves in
Fig. 6, choosing the representative value G = 1019 cm−3s−1.
The analytic solutions apply to the entire range of parameters
shown there, and this particular value is simply used to make
the discussion more concrete. The derivations are for the
high-resistivity p-type case, for which the numerical solutions
are shown as the solid curves in Fig. 6.

For high resistivity materials and sufficiently low excitation
intensity (such as the excitation intensities in the experiments
reported in this paper), the concentrations of free electrons,
free holes, and ionized shallow donors are much smaller than
other concentrations in the region around the crossover. This
means that the fractional concentration N0

D/ND of electrons
in shallow donors is very small, and so, to a very good
approximation, we can write N+

D ≈ ND . Therefore, from the
charge conservation relation of Eq. (12), we have

N−
A ≈ ND + N+

S , (B1)

and

N0
A ≈ NA − ND − N+

S . (B2)

To begin, we solve for N0
D in Eq. (9) with N+

D ≈ ND

N0
D ≈ CnDND

QD

αn. (B3)

where

α = (
1 + CDAN0

A

/
QD

)−1
. (B4)

In this expression for α, the quantity CDAN0
A/QD <

CDANA/QD is very small for a high-resistivity
p-type semiconductor in this temperature region. At
100 K CDANA/QD ≈ 0.02, decreases exponentially with
increasing temperature, and falls to less than 0.003 at the
crossover. To simplify these equations, we expand α to lowest
order in this small quantity as

α ≈ (
1 − CDAN0

A

/
QD

)
. (B5)

Next we solve for the free electron concentration n from
Eq. (7) to obtain

n = G + QDN0
D

CnSN
+
S + CnDND + CnAN0

A

. (B6)

When we substitute for N0
D from Eq. (B3) into Eq. (B6), n

appears on both sides of the equation. Solving that resulting
equation for n and using Eq. (B5) yields

n ≈ G

CnS

(
N+

S + ζN0
A

) , (B7)

where ζ is a small dimensionless parameter given by

ζ = CDACnD

CnS

ND

QD

+ CnA

CnS

. (B8)

Specifically, ζ is about 0.001 at 100 K, decreases to about
0.0002 at T ∗, and continues to decrease above T ∗. Note that
this relatively simple form for n emerges as a result of the
approximate form of α in Eq. (B5).

Next we find an expression for p in terms of n by using
Eq. (10), substitute for n from Eq. (B7) and use N0

S = NS −
N+

S to obtain

p = CnSN
+
S n

CpSN
0
S

= N+
S G

CpS(NS − N+
S )

(
N+

S + ζN0
A

) . (B9)

We can get a second expression for p from Eq. (8), which is

p = G + QAN0
A

CpSN
0
S + CpAN−

A

. (B10)

In Eq. (B10) we substitute N0
S = NS − N+

S , and the expres-
sions for N−

A , and N0
A from Eqs. (B1) and (B2) to obtain

p = G + QA(NA − ND) − QAN+
S

(CpSNS + CpAND) + (CpA − CpS)N+
S

. (B11)

Then we equate the two expressions for p from Eqs. (B9) and
(B11) and obtain a cubic polynomial in N+

S in which the term
(N+

S )3 has a factor of (1 − ζ ). We divide all terms by (1 − ζ )
and then expand the resulting coefficients to first order in ζ .
This leads to a cubic equation in N+

S , given by

(N+
S )3 + a(N+

S )2 + bN+
S + c = 0, (B12)

where

a = −(N2 + NA − ND + NS)

+ ζ

[
NA − ND + N2

(
CpS

CpA

− 1

)]
, (B13)

b = [(NA− ND)NS − N2ND] − ζ [(NA− ND)(NA− ND + NS)

+N2ND + N2
CpS

CpA

(NA − ND + NS)], (B14)

c = ζNS(NA − ND)

(
N2

CpS

CpA

+ NA − ND

)
, (B15)

and

N2 = GCpA

QACpS

. (B16)

Only one root of this cubic equation satisfies the physical
condition that 0 � N+

S � NS . It was the approximation for α

in Eq. (B5) that enabled us to reduce the problem to a cubic
equation.

Once N+
S is determined, we can find N−

A and N0
A by using

Eqs. (B1) and (B2). Then, n and p can be obtained from
Eqs. (B7) and (B11), respectively. N0

D can be found from
Eq. (B3), in which we will take α ≈ 1 or

N0
D ≈ n

CnDND

QD

. (B17)

The quantum efficiency is then given simply by Eq. (13), which
becomes in the above approximation

η = (
CnAn + CDAN0

D

)
N0

A ≈ ζ (NA − ND − N+
S )

N+
S (1 − ζ ) + ζ (NA − ND)

.

(B18)

The solution agrees well with the numerical solution from
about 100 to 300 K, and so reliably describes the region of
the crossover, as shown in Fig. 12, where the curve calculated
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with Eq. (B18) with N+
S from the solution of the cubic equation

(B12) is indistinguishable from the numerical solution.
Since the solutions of the cubic equation are sufficiently

complex that it is hard to extract their physical content, we
now obtain approximate analytic expressions for N+

S and η

that can be used in different temperature regions and in which
the crossover temperature T ∗ is a special point.

At temperatures above the crossover (T ∗ < T < 300 K),
N+

S ≈ NS and we can neglect the constant term c in Eq. (B12)
because c � (N+

S )3 at these temperatures. Then we can
eliminate a factor of N+

S and be left with the quadratic equation

(N+
S )2 + aN+

S + b = 0, (B19)

which has the (physical) solution

N+
S = −a

2
+

√(
a

2

)2

− b. (B20)

This solution works quite well for temperatures starting about
1 K above T ∗ up to around 300 K, where the free hole concen-
tration starts to become important in the charge conservation
condition of Eq. (12). However, at the temperature we will call
T ∗, the coefficient b becomes zero, and, in this approximation,
N+

S drops to zero, becoming negative at lower temperatures.
This point occurs for N2 = N∗

2 , where

N∗
2 = NS(NA/ND − 1). (B21)

Solving for the temperature using Eqs. (6), (B16), and (B21)
produces what we call the crossover temperature

T ∗ = EA/k

ln(B/G)
, (B22)

where

B = CpSNS(NA − ND)Nv

gND

. (B23)

Of course, when c �= 0 is included, N+
S never goes negative,

but the point at T ∗ is still special since the coefficient b of
Eq. (B14) in the polynomial of Eq. (B12) drops dramatically
in magnitude because the large concentrations in its expression
have canceled, leaving only the term proportional to ζ , which
is orders of magnitude smaller. It is the coefficient c, Eq. (B15),
which is proportional to ζ that prevents the disaster.

Simple analytical expressions for the case of T > T ∗ can
be obtained if we leave out terms proportional to ζ in the
denominator of the quantum efficiency η in Eq. (B18), and
this produces

η ≈ ζ
(NA − ND − N+

S )

N+
S

. (B24)

An approximate expression for N+
S can be obtained from

Eq. (B20) by neglecting the terms proportional to ζ in a and b

in Eqs. (B13) and (B14)

N+
S = − 1

2

√
(NA − ND − NS + N2)2 + 4N2(ND + NS)

+ 1
2 (NA − ND + NS + N2), (B25)

where N2 is defined by Eq. (B16). In agreement with
experiment, the PL quantum efficiency η in Eq. (B24) can
be seen to be very small since it is proportional to the small

quantity ζ . The PL quantum efficiency calculated with the
approximate formula (B24) for T > T ∗ is shown in Fig. 12 as
the dotted red curve.

Now we will consider the temperature range 100 K to a
temperature a couple of degrees above the crossover. In this
range, N+

S is sufficiently small that the cubic term in Eq. (B12)
can be neglected, and we have again a quadratic equation, with
the physical solution given by

N+
S = − b

2a
+

√(
b

2a

)2

− c

a
, (B26)

where (−c/a) is positive. The quantum efficiency using this
solution is shown in Fig. 12 as the dashed blue curve with
squares. At temperatures below the crossover (100 K < T <

T ∗), (b/2a)2 � c/a and

N+
S ≈ − c

b
≈

ζ (NA − ND)
(
NA − ND + CpS

CpA
N2

)
N2ND/NS − (NA − ND)

. (B27)

In the above expression we neglected the term containing
ζ in the expression for b taken from Eq. (B14) because it
is very small. To obtain an approximate expression for the
quantum efficiency η, we start with Eq. (B18), substitute N+

S

from Eq. (B27), cancel a factor of ζ in the numerator and
denominator, and neglect the remaining ζ terms. This yields
for the PL quantum efficiency

η ≈ η0

[
1 − (NA − ND)NS

NDN2

]
, (B28)

where

η0 = CpAND

CpAND + CpSNS

. (B29)

One of the dramatic features in the data we wish to explain
is the steepness of the slope very close to the crossover
temperature T ∗. Here (b/2a)2 is very small compared with
(−c/a), and Eq. (B26) can be reduced to

N+
S ≈ − b

2a
+

√
− c

a
. (B30)

This approximation is useful for understanding the steepness
of the quantum efficiency curve at the crossover temperature.

Right at the crossover, the term ζ (NA − ND) is very
small compared with N+

S , but N+
S is small compared with

NA − ND . Therefore, we can write, again very close to the
crossover,

η ≈ ζ
(NA − ND)

N+
S

, T ≈ T ∗. (B31)

The slope on the semilog plot is given by

d ln η

d(1/T )
= 1

η

dη

d(1/T )
≈ − 1

N+
S

dN+
S

d(1/T )
= −d ln(N+

S )

d(1/T )
.

(B32)

Therefore, the slope of the quantum efficiency η is just the
negative of the slope of N+

S . Thus, we return to the quadratic
solution in Eq. (B30). At T ∗, the term proportional to ζ in a
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[the second term in Eq. (B13)] is small enough to be neglected,
and a and c vary slowly compared with b. Also, the term
proportional to ζ in b in Eq. (B14) varies slowly compared to
the other term. Therefore, the log slope of N+

S is simply

d ln(N+
S )

d(1/T )

∣∣∣∣
T =T ∗

≈ 1

2aN+
S

db

d(1/T )

∣∣∣∣
T =T ∗

= NDN2

2a∗N+∗
S

EA

k
,

(B33)

where superscript ∗ indicates that a given quantity is evaluated
at the crossover temperature T ∗. Substituting explicit values
and using Eq. (B32), we obtain for the log slope of the quantum

efficiency to leading order of ζ

d(ln η)

d(1/T )
≈ EA/k

2
√

ζ ∗λ
, (B34)

where ζ ∗ is from Eq. (B8) evaluated at T ∗ and

λ =
(

NS

ND

CpS

CpA

+ 1

) [
NA

ND

+ (NA − ND)

NS

]
. (B35)

Since ζ ∗ ≈ 0.0002 and λ ≈ 15.4, d(ln η)/d(1/T ) ≈ 9EA/k,
which corresponds to the “activation energy” of the slope of
about 3.2 eV for G = 1019 cm−3s−1 and other parameters as
in Fig. 6.
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7M. A. Reshchikov, H. Morkoç, R. J. Molnar, D. Tsvetkov, and
V. Dmitriev, Mater. Res. Soc. Symp. Proc. 743, L11.1 (2003).
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