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Assessing the accuracy of hybrid functionals in the determination
of defect levels: Application to the As antisite in GaAs
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The accuracy of nonscreened and screened hybrid functionals for the calculation of defect levels within the
band gap is assessed for the As antisite in GaAs, the nature of which is well characterized experimentally. A
set of functionals differing by the fraction of nonlocal Fock exchange or by the screening length are examined.
The +2/+1 and the +1/0 charge transition levels as determined with any of the considered functionals line
up when referred to the average electrostatic potential, with a defect-level separation in fair agreement with the
experimental value. When the band gap is well reproduced, the calculated defect levels are found within 0.2 eV
of the experimental levels. The use of the theoretical rather than the experimental lattice constant for the bulk
host is found to affect the defect levels by less than 0.1 eV.
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I. INTRODUCTION

For the calculation of defect levels within the density
functional theory (DFT) framework, two main problems
persist: the band-gap error inherent in the use of semilocal
functionals and the finite-size effects associated with the
long-range nature of the Coulomb interactions for charged
defects. Furthermore, it is not clear to what extent current
functionals accurately describe the combination of defect and
bulk systems, due to the concurrent occurrence of localized
and delocalized electronic states.1–3 Such an assessment is
hindered by the difficulty of identifying defects possessing
a solid experimental characterization as far as both their
electronic and structural properties are concerned.

Hybrid functionals generally lead to an improvement
over semilocal functionals for both molecules and extended
systems. In particular, due to the considerably improved band
gap, hybrid functionals were naturally also applied in defect
calculations.4 The use of different hybrid functionals has been
found to lead to close defect levels when referred to the
average electrostatic potential of the host material, while the
band edges undergo noticeable shifts.1,5 However, theoretical
investigations which carefully benchmark calculated results
with respect to reliable experimental data have remained rare.
For instance, Deák et al. examined the performance of a
screened hybrid functional6 applied to a set of defects in
different host materials, obtaining very promising results.7

The comparison with experiment was facilitated because the
adopted functional gave very accurate band gaps and lattice
constants for the host materials. However, for a generic
host material, the applied hybrid functional does not always
yield a band gap matching the experimental one. A common
practice consists in adjusting the fraction of Fock exchange
in the hybrid functional,2,5 but the accuracy of the defect
levels determined according to this procedure remains to be
assessed.

For benchmarking purposes, we here focus on the As
antisite defect in GaAs, also known as the EL2 defect.
Extensive studies, both experimental and theoretical, have
provided an accurate account of the properties of this defect,
such as its symmetry, charge states, behavior upon optical
bleaching, and thermal recovery.8,9 In particular, its charge
transition levels have been accurately and consistently de-

termined by electron paramagnetic resonance,10 deep-level
transient spectroscopy,11 photocapacitance spectroscopy,11,12

and scanning tunneling spectroscopy.13 The energy levels of
the As antisite defect could also be related to the pinning
levels at GaAs surfaces upon metallization or oxidation.14,15

Density functional studies were instrumental for identifying
the nature of the EL2 defect.16–21 However, a stringent
comparison between experimental and theoretical defect levels
is still lacking because of the band-gap underestimation
problem.

In this paper, we assess the accuracy of the defect levels
of the As antisite in GaAs calculated with various hybrid
density functionals with respect to reliable experimental data.
In particular, we compare calculated and measured defect
levels for both screened and nonscreened hybrid density
functionals, in which the fraction of Fock exchange has
been adjusted to match the experimental band gap of the
host material. Furthermore, we quantify the importance of
performing structural optimization of the defect and of the
host material consistent with the adopted hybrid functional.

The paper is organized as follows. In Sec. II, we describe our
theoretical approach based on hybrid functionals. In particular,
we discuss the role of 3d electrons, spin-orbit coupling,
long-range structural relaxation, and finite-size effects. The
results of our calculations are given in Sec. III, where
they are compared to experiment. In Sec. IV, the achieved
accuracy is discussed in light of the overall accuracy expected
for hybrid functional calculations and the conclusions are
drawn.

II. METHODS

We consider the following set of exchange-correlation
functionals: the semilocal Perdew-Burke-Ernzerhof (PBE),22

the nonscreened PBE hybrid (PBE0),23 and the screened
Heyd-Scuseria-Ernzerhof (HSE) hybrid.6 The default value
of the fraction α of Fock exchange in the PBE0 and HSE
functionals is 0.25. However, for both hybrid functionals, we
also consider variants tPBE0 and tHSE in which α is tuned
to reproduce the experimental band gap. The calculations in
this work are carried out with plane-wave basis sets. We use
normconserving PBE pseudopotentials for both Ga and As in
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all calculations.24 The Ga 3d electrons are generally treated
as core states and an energy cutoff of 30 Ry is found to yield
converged results. When the Ga 3d electrons are included
among the valence electrons, it is necessary to raise the energy
cutoff to 80 Ry. The exchange potential is treated as described
in Refs. 25 and 26. We use the code QUANTUM-ESPRESSO,27 in
which we implemented the HSE functional.5

GaAs exhibits a fairly large spin-orbit splitting of the
valence-band maximum. When spin-orbit effects are explicitly
considered at the PBE level,28 we find a splitting of ∼0.30 eV
at the � point, to be compared with the experimental value of
0.34 eV.29 The explicit treatment of Ga 3d electrons does not
affect the spin-orbit splitting. Similarly, spin-orbit splittings
are found to remain unaffected at the hybrid functional level.30

Hence, in the calculations of this paper, the spin-orbit coupling
is generally not considered explicitly, but its effect is accounted
for by an a posteriori correction of the valence-band edge.
More precisely, the valence-band edge is raised by 0.1 eV
with respect to its position in a bulk calculation without
spin-orbit coupling. This correction is included in all the results
reported in this paper. In particular, in the case of tuned hybrid
functionals, the fraction α is chosen to produce a band gap
of 1.62 eV, in order to achieve the experimental band gap of
1.52 eV after an upward shift of the valence-band edge by
0.1 eV due to the spin-orbit splitting.

The band gaps and lattice constants of GaAs as obtained
with the various functionals are collected in Table I. These
calculations are performed in the primitive cell with a 12 ×
12 × 12 k-point mesh. The band gaps vary quite significantly
among the hybrid functionals. In contrast, the theoretical lattice
constants are within 0.02 Å, overestimating the experimental
value by 0.03–0.05 Å. We note that for the two hybrid
functional schemes the band gap obtained at the theoretical
lattice constant is systematically lower than that achieved at
the experimental lattice constant. The explicit treatment of Ga
3d electrons generally results in a reduction of the band gap
by ∼0.2 eV. Furthermore, as far as their effect on the lattice
constant is concerned, a slight deterioration of the agreement
with experiment is observed at the PBE level, but this effect
turns out to be negligible at the HSE level.

TABLE I. Band gaps of GaAs obtained with various (hybrid)
functionals for lattice constant (a0) fixed at the experimental value
or determined consistently within the adopted theoretical scheme.
The fraction of Fock exchange α is indicated. For the cases denoted
PBE(Ga3d) and HSE(Ga3d), the Ga 3d electrons are explicitly
included among the valence states. Experimental data are from
Ref. 29.

Experimental a0 Theoretical a0

α a0 (Å) Eg (eV) α a0 (Å) Eg (eV)

PBE 5.65 0.57 5.75 0.17
PBE (Ga3d) 5.65 0.41 5.79 0.00
HSE 0.25 5.65 1.24 0.25 5.70 1.10
HSE (Ga3d) 0.25 5.65 1.05 0.25 5.69 0.88
PBE0 0.25 5.65 1.83 0.25 5.70 1.59
tHSE 0.35 5.65 1.53 0.395 5.68 1.52
tPBE0 0.19 5.65 1.52 0.235 5.70 1.52
Expt. 5.65 1.52 5.65 1.52

To compare with experiment,10,11 we focus on charge
transition levels

μq/q ′ =
(
E

q ′
tot − E

q
tot

)

q − q ′ − εv − �V, (1)

where E
q
tot denotes the total energy for a defect in the charge

state q, εv is the valence-band maximum as obtained in a
separate bulk calculation, and �V is a potential alignment
term determined for the neutral defect.

The defect calculations are carried out in 216-atom
supercells with 2 × 2 × 2 k-point sampling. The k-point
grid is displaced off the � point, thus allowing us to
correctly occupy the defect levels even when the band gap
is underestimated. On the basis of calculations with dense
k-point samplings at the PBE level, we estimate that the
2 × 2 × 2 mesh gives total energies converged within 1 mRy
and expect higher accuracy for total energy differences.

Structural relaxations in 216-atom supercells at the hybrid
functional level are computationally expensive. Therefore, we
accounted for the structural relaxations using the following
embedding scheme. We first relax the defect structure in a
64-atom supercell with a 2 × 2 × 2 k-point sampling, and
then embed the obtained structure in the 216-atom supercell
without allowing for additional relaxation. We estimate errors
on the defect levels resulting from the embedding procedure at
the PBE level. When all the atoms of the 216-atom supercell
are fully relaxed, the defect levels are found to lie lower by
only 15 meV.

For correcting the finite-size supercell errors, we use the
method proposed by Freysoldt et al.31 We use a model charge
consisting of a single Gaussian and checked that the long-
range potential of the model charge well matches that from
the supercell calculations. We illustrate the accuracy of this
correction scheme within the PBE by considering supercells
of increasing size. The defect is modeled with 64-atom, 216-
atom, 512-atom, and 1000-atom supercells. We use a 3 × 3 ×
3 k-point grid in the 64-atom supercell calculation and 2 × 2 ×
2 k-point grids for the 216-, 512-, and 1000-atom supercells.
The uncorrected and corrected PBE results are shown as a
function of the supercell size in Fig. 1. We obtain an estimate
of 20 meV for the residual error associated to this correction
scheme by comparing the corrected formation energies to their
extrapolated values (Fig. 1).

To conclude this section, we analyze to what extent the
charge transition levels are affected by the approximations
adopted in our scheme. To examine the effect associated to
the explicit treatment of Ga 3d electrons, we calculate the
defect levels at the PBE level using a 64-atom supercell at the
experimental lattice constant with and without Ga 3d electrons
included among the valence states (Table II). When the Ga
3d electrons are among the valence states, the separation
between the defect levels remains unaffected. However, as
a consequence of the reduction of the band gap, the defect
levels are found to be lower in the band gap by 0.07 eV. When
the fraction of nonlocal Fock exchange is adjusted to give the
experimental band gap, we can assume that the defect levels
remain unchanged with respect to the average electrostatic
potential (see below).1 By considering the shift of the band
edges, we then estimate that the explicit treatment of Ga 3d

075207-2



ASSESSING THE ACCURACY OF HYBRID FUNCTIONALS . . . PHYSICAL REVIEW B 84, 075207 (2011)

0 0.05
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

fo
rm

at
io

n 
en

er
gy

 (
eV

)

1/L (Å−1)

Ef(0)

Ef(+1)

Ef(+2)

0 0.05
−0.1

0

0.1

0.2

0.3

0.4

ch
ar

ge
 tr

an
si

tio
n 

le
ve

ls
 (

eV
)

1/L (Å−1)

ε(0/+1)

ε(+1/+2)

Δ ε

FIG. 1. (Color online) Formation energy (left-hand side) and
charge transition levels (right-hand side) calculated at the PBE level as
a function of the inverse side (1/L) of the supercell. The extrapolated
values are obtained from a regression to a + b/L + c/L3 of the results
without (dashed lines) and with (solid lines) finite-size corrections.
In the formation energy, the chemical potential of As corresponds to
the As4 molecule and that of Ga then results from the equilibrium
condition for GaAs.

electrons in tHSE would lead to defect levels higher in the
band gap by 0.07 eV.

To analyze the effect of an explicit treatment of the
spin-orbit coupling on the defect levels, we carried out PBE
calculations using the same 64-atom model. From Table II, we
see that the spin-orbit coupling effects are very accurately
accounted for by the upward shift of the valence-band
maximum by 0.1 eV, yielding errors of at most 30 meV.

In summary, this analysis allows us to estimate the errors in-
volved in our calculation scheme. The most significant error re-
sults from the implicit treatment of Ga 3d electrons: −70 meV
in the PBE and +70 meV in tHSE. Finite-size supercell cor-
rections give an additional uncertainty of 20 meV. Errors asso-
ciated to an incomplete structural relaxation (−15 meV) and to
an incomplete k-point sampling (−10 meV) are much smaller.
Thus, we estimate that our computational approach gives
charge transition levels within an overall accuracy of 0.1 eV.
In tHSE, the error associated to the Ga 3d electrons is partially

TABLE II. Charge transition levels given with respect to the
valence-band maximum when the Ga 3d electrons or the spin-orbit
coupling (SOC) is explicitly accounted for, compared to a reference
PBE calculation in which these effects are treated implicitly. The
results correspond to a 64-atom supercell at the experimental lattice
constant. The respective band gaps (Eg) are given. Energies are given
in eV.

Eg +2/+1 +1/0

PBE 0.57 −0.04 0.37
PBE with Ga 3d 0.41 −0.10 0.30
PBE with SOC 0.60 −0.05 0.37
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FIG. 2. (Color online) Charge transition levels +2/ + 1 and +1/0
of the As antisite in GaAs calculated with various functionals, aligned
with respect to (a) the average electrostatic potential and to (b),(c) the
valence-band maximum. In (a) and (b), the defect structure is relaxed
at the HSE level and the experimental lattice constant is adopted.
In (c), the lattice constant and the defect structure are consistently
determined with the adopted functional. Experimental levels (dashed)
are from Ref. 11. The numerical values used in (b) and (c) are given
in Table III.

compensated by the errors resulting from structural relaxation
and k-point sampling, leading to an even higher accuracy.

III. DEFECT LEVELS OF THE As ANTISITE IN GaAs

In order to focus on electronic effects, we first determine
the defect levels for various functionals while keeping a fixed
defect geometry. For this, we use a lattice constant fixed at
the experimental value and structural relaxations carried out
with HSE.32 The calculated defect levels are aligned with
respect to the average electrostatic potential in Fig. 2(a).
The defect levels are found at a nearly constant energy,
independent of the adopted functional. This behavior results
from the localized character of the defect wave function
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TABLE III. Charge transition levels for the As antisite defect in
GaAs as calculated with various functionals. The lattice constant (a0)
is fixed at the experimental value or determined consistently within
the adopted theoretical scheme. The energies (in eV) are given with
respect to the respective valence-band maxima. Experimental data
are from Ref. 11.

Experimental a0 Theoretical a0

+2/+1 +1/0 +2/+1 +1/0

PBE −0.021 0.349 −0.036 0.296
HSE 0.341 0.737 0.307 0.703
PBE0 0.657 1.076 0.625 1.028
tHSE 0.507 0.916 0.567 0.972
tPBE0 0.476 0.884 0.576 0.978
Expt. 0.54 0.77 0.54 0.77

and is consistent with previous studies.1,5 In particular, we
note that this behavior implies a small variation in the
separation between the two defect levels. Indeed, the defect
level separation can be expressed as E0

tot − 2E+1
tot + E+2

tot ,
which involves only total-energy differences corresponding to
localized states. The calculated separation ranges between 0.37
and 0.42 eV, depending on the functional, in fair agreement
with the experimental value of 0.23 eV.11

In Fig. 2(b), the same defect levels are aligned with
respect to the valence-band maximum and their position
in the band gap is compared to experimental levels. The
numerical values are listed in Table III. We chose to compare
our defect levels with those measured by Lagowski et al.
at 0.54 and 0.77 eV.11 Other measurements available in
the literature differ by ∼20 meV,10,12 which is consistent
with the experimental accuracy. The PBE levels noticeably
underestimate the experimental levels as a consequence of the
severe band-gap underestimation. HSE gives a much better
description of the band gap and the calculated +2/+1 and
+1/0 levels are found within 0.2 and 0.05 eV from the
measured levels, respectively. When the defect levels are given
with respect to the conduction-band minimum, the errors are
similar. In PBE0, the band gap is overestimated by ∼0.3 eV
(Table I), leading to an overestimation of the defect levels
by 0.1 and 0.3 eV when they are aligned with respect to
the valence-band maximum. The agreement with experiment
only slightly improves when the levels are referred to the
conduction-band minimum.

To overcome ambiguities related to the band-gap error, we
adjust the fraction α of nonlocal Fock exchange such that the
theoretical band gap matches the experimental one. The defect
levels calculated in such tuned HSE and tuned PBE0 schemes
are very close to each other (Fig. 2). This is a consequence
of the fact that when α is optimally tuned the band edges in
tHSE and tPBE0 occur at the same energies with respect to the
average electrostatic potential [cf. Fig. 2(a)].5 This agreement
is encouraging for the comparability between different kinds of
hybrid functionals. Furthermore, the agreement with respect
to experiment is very satisfactory, the calculated +1/0 and
+2/+1 levels agreeing with the measured ones within only
0.15 and 0.06 eV, respectively.

We now consider the effects resulting from the lattice
constant adopted for the GaAs host. In Fig. 3, the band edges
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FIG. 3. (Color online) Band edges of GaAs aligned with respect
to the average electrostatic potential as a function of lattice constant
for various functionals. The defect levels of the unrelaxed As antisite
are calculated with PBE, but their energies are also representative of
the other functionals [cf. Fig. 2(a)]. The experimental and various
theoretical lattice constants are indicated. The required fraction α of
Fock exchange for tHSE increases from 0.34 to 0.53 as the lattice
constant varies from 5.65 to 5.75 Å.

calculated with various functionals are shown as a function
of the adopted lattice constant. The illustrated defect levels
correspond to the unrelaxed As antisite. The defect energy
levels are obtained with PBE but are only weakly dependent
on the adopted functional [cf. Fig. 2(a)]. As the lattice constant
increases beyond the experimental value (5.65 Å), the band
gap reduces and both the band edges and the defect levels
decrease with respect to the average electrostatic potential.
When the hybrid functional is systematically tuned to match
the experimental band gap, the required fraction of nonlocal
Fock exchange increases with lattice constant. Within such
a tuned scheme, the calculated defect levels shift to higher
energies in the band gap as the lattice constant is increased
(Fig. 3).

To examine the importance of this effect, we thus perform
a second set of defect calculations, in which the lattice
constant and the structural relaxations are consistent with
the functional used. We adopt the theoretical lattice constant
which generally overestimates the experimental one (Table I).
The corresponding defect levels reported in Fig. 2(c) indicate
that the changes associated to the lattice constant are minor.
For tHSE and tPBE0, the deviation of the +1/0 level with
respect to experiment increases to 0.21 eV, to be compared
with the largest deviation of 0.15 eV for calculations at the
experimental lattice constant. On the other hand, the +1/0
level now agrees within 0.04 eV.

It is interesting to study the nature of the defect wave
functions, since the hybrid functionals tend to increase the
localization of the wave functions due to reduction in the
self-interaction. In Fig. 4(a), we show the density of the highest
occupied defect orbital of the neutral As antisite in GaAs as
calculated within the PBE. The density is illustrated through
the superposition of two isosurfaces corresponding to high and
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FIG. 4. (Color online) (a) Electron density of the defect state of
the neutral As antisite in GaAs as calculated within the PBE. Two
isosurfaces are superimposed, corresponding to high (opaque, red)
and low (transparent, blue) values of charge density. (b) Comparison
between the spherically integrated radial densities of the defect wave
function as calculated in PBE (solid, blue) and in tHSE (dashed, red).

low charge densities. The charge density shows the tetrahedral
symmetry and is mostly concentrated in the As-As bonds with
tails extending in the (011) directions. In order to study the
localization, we give in Fig. 4(b) the spherically integrated ra-
dial densities of the defect wave function as calculated in PBE
and in tHSE. The wave function obtained within the hybrid
functional scheme is indeed more localized, but the changes
are minor. To give a quantitative description of the changes,
we calculated the overlap between the wave functions obtained
in the PBE and in the various hybrid functional schemes. As
shown in Table IV, these overlaps are all very close to 1. This
is consistent with previous calculations in the literature.33

IV. CONCLUSIONS

For the As antisite, the present study indicates that tuned
hybrid functional schemes yield defect level separations and
defect level positions deviating from experiment by ∼0.2 eV.
Our study also examines the effect of varying the bulk lattice
constant in the defect calculations. We find that the energy

TABLE IV. Overlap between the defect wave functions of the
neutral As antisite in GaAs as calculated with the PBE and with
various other functionals.

HSE PBE0 tHSE tPBE0

Overlap with PBE 0.993 0.991 0.989 0.994

levels of the As antisite defect shift by less than 0.1 eV when the
lattice constant varies by ∼1%, corresponding to the difference
between the theoretical and the experimental lattice constants
in GaAs.

The separation between two charge transition levels is a
property that derives solely from total-energy differences for
localized states and does not involve the delocalized band-edge
states. Insofar this condition applies, an analogy can be drawn
with electron affinities and ionization potentials of molecular
systems.1,2 Hence, the achieved accuracy is expected to be
similar to the overall accuracy with which hybrid functionals
are able to reproduce such quantities, which is of the order of
0.2 eV.34–36 The deviation of 0.19 eV from experiment found in
this paper for the energy separation between the defect levels is
thus fully consistent with these considerations and corresponds
to the intrinsic accuracy of this class of functionals.

However, the defect energy levels as given with respect to
the valence-band maximum also carry information about the
energy position of delocalized band-edge states. To decouple
the defect energy levels from the band-edge energies, it is
convenient to refer both energies to the average electrostatic
potential φ.1,2 Indeed, the energy levels of atomically localized
defect states are generally well converged already within a
semilocal density functional scheme when referred to φ.1,5

Hence, the comparison of the defect energy levels with
experiment indicates that for GaAs the band-edge states
referred to φ are also described within ∼0.2 eV. This overall
accuracy for the determination of band edges with tuned hybrid
functionals is consistent with calculated band offsets at a series
of semiconductor-oxide interfaces.5,37

In conclusion, the errors observed in our study are consis-
tent with the intrinsic accuracy of hybrid functionals both for
the localized defect states and for the delocalized band-edge
states. Hence, our results for the As antisite defect in GaAs
support the notion that accurate defect levels can be achieved
with hybrid functionals, provided the band gap and to a
lesser extent the lattice constant of the host material are well
reproduced.
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