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We present a systematic study that clarifies the validity and limitation of current hybrid functionals in density
functional theory for structural and electronic properties of various semiconductors and insulators. The three
hybrid functionals, PBEQ by Perdew, Ernzerhof, and Burke, HSE by Heyd, Scuseria, and Ernzerhof, and a long-
range corrected (LC) functional, are implemented in a well-established plane-wave-basis-set scheme combined
with norm-conserving pseudopotentials, thus enabling us to assess the applicability of each functional on an equal
footing to the properties of the materials. The materials we have examined range from covalent to ionic materials
as well as a rare-gas solid whose energy gaps determined by experiments are in the range of 0.6-14.2 eV, i.e.,
Ge, Si, BaTiO3, -GaN, diamond, MgO, NaCl, LiCl, Kr, and LiF. We find that the calculated bulk moduli by the
hybrid functionals show better agreement with the experiments than that provided by the generalized-gradient
approximation (GGA), whereas the calculated lattice constants by the hybrid functionals and the GGA show
comparable accuracy. The calculated energy band gaps and the valence-band widths for the ten prototype materials
show substantial improvement using the hybrid functional compared with the GGA. In particular, it is found that
the band gaps of the ionic materials as well as the rare-gas solid are well reproduced by the LC-hybrid functional,
whereas those of covalent materials are well described by the HSE functional. We also examine exchange effects
due to short-range and long-range components of the Coulomb interaction, and we propose an optimum recipe

to the short-range and long-range separation in treating the exchange energy.
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I. INTRODUCTION

The local density approximation (LDA) (Ref. 1) in the
density functional theory (DFT) (Ref. 2) has shown a fantastic
ability to understand and even predict material properties’
in spite of its relatively simple treatment of the exchange-
correlation energy Exc[n] as a functional of the electron
density n(r); e.g., for many materials, lattice and elastic
constants are generally reproduced. The deviations from
experimental values are within less than 1%—2% and several
percent, respectively, in the LDA. Yet the LDA fails to describe
some properties, including ground-state magnetic orderings
even for bulk iron* and for some transition-metal oxides.> It
also tends to overestimate the bonding strength, leading to an
absolute error of molecular atomization energies.®

Some of the limitations of the LDA are remedied by
the generalized-gradient approximation (GGA), in which the
exchange-correlation energy is expressed in terms of not
only the electron density but also its gradient. The molecular
atomization energies are calculated with the error of several
tenths of an electron volt,” and the ground state of the bulk
iron is correctly predicted to be a ferromagnetic body-center
phase.* The prevailing functional form of the GGA (PBE)
(Ref. 8) generally provides better accuracy for structural
properties of a variety of solids and activation energies in
chemical reactions than the LDA does. In particular, a revised
form of PBE (PBEsol) (Ref. 9) has been reported to give even
better results for structural properties of solids.

The local (LDA) and semilocal (GGA) approximations
are still insufficient to describe some of the important
properties, however. The ground states of strongly correlated
materials are incorrectly predicted and the energy band
gaps of most semiconductors and insulators are substantially
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underestimated. The meta-GGA scheme'®"'? extending the

exchange-correlation functionals with inclusion of the kinetic
energy density further improves the LDA and GGA results for
molecular systems'? but does not succeed in remedying the
above failures in condensed matter.

The failure of the LDA and the GGA is occasionally
discussed in terms of the self-interaction error (SIE).!*!5
An electron is under the electrostatic potential due to other
electrons. Yet the expression of the electrostatic potential in the
(semi) local approximations includes the spurious interaction
with the electron itself. When we consider the Hartree-
Fock (HF) exchange potential with Kohn-Sham orbitals, this
spurious self-interaction is cancelled by a term in the exchange
potential. In the (semi) local expression of the exchange
potential, however, this cancellation is incomplete so that
each electron is affected by the self-interaction. This SIE
causes delocalization of the electron, predicting the incorrect
fractional-charged ground state of, e.g., H2+ with large nucleus
separation.!> Several schemes to correct the SIE are proposed
and their capabilities have been examined for molecular
systems. -1

The SIE affects the band gaps substantially. The band gap
AE, is formally defined as the ionization energy subtracted
by the electron affinity so that AE, = E(N + 1)+ E(N —
1) —2E(N), where E(N) is the total energy of the N-
electron system. In DFT with the exact exchange-correlation
energy, the band gap is expressed as the difference between
the highest occupied Kohn-Sham level ey (N + 1) of the
(N + 1)-electron system and its counterpart of the N-electron
systemey(N),ie., AE; = ey (N +1) — en(N).2>2 When
we introduce a fractional electron system with N + f electrons
as a mixed state of real integer-electron systems, then the
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total energy E(N + f) becomes linear for 0 < f < 1 and
shows discontinuity at the integer value N for finite-gap
systems. Using Janak’s theorem,?* which relates the Kohn-
Sham level to the derivative of the total energy as ey (N +
f)=0E(N + f)/0df, the linearity of E(N + f) leads to the
constant ey 1(N + f) as a function of f. In the (semi) local
approximations, however, the Kohn-Sham level ey, (N + f)
[en(N — f)] increases (decreases) with increasing f due to
the self-interaction, leading to the concave shape of E(N + f).
This may cause an underestimate of the energy gap.'%?>2

The HF approximation (HFA) is free from the self-
interaction. Yet the calculated band gaps in the HFA are
substantially overestimated due to the lack of the correlation
energy. An approach intended to remedy the issue called
the optimized effective potential,”” which is incorporated in
DFT (Refs. 28-30), is still in an immature stage in view of
applications to polyatomic systems.

Hence the hybrid functionals combining the LDA or the
GGA with the HFA may be effective to break the limitation of
the semilocal approximations. The hybrid approach began in
empirical ways: The HF-exchange energy was mixed with the
LDA exchange-correlation energy in the half and half way?!
and then three mixing parameters were introduced® to mix
the LDA, GGA, and HFA energies; the latter scheme is called
B3LYP and has been widely used to clarify the thermochemical
properties of molecules.*? A rationale for the hybrid functional
is provided®* in light of the adiabatic-connection theorem,>

1
Exc [n] = / d\ Exc,. , ()
0

where

n(rn(r’)
lr —r’|

2
Exco = (Wil VeelW3) = 5 f &r f &r @)
is the energy of the exchange and correlation in a system, where
the electron-electron interaction V,, = (¢? /2) Zij 1/|r; —rjl
is reduced by the factor A but the external potential v, (r)
is added to reproduce the electron density n(r) of the real
system (A = 1). Here W, is the ground-state many-body wave
function. By assuming that Exc ; is the fourth polynomial of
A with particular asymptotic forms for A = 0 and 1, Perdew,
Ernzerhof, and Burke have proposed a parameter-free hybrid
functional called PBEO,** in which the HF and PBE exchange
energies are mixed with the ratio of 1 : 3. Its applicability has
been examined for molecular systems.3®37

Screening of the Coulomb potential is effective in poly-
atomic systems. Hence it may be appropriate to apply the
nonlocal HF-exchange operator only to the short-range part
of the Coulomb potential.*®3° This is conveniently done
by introducing the error function splitting the Coulomb
potential into short-range and long-range components.*’ The
hybrid functional, which is constructed in this way from
the PBEO functional, was proposed by Heyd, Sucseria, and
Ernzerhof (HSE).** This treatment reduces computational
cost substantially and opens a possibility to apply the hybrid
functionals to condensed matter. The structural properties as
well as the band gaps of several solids have been calculated,
and significant improvements on semilocal functionals have
been achieved.*=°
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On the other hand, the effects of the exchange interaction
for the long-range component of the Coulomb potential are
certainly important*>>'2 in view of reducing the SIE. Hirao
and his collaborators have proposed a long-range corrected
(LC) functional in which the long-range component is treated
by the HF exchange energy and the short-range component is
treated by the LDA exchange energy.>® They have applied the
scheme to various molecular systems and obtained relatively
successful results. >’ Further application of the LC functional
combined with the GGA to molecular systems and its
comparison with other functionals has been done, and the
applicability of the LC functional has been recognized.>*-

The LC functional has also been applied to structural
properties and band gaps of several condensed matters, and
the results are compared with those obtained from other
functionals.®!

At the present stage, several hybrid functionals have been
implemented in different packages, and the assessment of the
validity of each functional has been done mainly to molecular
systems, although the applicability of the PBEO and HSE
functionals to condensed matters has been examined using
the Gaussian-orbital basis sets.*!4244-4649

The structural and electronic properties, such as lattice
constants, bulk moduli, and also the band gaps of condensed
matters, are obtained only after careful examinations of various
calculation parameters. Obviously, numerical precision should
not be neglected. In order to assess the validity of each hybrid
functional, it is thus imperative to perform the computation
in a single reliable calculation scheme. Furthermore, the split
of the Coulomb potential into the short-range and long-range
parts requires another parameter » being the exponent of
the error function. The @ dependence of the results should
certainly be examined for better understanding and further
improvements on the hybrid functionals.

The aim of the present paper is to implement several
important hybrid functionals in the well-established plane-
wave-basis total-energy band-structure calculation code and
examine the validity and limitation of each functional. A
plane-wave code we adopt in this work is the Tokyo Ab initio
Program Package (TAPP).°>% We have calculated lattice
constants, bulk moduli, band gaps, and bandwidths of various
semiconductors and insulators with the PBEQ, HSE, and LC
hybrid functionals as well as the (semi) local GGA functional.
Comparison of the obtained results unequivocally elucidates
the validity and the limitation of the hybrid functionals.

In Sec. I1, we briefly describe each of the hybrid functionals
used in the present paper. Section III presents details of our
computational scheme. The calculated results are shown in
Sec. IV, and our finding is summarized in Sec. V.

II. HYBRID EXCHANGE-CORRELATION FUNCTIONALS

In this section, we briefly describe the three hybrid
functionals, PBEO, HSE, and LC, the applicability of which is
examined in this paper.

A. PBEO functional
Perdew, Burke, and Ernzerhof have proposed** a polyno-
mial form for Exc , as

Excy = Excy + (EXT —Ex7)A =" (3)
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where EXF and ERFT are the exchange energies obtained by
the HFA and a certain (semi) local approximation in DFT,
respectively. Here E)]gg ,—1 1s the energy of the exchange and
correlation defined as Eq. (2) and obtained by the (semi) local
approximation in DFT. This formula infers that the (semi)
local approximation in DFT is a good approximation to Exc
for A = 1. When A = 0, this formula is equal to E!F since
EQY = EXT for = 0.
From Eqs (1) and (3), we obtain
Exc = Ex¢" + %(EEF — ERF). 4)
Relying on the fourth-order Moller-Plesset perturbation theory
applied for molecular systems, it is argued that n = 4 is the

best choice.** Using the PBE functional® as the approximation
in DFT in Eq. (4), the PBEO hybrid functional is given by

Exc = Exe” + 5 (ENF — ESPF), &)

leading to the mixing of 25% HF exchange and 75% PBE
exchange.

B. HSE functional

Heyd, Sucseria, and Ernzerhof have proposed™® a different
hybrid functional in which the long-range part of the HF-
exchange energy is treated by the semilocal approximation
in DFT and the short-range part is calculated exactly. The
actual procedure is conveniently done by splitting the Coulomb
potential as

1 erfc(wr) erf(or)

- = + ; (6)

r r r

and applying the first term only, i.e., the screened Coulomb
potential, to the HF-exchange energy. The second term to the
exchange energy is calculated with the GGA. Adopting the
mixing ratio in PBEO, the HSE hybrid functional the becomes

E;IEE — EPBE 4+ 1 ( HF SR EPBE SR). (7)

EEF’SR is the Fock-type double integral with the screened

Coulomb potential. There is some complexity to dividing the
PBE exchange energy E PBE into the short-range part Ey PBE.SR
and the long-range part E;BE IR The dividing procedure will
be shown in Sec. III C.

Another ambiguous factor is the parameter w in Eq. (6),
which defines the short-range and the long-range parts of the
Coulomb potential. Several efforts to determine the optimum
value of w have been done by examining the calculated results
for molecular systems, #5866 and the recommended values
are in the range w ~ 0. 1—0.3611;l (ap denotes the Bohr radius).

Examining the @ dependence of the calculated results for
condensed matters is one of our aims in this paper.

C. LC functional

The HSE functional partly removes the SIE by incorpo-
rating the HF-exchange energy in the PBE functional. Yet
the cancellation of the Hartree potential and the exchange
potential is absent in the long-range part. This may cause
erroneous description of, e.g., the Rydberg states in isolated
polyatomic systems or properties of charge-transfer systems.
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To remedy this point, application of the long-range part of the
Coulomb potential to the HF-exchange energy is necessary.*
The long-range corrected (LC) functional has been proposed
based on this viewpoint,’ being expressed as

E&g — E)]?FT + (EHF LR E)]?FT,LR)’ (8)

with EEF‘LR being the Fock-type double integral with the
long-range part of the Coulomb potential [the second term of
Eq. (6)]. For the DFT part, several approximations, including
the LDA,%%! the PBE,>>>%% and other GGA (Ref. 53) or
meta-GGA (Ref. 58) forms, are adopted in Eq. (8) and their
validity is examined. It is argued that PBE combined in the
LC hybrid scheme provides good accuracy for molecular
properties.”>” As in the HSE scheme, there is some complex-
ity to extracting the long-range component of the exchange
energy of the DFT part, E'y DFT.LR

The parameter w in Eq. (6) affects the results substantially.
By examining the results for molecular systems, the values
ranging from w = 0.25 to 0.5 are argued to be optimum.>>3
By applying the LDA in the LC-hybrid scheme to structural
properties of solids, the value w = 0.5 is found to produce rea-
sonable results.®! It is of interest to investigate the appropriate
value of w in the application of PBE in the LC-hybrid scheme
to structural properties and band gaps of condensed matter.

III. COMPUTATIONAL DETAILS

In this section, we describe our implementation of the
hybrid functionals in the plane-wave basis-set total-energy
band-structure calculation code, TAPP.%2% Nuclei and core
electrons are simulated by either norm-conserving®® or
ultrasoft® pseudopotentials in the TAPP code. Nonlocality of
the HF-exchange potential generally increases computational
cost tremendously in the application to condensed matter.
We have circumvented this problem using the fast-Fourier
transform (FFT), as explained below. The long-range nature
of the Coulomb potential leads to singularity of its Fourier
transform at the origin. This causes difficulty in numerical
integration over the Brillouin zone (BZ) to obtain the HF-
exchange energy in the PBEO and LC schemes. We adopt here
a simple truncation scheme to overcome the problem. Finally,
we explain how to divide the exchange energy in the PBE
functional to the short-range and long-range components.

A. Calculation of E'F by FFT

The HF-exchange energy E ?F
is written as

in condensed matter (crystal)

EY = —% Z Z Sk fow Inken'ic 9)

nk n'k’
where f,x is the occupation number, and J,, k' is given by

Jnkn’k’ = //dl‘ dl‘/ ¢;’kk(r)¢:'k’(r )¢nk(r )¢n’k’(r) . (10)

r—r’|

Here ¢,(r) is the Bloch-state orbital with the band index
n and the wave vector k. The orbital ¢,k(r) is obtained
by solving self-consistently the Euler equation (Kohn-Sham
equation) in which the exchange-correlation potential is given
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by the functional derivative of the hybrid exchange-correlation

energy. The sums over k and n are taken for the occupied states.
Our algorithm to compute the integral J,k, in the plane-

wave-basis code is as follows: Eq. (10) is written as

wh (u’, () (e (r
Jnkn’k’ = /drdr/ nk( ) nk|(ri;l‘,|( ) n ( )
itk Gk (11

xXe

with u,k(r) = exp(—ik - r)¢,k(r). In the plane-wave basis-set
scheme, the reciprocal-lattice vectors G are used to represent
the periodic wave function as ux(r) =Y ¢ ST, (G). We
then obtain

4
Sk = Z zunk(G)*un’k’(G/)*
e K —k+ G — G//|
X (G (G + G — G"). (12)

When we compute Eq. (10) directly, the calculation costs of
Jukwie and EXF are O(NZ) and O(NZ,,y) x O(N) x O(NQ),
respectively, where N is the total number of the reciprocal
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vectors, Nk is the total number of sampling k points in the
BZ, and Ny, is the total number of the occupied bands. The
number of Ng is much bigger than either Ny,ng or Ng. Hence
the order Né is computationally demanding.

We reduce this computational cost by using FFT. We first
define the overlap density between states (nk) and (n'k’) as

Mk (T) = Uy (D) e (T). (13)
Using this quantity, we obtain

Npkn'k’ (r)nnkn’k’ (I')*
Jk K = fdl'dl‘l
nkn |r — r,l

x e*i(k*k’)l‘ei(kfk/)]" . (14)

We note that, since u,(r) has unit-cell periodicity, the overlap
density also has the same periodicity. Using the Fourier
transformation of the overlap density n,x,k (r), Eq. (14) is
rewritten as

47

m|nnkn’k’((})|2~ (15)

g

Jnkn’k’ =
G
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FIG. 1. (Color online) Calculated energy bands of Si with PBE (a), HF (b), PBEO (c), HSE (d)—(f), and LC (g)-(i) exchange-correlation

functionals. The origin of the energy is set at the valence-band top.
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Since the n,x, (G) can be calculated outside the summation
loop in Eq. (15), the total calculation cost for Jykpyk is
O(Ng + Ng In Ng). The computational cost of EXF becomes
O(NZ,0) X O(N}) x O(Ng + NgIn Ng). Considering the
scaling as Ng X Natom» Nband X Natom, and Nx < 1/ Nyom With
Naom the number of atoms in the unit cell, the computational
cost above is proportional to Naom + Naom 10 Nagom-

B. Treatment of divergence in the Coulomb interaction

The Fourier transform v(q) of the Coulomb potential v(r)
diverges at the long-wavelength limit ¢ — 0. Calculations
of electrostatic energies thus require careful treatment, and
the well-known Ewald summation is the typical example. In
calculating nonlocal exchange energies in condensed matter,
more careful treatment is necessary. We need to perform
the BZ integration in evaluation of the exchange energy in
Eq. (9). The integration is usually performed by the summation
with weighting factors of the integrand at finite discrete
k points, and thus we encounter a difficulty in evaluating
the integral accurately by picking up the singular behavior
of the Fourier transform of the Coulomb potential. There

(b) HF
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are several ways to overcome this difficulty. One is the
auxiliary-function approach: An auxiliary function that has the
same singular behavior but is integrable is subtracted so that
the summation can be done properly and the remaining term
is obtained analytically.”>’> An alternative way, which we
adopt in the present paper, is simpler: We make the Coulomb
potential truncated at R, and then examine the convergence by
numerically increasing R..”*> Namely, we replace the Coulomb
potential with a truncated potential,

& if P <R
u(r) = (16)

0 otherwise,
with a cutoff radius R.. What we need is of course converged

quantities with R, — o0. The truncated potential produces its
nondivergent Fourier transform,

4

() = Iq|2[1 —cos(lg[R.)] - a7

Convergence of required quantities with respect to R, is
combined with the number of sampling k points in the BZ
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integration. The number N; of sampling k points required where e)‘cmif[n] is the exchange energy of the homogeneous

should increase with increasing R.. We need to know the  electron gas with the electron density n, and F'BE(s) is an

converged values with increasing both R, and N. The process enhanced factor due to a density gradient s=|Vn|/(2kgrn)

to check this convergence in the two-parameter space can be with the Fermi wave number ky =(372n)'/3. The enhanced

done conveniently by introducing a certain relation between factor is written in an integral form

R, and N;. We set up arelation, Ny = 4w RS/(3QC), where Q. g [

is the unit-cell volume, and we examine the convergence of FPBE(s) = —— / dy yJFBE(s,y), (19)

the exchange energy by increasing Ny and equivalently R.. We 0

have found that the values of R., which are four to six times where y= kpr is a dimensionless quantity and ];BE(s’y)

the dimension of the primitive unit cell, are enough to assure  describes an exchange-hole density at the distance r. Heyde,

the converged exchange energies in ten materials calculated in Scuseria, and Ernzerhof*° proposed an expression for the

the present paper. short-range PBE-exchange functional, where the original
Coulomb interaction 1/r is modified to a screened form
erfc(wr)/r. This modification leads to an enhanced factor

C. Calculations of EY** % and EYP&-L% somewhat different from the original expression of Eq. (19) as
We next describe how to obtain the short-range and long- g [ wy
range parts in the PBE-exchange energy, following Ref. 74. FPBESR(5 ) = 3 / dy yJIPF(s, y)erfc <k_> (20)
The original expression for the PBE-exchange energy is 0 F
given by The short-range exchange energy is given with this enhanced
factor as
EFPBE — / dre" " [n(r)In(r) FPE(s) , (18) EPBESR ()= f dr " [n(m)n(r) FPBESR (5. 0).  (21)
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The long-range PBE-exchange term is defined by subtract-
ing the short-range part in Eq. (21) from the original one in
Eq. (18) as

E}:BE’LR(CL)) — E)E:BE _ EEBE’SR(CL)). (22)

Implementation details for these calculations can also be
found in Ref. 75.

D. Calculation conditions

We generate norm-conserving pseudopotential to simulate
nuclei and core electrons, following a recipe by Troullier
and Matins.®® The core radius 7. is an essential parameter
to determine transferability of the generated pseudopotential.
We have examined the r. dependence of the calculated
structural properties of benchmark materials and adopted the
pseudopotentials generated with the following core radii in
this paper: 0.85 A for Si 3s, and 1.16 A for Si 3p, 1.06 A for
Ge 4s and 4p, 1.06 A for Ga 4s and 4p, and 1.48 A for Ga 4d,
0.64 A for N 2s and 2p, 0.85 A for C 25 and 2p, 0.79 A for
O 2s and 2p, 1.38 A for Na 2s and 2p, 1.16 A for Cl 3s and
3p, 0.95 A for Li 2s, 0.64 A for F 25 and 2p, 1.59 A for Ba
5s, 5p, and 5d, 1.32 A for Mg 2s and 2p, and 1.38 A for Ti
3d and 4s, and 1.43A for Ti 4p, 1.48 A for Kr 45 and 1.37 A
for Kr 4p.

The pseudopotentials are generated by the (semi) local
approximations in DFT. This means that the HF-exchange
energy between core and valence states is neglected. Yet
we have found that the calculated energy bands obtained
with the pseudopotentials generated in the LDA and the
GGA are essentially identical to each other, implying that
the treatment of the exchange-correlation energy in generating
pseudopotentials has minor effects.

The partial core correction’® is not included in our
calculations. This is partly because magnetic properties are
not considered in the present work. However, to assure the
accuracy of the structural properties, we regard some of the
core orbitals as valence orbitals and include them explicitly
in the pseudopotential generation: Such orbitals included as
valence states are 2s and 2p orbitals of Na and 2s and 2p
orbitals of Mg.

Appropriate choice of cutoff energies E., in the plane-
wave-basis set, which is related to the hardness of the adopted
norm-conserving pseudopotentials, is a principal ingredient
to ensure the accuracy of the results. We have examined
the convergence of structural properties and band gaps with
respect to E.y, and reached the following well-converged
values with E for each material: 25 Ry for Si and Ge; 36 Ry
for Kr; 64 Ry for BaTiOs3; and 100 Ry for diamond, GaN, MgO,
NaCl, LiCl, and LiF. The remaining important ingredient
to ensure the accuracy of our assessment of each hybrid
functional is the sampling k points for the BZ integration.
We have adopted the scheme by Monkhorst and Pack in which
the BZ is divided by an equally spaced mesh. After careful
examination, we have found that 4 x 4 x 4 sampling k points
are enough to ensure the accuracy of the total energies and
energy bands in the ten materials. The results are confirmed by
repeating the calculations with 6 x 6 x 6 sampling k points.
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IV. RESULTS AND DISCUSSION

We have performed total-energy electronic-structure cal-
culations using PBE, HF, PBEO, HSE, and LC exchange-
correlation functionals for ten materials, including covalent
semiconductors, ionic insulators, dielectric compounds, and
a rare-gas solid, i.e., Si, Ge, GaN, diamond, MgO, NaCl,
LiCl, LiF, BaTiOs, and Kr. The calculated results elucidate
the capability and limitation of each functional in discussing
the electronic and structural properties of these prototype
materials. We first present the calculated electron states of
these materials and compare them with experimental results
in Sec. IVA. Then we present the results of structural
optimization in Sec. IV B.

A. Energy bands and gaps

Figure 1 shows calculated band structures of Si with five
exchange-correlation functionals. For the HSE and LC func-
tionals, the band structures with different choices of w [0.1,
0.2, and 0.3(a§1)] in Eq. (6) are shown. The overall features of
the band structures obtained by the five functionals are similar
to each other. Yet the bandwidths and the fundamental gaps are
different quantitatively. When the ratio of the HF exchange to
the total-exchange functional is large, the resulting bandwidth
and gap become large; these quantities become larger in the
order of PBE, PBEO, HSE, LC, and HF. Notice that the band
gaps obtained by the LC functional are always larger than
those by the HSE functional, indicating that the correction to
the long-range part of the exchange potential tends to make
the band gap large.

We also show the calculated energy bands of the dielectric
compound BaTiOj; and the ionic insulator NaCl in Figs. 2 and
3, respectively. We find the general tendency similar to that in
Si, i.e., the overall features of the energy bands are insensitive
to the difference in the functionals; the LC functional provides
larger energy gaps compared with the HSE functional.

Tables I and II summarize the calculated bandwidths and
band gaps for the ten materials. To assess the validity of each
functional, it is convenient to introduce two quantities: the
mean relative error (MRE), which is the mean of the calculated
value minus the experimental value over the ten materials, and
the mean absolute relative error (MARE), which is the mean of
the absolute value of the difference between the calculated and
the experimental values over the ten materials. The MRE is a
measure of under- or overestimates of the experimental values,
since each functional predicts either smaller or larger values
than the experimental values for most of the ten materials. On
the other hand, MARE is a measure of closeness between the
calculated and experimental values. In the discussion below,
we categorize the ten materials into group I and group II:
group I, i.e., diamond, GaN, BaTiOs, Si, and Ge, has covalent
characters in which the band gaps are less than 7 eV; group
I, i.e., LiF, Kr, NaCl, LiCl, and MgO, consists of ionic solids
and a rare-gas solid in which the experimental band gaps are
larger than 7 eV.

The calculated bandgap by the PBE functional for each
material is substantially smaller than the corresponding exper-
imental value, as is reported in the literature. The calculated
MRE for the ten materials is —42.5%. On the other hand, the
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TABLE 1. Band gaps €,,, obtained from PBE, HF, PBEO, HSE, and LC calculations. The w is a parameter that separates the long-range
and short-range parts of the Coulomb interaction (see text). Experimental values are taken from Ref. 80 for Ge, Si, and C; Ref. 42 for -GaN;
Ref. 81 for BaTiO3; Ref. 82 for MgO; Ref. 83 for NaCl; Ref. 84 for Kr; and Ref. 85 for LiCl and LiF. The calculated mean relative error (MRE)
and the mean absolute relative error (MARE) with respect to experimental values are also shown in percent. Group I consists of materials
having an experimental gap less than 7 eV, while group II consists of materials with a gap of more than 7 eV (see text).

€gap
PBE HF PBEO HSE LC Expt.

w=01 0w=02 w=03 w=04 w=01 0w=02 w=03 w=04

Ge 0 4.75 1.00 0.76 0.54 0.43 0.27 1.05 2.05 2.66 3.69 0.74
Si 0.61 6.03 1.72 1.20 0.94 0.80 0.73 2.24 3.85 4.19 4.63 1.17
BaTiO; 2.14  11.62 4.21 3.57 3.12 2.83 2.73 4.59 6.26 7.45 8.01 3.2
B-GaN 2.06 8.84 3.51 3.02 2.65 2.42 2.26 3.95 5.58 6.55 7.36 3.30
C 4.01 12.44 5.87 5.28 4.88 4.62 4.45 5.06 6.80 7.95 8.73 5.48
MgO 4.95 14.21 6.99 6.62 6.14 5.79 5.52 6.38 8.33 9.88 11.12 7.7
NaCl 5.13 13.38 6.95 6.46 6.00 5.69 5.49 7.03 8.90 10.22 11.12 8.5
LiCl 6.33  14.85 8.60 8.14 7.67 7.36 7.15 8.53 10.45 11.75 12.66 9.4
LiF 9.70  21.57 12.51 12.02 11.45 11.02 10.68 11.59 13.87 15.65 17.06 14.30
Kr 7.09 15.22 9.14 8.46 7.98 7.68 7.48 9.85 11.75 13.00 13.75 11.65
All solids
MARE (%) 42.5 179.7 19.7 12.4 19.9 26.4 31.5 28.2 62.3 88.9 117.4
MRE (%) —42.5 179.7 5.7 -9.0 —-19.9 —26.4 -31.5 11.1 61.7 88.9 117.4
Group I (Ge, Si, BaTiO3, GaN, C)
MARE (%) 49.1  303.1 25.4 5.8 16.0 25.5 33.2 40.8 119.0 158.8 205.4
MRE (%) —49.1  303.1 254 0.9 —-16.0 —255 —-332 37.8 119.0 158.8 205.4
Group IT (MgO, NaCl, LiCl, LiF, Kr)
MARE (%) 35.9 56.3 14.0 19.0 23.9 27.3 29.8 15.6 5.6 18.9 29.4
MRE (%) -359 563 —14.0 —19.0 —-239 —-273 —-29.8 —15.6 4.4 18.9 294
HFA largely overestimates the band gaps for all ten materials: Furthermore, when we choose optimum values of w, the HSE
MRE is 179.7%. The PBEO functional provides better values. and LC results show nice agreement with the experimental

The calculated MRE by the PBEQ for the materials in group L is values. In the HSE functional, a general trend is the decrease in
25.4%, whereas it gives —14.0 % for the materials in group II. the band gap with increasing w. We have found that the value

The HSE and LC functional also provide better agreement @ = 0.161;1 produces band gaps close to the experimental
of the band gap with the experiments than the PBE does. values within an MRE of 0.9% for the materials in group 1.3

TABLE II. Valence bandwidth W obtained from PBE, HF, PBEO, HSE, and LC calculations. The w is a parameter that separates the
long-range and short-range parts of the Coulomb interaction (see text). Experimental values are taken from Refs. 77 and 86 for Ge; Refs. 77
and 80 for Si; and Refs. 77, 87, and 88 for C.

PBE HF PBEO HSE LC Expt.

w=0.1 w=02 w=03 w=0.1 0 =02 w=03

Ge 12.85 18.22 14.50 13.80 13.47 13.11 14.23 15.54 16.36 129+0.2
Si 11.95 16.90 13.37 13.28 12.99 12.65 12.19 13.45 14.52 125+ 0.6
BaTiOs 4.53 6.37 5.08 5.03 4.95 4.85 4.85 5.34 5.72

p-GaN 6.73 8.27 7.20 7.11 7.02 6.93 7.11 7.44 7.91

C 21.65 30.09 23.64 23.51 23.28 22.96 24.15 25.00 26.19 242+1,21+£1
MgO 4.43 6.16 4.97 4.80 4.70 4.60 5.21 5.56 5.92

NaCl 1.65 2.24 1.84 1.77 1.71 1.67 2.04 2.25 2.38

LiCl 2.82 4.33 3.39 3.16 3.16 3.09 3.59 3.91 4.17

Kr 1.50 1.93 1.61 1.59 1.55 1.52 1.57 1.74 1.85

LiF 2.83 3.66 3.09 2.96 2.92 2.87 2.94 3.09 3.27
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FIG. 4. (Color online) Calculated band gaps obtained from
different exchange-correlation functionals: PBE (blank squares), HSE
with w = 0.1az' (green dots), and LC with w = 0.2a;" (purple
squares), plotted against experimental band gaps. Group I consists
of materials having an experimental gap less than 7 eV, while group
Il is composed of materials with a gap of more than 7 eV.
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It produces worse values for the materials in group II. The
calculated MRE is —19.0% for the materials in group II, but
HSE is still a better approximation than PBE.

The LC functional provides good agreement with the
experimental values for the materials in group II: When we
choose the optimum value of = 0.2a", the calculated MRE
is nicely small, 4.4% for the materials in group II. Yet the LC
provides worse values for the materials in group I, showing its
limitation as a universally valid approximation.

Figure 4 is a summary of our calculated band gaps by the
PBE, HSE, and LC functionals. For HSE and LC, we show
the calculated results with the optimum o values: w = 0.1a"
for HSE and w = 0.2611;1 for LC. It is clearly shown that the
calculated band gaps by hybrid functionals, HSE and LC, are
in better agreement with the experimental values than the PBE
(GGA) approximation, indicating the promising possibility
of the hybrid functionals. The degree of agreement is close
to the Green’s-function-based GW approximation, in which
there are several ambiguities in theoretical treatments.”’~”
However, this figure also shows a limitation in that HSE is
reasonably good for only the group I materials, whereas LC is
good for only the group II materials.

Our finding here is that HSE is a good approximation
for relatively small-gap materials and that LC is a good
approximation for the relatively large-gap materials. Screening

TABLE III. Lattice constants ao (A) obtained from PBE, HF, PBEO, HSE, and LC calculations. The @ parameter separates the short-range
and long-range parts of the Coulomb interaction (see text). Experimental values are taken from Ref. 42 for Ge, Si, f-GaN, C, and MgO;
Refs. 90 and 91 for BaTiOs; Ref. 41 for NaCl, LiCl, and LiF; and Ref. 92 for Kr. The calculated MRE and MARE with respect to experimental

values are also shown in percent.

PBE HF PBEO HSE LC Expt.
w=01 w=02 w=03 w=04 w=01 w=02 w=03 w=04
Ge 5.589 5.574 5.615 5.546 5.556 5.566 5.571 5.579 5.534 5.508 5.490 5.652
Si 5.463 5.387 5.431 5.435 5.441 5.446 5.452 5.459 5.434 5.416 5.403 5.430
BaTiO; 4.139 4.048 4.068 4.102 4.106 4.111 4.116 4.137 4.120 4.102 4.088 4.000
B-GaN 4.539 4.380 4.434 4.455 4.457 4.441 4.461 4.502 4.511 4.491 4.452 4.520
C 3.563 3.485 3.506 3.522 3.540 3.543 3.547 3.560 3.556 3.543 3.531 3.567
MgO 4.202 4.198 4.198 4.117 4.136 4.141 4.146 4.178 4.175 4.157 4.138 4.207
NaCl 5.541 5.416 5.444 5.500 5.505 5.509 5.514 5.525 5.503 5.487 5.472 5.595
LiCl 5.175 5.107 5.133 5.145 5.147 5.155 5.158 5.165 5.140 5.117 5.115 5.106
Kr 10.86 10.06 10.74 10.79 10.81 10.86 10.86 10.69 10.49 10.05 10.05 9.94
LiF 4.115 4.006 4.030 4.041 4.071 4.073 4.076 4.103 4.098 4.091 4.080 4.010
All solids
MARE (%) 1.20 1.37 1.10 1.40 1.37 1.41 1.35 1.25 1.21 1.34 1.54
MRE (%) 0.68 —1.10 —0.49 —0.47 —0.22 —0.16 —0.03 0.40 0.10 —0.27 —0.62
Group I (Ge, Si, GaN, BaTiO;, C)
MARE (%) 1.15 1.75 1.20 1.44 1.34 1.40 1.32 1.17 1.13 1.33 1.62
MRE (%) 0.66 —1.27 —0.51 —0.39 —0.20 —0.17 0.00 0.41 0.10 —0.31 —0.74
Group II MgO, NaCl, LiCl, LiF)

MARE (%) 1.26 0.88 0.99 1.34 1.41 1.41 1.39 1.35 1.32 1.34 1.44
MRE (%) 0.72 —0.87 —0.47 —0.58 —0.24 —0.14 —0.06 0.38 0.11 —0.22 —0.48
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TABLE IV. Bulk moduli By (GPa) obtained from PBE, HF, PBEO, HSE, and LC calculations. Experimental values are taken from Ref. 93
for Ge; Ref. 41 for Si, f-GaN, C, MgO, NaCl, LiCl, and LiF; Refs. 90 and 91 for BaTiOs; and Ref. 92 for Kr. The calculated MRE and MARE

with respect to experimental values are also shown in percent.

PBE HF PBEO HSE LC Expt.
w=01 w=02 w=03 w=04 w=01 w=02 w=03 w=04
Ge 69.0 76.0 68.8 76.3 75.8 73.3 72.7 71.8 85.3 89.0 95.8 75.8
Si 91.1 116.3 98.1 95.9 93.8 92.0 90.4 90.4 98.0 104.3 109.0 99.2
BaTiO; 146.0 184.0 167.0 164.0 162.0 159.0 156.0 150.0 167.0 166.0 175.0 162.0
B-GaN 173.0 274.6 220.3 215.5 213.3 203.5 189.1 192.2 195.0 218.1 249.3 210.0
C 456.0 534.0 488.0 485.0 483.0 478.0 473.0 469.0 472.0 490.0 508.0 443.0
MgO 152.0 181.0 169.0 166.0 164.0 162.0 160.0 152.0 154.0 161.0 169.0 165.0
NaCl 27.3 32.7 29.3 29.0 28.9 28.7 28.4 28.6 29.1 29.9 30.9 26.6
LiCl 30.7 37.3 33.6 33.6 33.5 33.3 33.1 34.2 36.3 35.1 36.0 35.4
Kr 2.4 6.4 3.8 3.8 3.5 3.1 2.7 3.2 3.5 4.7 5.1 34
LiF 67.2 72.0 69.9 69.8 69.8 69.6 69.2 73.1 69.3 67.9 72.0 69.8
All solids
MARE (%) 8.3 13.7 5.1 3.6 34 44 5.6 6.6 5.5 6.4 11.2
MRE (%) 7.1 13.7 1.7 1.7 0.9 —-0.9 —2.6 —-2.6 2.0 5.1 11.2
Group I (Ge, Si, GaN, BaTiO;, C)
MARE (%) 9.5 16.5 5.7 3.5 3.2 4.7 6.7 7.2 6.1 7.9 15.5
MRE (%) —-8.3 16.5 1.6 2.1 1.0 —-1.5 —4.0 —4.8 2.8 7.9 15.5
Group II (MgO, NaCl, LiCl, LiF)

MARE (%) 6.9 10.3 4.5 3.7 3.7 4.0 4.3 5.9 4.8 4.6 5.9
MRE (%) —5.6 10.3 1.9 1.1 0.7 0.0 —-0.9 0.2 1.1 1.6 5.9

of the Coulomb interaction depends on the materials. Hence
the best treatment of the short-range and long-range parts of the
Coulomb interactions should change from material to material.
What we have found here is natural in a sense. However,
another point we have shown here is that the appropriate choice
of @ with each exchange-correlation functional provides
reasonable agreement with the calculated band gaps for arather
wide range of materials: HSE with o ~ 0.1611;1 for materials
with band gaps smaller than 7 eV, and LC with @ ~ 0.2 agl for
materials with band gaps larger than 7 eV. This information
certainly provides a practical recipe to obtain reliable band
gaps for various materials.

The calculated bandwidths by the PBE functional are
in good agreement with the available experimental values
(Table II). Other hybrid functionals also provide reasonable
agreement, in particular with appropriate choices of the w
parameter for the HSE and LC functionals. On the other hand,
the HFA shows a substantial overestimate for each material.

B. Structural properties

We next examinethe performance of the hybrid functionals
in describing structural properties. Tables III and IV show cal-
culated lattice constants ag and bulk moduli By, respectively,
of the ten materials. The ay and By values are determined by
fitting parameters in the Murnaghan equation of state to the cal-
culated total energy as a function of the volume. In MARE and
MRE presented in Table II1, the calculated value for solid Kr is
not included. As shown in this table, the calculated lattice con-

stant of Kr is substantially larger than the experimental value:
Itis overestimated by 1.1%-9.2% in the GGA and in the hybrid
approximations, and by 1.2% in the HFA. This is because the
van der Waals interaction, which is unable to be treated in the
approximations examined in this paper, plays an essential role
in solid Kr. We thus exclude the value for Kr from the statistical
assessment. The results obtained by PBE agree reasonably well
with the experimental values (MRE = 0.68% and MARE =
1.20% for ay and MRE = —7.1% and MARE = 8.3% for
By). The accuracy of the HFA is slightly inferior to that of
PBE (MRE = —1.10% and MARE = 1.37% for ay and MRE
= 13.7% and MARE = 13.7% for By). The PBEO functional
shows better accuracy with the MRE = —0.49% and MARE =
1.10% for ay, and MRE = —1.7% and MARE = 5.1% for B.

The calculated lattice constants using the HSE and LC
functionals are insensitive to the choice of w: The difference
obtained from different w values is within 1%. The difference
in the calculated bulk modulus from different w values is not as
small as in the lattice constant, partly because the fitting by the
Murnaghan equation is incomplete. For the HSE functional,
the value w = O.lal;1 produces the best agreement with the
experiments: MRE = —0.47% and MARE = 1.40% for ay,
and MRE = 1.7% and MARE = 3.6% for B,. For the LC
functional, we have found that w = 0.241,_,;1 produces the best
results: MRE = 0.10% and MARE = 1.21% for ay, and MRE
=2.0% and MARE = 5.5% for By. These optimum values for
w for the HSE and LC functionals are identical to the optimum
values determined from the calculated MRE and MARE for
band gaps, corroborating the appropriate choice of w.
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V. CONCLUSION

We have studied the validity of hybrid exchange-correlation
functionals in density functional theory by implementing three
hybrid functionals in a well-established plane-wave basis-set
code named TAPP and by calculating the structural properties
and electron states of ten representative materials in which the
experimental energy gaps range from 0.67 to 14.20 eV. The
three hybrid exchange-correlation functionals examined in this
paper are PBEO proposed by Perdew, Burke, and Ernzerhoff,
HSE proposed by Heyd, Scuseria, and Ernzerhoff, and LC
originally proposed by Savin and by Hirao and his collabo-
rators. For comparison, results from the generalized-gradient
approximation, i.e., PBE and HFA, have been presented. The
ten materials we examined are Ge, Si, GaN, BaTiOj3, diamond,
MgO, LiCl, NaCl, Kr, and LiF, which are representatives of
covalent, ionic, and rare-gas solids.

We have found that structural properties such as the lattice
constants are already well reproduced by the PBE functional
and also by HFA and that the hybrid functionals show better
agreement with the experimental values. We have determined
appropriate values of w in the separation of the short-range
and long-range parts in the Coulomb interaction: The optimum
value is @ = 0.1a," for the HSE functional and w = 0.2a"
for the LC functional. By choosing the appropriate value of
w in the HSE and LC functionals, we have achieved better
agreement in the lattice constants and further substantial
improvement in the description of elastic constants such as
bulk moduli for the ten materials.

Dramatic success of the hybrid functionals was observed
in the calculated band gaps. We have found that the calculated
band gaps by the LC functional for the wide-band-gap
materials agree satisfactorily with the experimental values,
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with a mean relative error (MRE) of 3.0%, whereas the
band gaps by the HSE functional for the small-band-gap
materials agree well with the experimental values, with a
MRE of 0.7%. This good description of the band gaps is
unprecedented in density functional theory, where the LDA
and the GGA produce a value with a MRE of approximately
40%-50%, and it is comparable with or better than what
the GW approximation produces. The w value leading to
the best agreement with the experiments is O.lal;l for the
HSE functional and 0.2a;' for the LC functional. These w
values are identical to the optimum values determined from
the examination of the structural properties. The calculated
valence-band widths by the hybrid functionals also agree
satisfactorily with the experimental values.

It is now established that the HSE and LC functionals
with an appropriate choice of the w parameter are useful to
describe the structural and electronic properties of various
materials. Rigorous justification of the choice of the form of the
hybrid functionals along with a guiding principle of the choice
of w would offer further developments in the first-principles
calculations.
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