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Microscopic modeling of magnetic-field effects on charge transport in organic semiconductors
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The stochastic Liouville equation is applied to the field of organic magnetoresistance to perform detailed
microscopic calculations on the different proposed models. By adapting this equation, the influence of a magnetic
field on the current in bipolaron, electron-hole pair, and triplet models is calculated. The simplicity and wide
applicability of the stochastic Liouville equation makes it a powerful tool for interpreting experimental results
on magnetoresistance measurements in organic semiconductors. New insights are gained on the influence of
hopping rates and disorder on the magnetoresistance.
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I. INTRODUCTION

A large magnetoresistance in disordered organic semi-
conductors has been discovered in materials without any
ferromagnetic electrodes.1,2 This effect, commonly referred
to as organic magnetoresistance (OMAR), can be as large
as 10% at room temperature and magnetic fields of only
10 mT, making it potentially suitable for future applications.
Since its discovery, various mechanisms to explain the large
magnetoresistance have been proposed by various authors.3–5

However, none of them unambiguously explain all the exper-
imental results. Although the models for OMAR are based
on different processes, ranging from bipolaron formation5 to
recombination of electron-hole (e–h) pairs3 and detrapping of
charges by triplet excitons,4 there is also a strong similarity
between these mechanisms. In the proposed models an applied
magnetic field alters the spin-dependent reactions between two
particles, thereby changing the current through the organic
devices.

For one of the models, namely the bipolaron model, explicit
calculations have been performed by means of Monte Carlo
simulations5 and by considering a simple two-site model.6

However, for the other models explicit, quantum-mechanical
calculations are lacking, and the interpretation of experimental
results is often based on qualitative reasoning and/or simplified
rate equations. Moreover, various OMAR-related phenomena
are claimed to be observed in literature, like spin mixing by a
difference in g factors of electrons and holes7,8 or high-field
effects caused by triplet excitons.9–11 Also in those cases, we
feel that a more explicit quantum-mechanical treatment would
be benificial.

In this paper we use a simple master equation for open
quantum systems, based on the density-matrix formalism,
capable of describing different types of spin-spin reactions in
organic semiconductors. This master equation, often referred
to as the stochastic Liouville equation,12 is adapted to perform
detailed microscopic calculations on the various OMAR
models, making it an extremely useful tool for interpreting
experimental results.

We will start this paper by introducing the stochastic
Liouville equation, after which calculations on four different
magnetic-field-dependent spin-spin reactions are performed:
bipolaron formation, e–h pair recombination, detrapping of
charges by triplet excitons, and the mutual annihilation of

triplet excitons. Calculations are focused on the influence
of the spin-spin reactions on the current, but all of them
could potentially lead to a similar magnetic-field effect on,
for example, the electroluminescence or the photogenerated
current.

II. STOCHASTIC LIOUVILLE EQUATION

It will be shown that to perform calculations on spin-
spin reactions in organic semiconductors the density-matrix
formalism is invaluable. First, spin pairs are created in random
spin states (with the exception of photoexcitations), i.e.,
the mutual orientation of the spins on pair formation is
random, demanding a statistical approach of the quantum
system. Second, incoherent hopping of particles also requires
calculations to be performed on an ensemble of spin states,
properly described by a density matrix. As a starting point
we therefore consider an ensemble of N spin pairs in the
respective spin states �n. The dynamics of such an ensemble
can be described by introducing a density operator:

ρ = 1

N

N∑
n=1

|�n〉〈�n|. (1)

By choosing an orthonormal basis φi , we can define the density
matrix as follows:

ρi,j = 〈φi |ρ|φj 〉. (2)

The diagonal elements of ρ give the probability of finding
the system in the corresponding basis states. The density
matrix fully describes the state of the ensemble, and the
expectation values for any observable can be obtained from it.
The time evolution of the ensemble is easilly derived from the
Schrödinger equation and is given by the Liouville equation:

∂ρ

∂t
= − i

h̄
[H,ρ], (3)

where H is the spin-pair Hamiltonian and the square brackets
denote the commutator. For the spin-dependent reactions in
organic semiconductors we would like to model, usually
two types of interactions are present in the Hamiltonian.
The first type of interactions are nondissipative interactions
under which the ensemble coherently evolves in time, such as
the Zeeman, exchange, and/or hyperfine interactions. These
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interactions can be simply taken into account by using an
appropriate spin Hamiltonian. On the other hand there are
dissipative interactions that incoherently create or destroy spin
states under the influence of interactions with an environment.
An example of such an interaction is phonon-assisted bipo-
laron formation, removing polaron pairs from an ensemble of
such pairs. To properly describe these dissipative interactions
with the environment, the theory for open quantum systems
should be used.

In the literature a master equation governing the system
dynamics has been introduced with considerable success in
different fields of research, ranging from delayed fluorescence
in organic semiconducting crystals to laser theory.13,14 This
equation was first introduced by Scully and Lamb and is often
referred to as the stochastic Liouville equation:14

∂ρ

∂t
= − i

h̄
[H,ρ] − 1

2
{�,ρ} + �. (4)

The first term on the right-hand side of Eq. (4) is the
Liouville term from Eq. (3) and corresponds to the coherent
evolution of the spin pairs in absence of interactions with
the environment. The second term is a dissipative term, (spin
selectively) removing spin pairs from the system, where the
curly braces denote the anticommutator and � is a projection
operator projecting on the spin subspace from which reactions
are allowed. The role of the anticommutator is discussed by
Haberkorn and preserves the hermiticity of ρ.15 The last term
is a source term, adding spin pairs to the system.

Although Eq. (4) was originally introduced on a phe-
nomenological basis, it can be shown that incoherent spin-
dependent reactions by interactions with a thermal bath are
taken into account correctly by the anticommutator of � and
ρ.16 ρ in Eq. (4) is strictly speaking no density matrix, as the
trace of the matrix is not equal to one. ρ is merely a measure for
the amount of spin pairs in the system, as the reaction products
are neglected. The statistical interpretation of ρ can always be
obtained by calculating the reduced density operator for the
spin pairs simply by dividing ρ by its trace.

Equation (4) can be used to describe a system where pair
states are created by �, states are (spin selectively) destroyed
or removed by �, and states evolve in time according to the
spin-pair Hamiltonian H . It is this equation that will serve as
a starting point for the calculations of the different spin-spin
reactions in disordered organic semiconductors assumed to
be responsible for the observed magnetoresistance. By simply
using the correct spin Hamiltonian and slightly adapting the
stochastic Liouville equation the different OMAR models can
be implemented.

Spin chemistry,17 a field closely related to that of OMAR, is
a primary example of how theoretical calculations exploiting
the stochastic Liouville equation can be used to support
the interpretation of experiments on magnetic-field-dependent
reactions and gain further insight into their underlying mech-
anisms. A detailed review of the field is given by Steiner
and ulrich.18 In the review the authors concluded that there
are many different mechanisms through which a magnetic
field can modify chemical reaction rates. It is likely that the
same holds for OMAR, i.e., all the proposed models can
potentially alter the current in organic semiconductors. The
type of device and the operating conditions determine whether

a specific model is the dominant mechanism contributing to the
magnetoresistance. For this reason, the goal of the presented
calculations is not to falsify any of the proposed models,
but to elucidate their basic properties, which can be used
to discriminate between the models in specific experiments.
In this perspective, calculations are performed on the most
common spin-dependent reactions used to explain OMAR,
namely bipolaron formation, e–h pair recombination, and
triplet exciton reactions.

III. BIPOLARON MODEL

A. Basic concepts

One of the models for OMAR has been proposed by Bobbert
et al.5 In this model two charges with equal sign can form a
bipolaron as an intermediate state depending on the mutual
orientation of the spins. This bipolaron formation rate depends
on the applied magnetic field, as the magnetic field alters the
evolution of the individual spins in the pair. By changing
the bipolaron formation rate the current is also changed, as
certain sites are effectively blocked if bipolaron formation is
not possible.

The basic microscopic concept of the bipolaron model is
shown in Fig. 1. When a polaron pair is formed, the individual
spins precess around their local magnetic fields. This local
magnetic field is a sum of the applied magnetic field and
the local random hyperfine fields. The latter originate from
the coupling of the polaron spins to the spins of the hydrogen
protons in the organic molecules. Schulten and Wolynes19 have
shown that interactions of a single polaron with a sufficiently
large number of hydrogen protons can be approximated by
a static random magnetic field. The x, y, and z components
of this static hyperfine field are normally distributed around
zero with a standard deviation σhf corresponding to the
average hyperfine-field strength. The resulting polaron-pair
Hamiltonian is the following:

H = HZ,α + HZ,β + Hhf,α + Hhf,β ,

HZ,i = gμB

h̄
�Bapp · �Si, (5)

Hhf,i = gμB

h̄
�Bhf,i · �Si,

where g is the polaron g factor, which is ≈2, μB is the
Bohr magneton, h̄ is the reduced Planck constant, �Bapp is the
applied magnetic field, �Bhf,α and �Bhf,β are the hyperfine fields

Bhf Bhf

Bhf + Bapp Bhf + Bapp

(b)(a)

FIG. 1. (Color online) (a) Bipolaron formation without a field.
Local hyperfine fields mix the singlet and triplet states. (b) Bipolaron
formation in a large applied field. The external magnetic field
suppresses the hyperfine induced mixing of the singlet and triplet
states, reducing the bipolaron formation probability.
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experienced by the two polarons in a pair, and �Sα and �Sβ are
the spin operators of the individual polarons.

In the absence of an applied magnetic field, a pair of
polarons on neighboring localized sites that is formed in the
triplet state can obtain a singlet character, as both polarons
precess around a small static random magnetic field, which
changes the mutual orientation of the spins. Only when the
polaron pair has a singlet component it is possible for one
of the polarons to hop to the neighboring site and form an
intermediate bipolaron before hopping further through the
device. This process is schematically depicted in Fig. 1(a).
However, on applying an external magnetic field, the random
hyperfine fields are suppressed and the individual spins precess
around identical local magnetic fields, hence suppressing
mixing. This suppression of mixing leads to a decrease of
the bipolaron formation rate, as depicted in Fig. 1(b).

In passing, we note that we focus here on the simplest
model, neglecting effects like an exchange, dipolar, and
spin-orbit interaction. Adding the first two is a straightforward
extension of the polaron-pair Hamiltonian; however, a detailed
discussion is given elsewhere.20 Also the spin-orbit interaction
(SOI) could potentially be included in the polaron-pair Hamil-
tonian; however, we neglected the SOI for two reasons. First,
this interaction is expected to be small for the commonly used
light organic materials. This is supported by the observation
that the hyperfine interaction is the dominant spin-relaxation
mechanism in organic spin valves.21 Second, adding the SOI
requires that the orbital degrees of freedom be taken into
account. This would complicate the presented calculations
dramatically, which is beyond the scope of the work presented
in this paper.

B. Two-site model: Density-matrix calculations

To calculate the magnetic-field dependence of bipolaron
formation, a model system will be used based on the two-site
model proposed by Wagemans et al.,6 which has shown
that many effects observed in OMAR can be obtained by
considering only two characteristic sites. By adapting the
stochastic Liouville equation a full density-matrix description
of the two-site model will be given, making it possible to
study properties of the bipolaron model in the regime where
the hopping frequency ωhop is in the order of or larger
than the hyperfine precession frequency ωhf = gμBσhf/h̄.
Also other interactions are easilly added to the spin-pair
Hamiltonian, making it possible to study effects like an
increased spin mixing due to a difference in g factors of
the polarons, and interactions like a dipole coupling or an
exchange interaction.20

A schematic drawing of the two-site model is depicted in
Fig. 2. In this model there are two molecular sites, α and β,
with their local hyperfine fields �Bhf,α and �Bhf,β . Sites α and β

are, respectively, at most and at least singly occupied. If site α

is unoccupied, a polaron can hop from the environment to site
α with a rate reα . When site α is occupied by a polaron it will
precess around the local magnetic field. This polaron can now
do two things: either hop directly to the environment with a
rate rαe or form a bipolaron by hopping to site β with a rate
PSrαβ , where PS is the probability of finding the polarons on
sites α and β in a singlet configuration. After a bipolaron is

ee
α β

reα

rαe

Psrαβ

rβe

FIG. 2. (Color online) Two-site model as presented by Wagemans
et al.6 The symbols are explained in the text.

formed, it will dissociate with a rate rβe by one of the polarons
hopping from site β to the environment. The current through
the system is defined as the total flow of polarons from the
environment to site α.

A full density-matrix description of the two-site model is
given by an adapted stochastic Liouville equation:

∂ρ

∂t
= − i

h̄
[H,ρ] − 1

2
(rαe + rαβ){�S,ρ}

− 1

2
rαe{�T,ρ} + 1

4
reα(1 − Tr(ρ))�, (6)

where �S and �T are projection operators on, respectively,
the singlet and triplet states, and � is the identity matrix
corresponding to the creation of spin pairs with a fully
random orientation. Note that we set rβe = ∞ to simplify
the calculations. Equation (6) keeps track of the polaron-pair
spin states, where the trace of ρ represents the occupation
of site α. The current through the system is thus given by
I = reα(1 − Tr(ρ)). As OMAR is a steady-state phenomenon
we are interested in the solutions of ∂ρ/∂t = 0. By solving
Eq. (6) the current for a particular applied field can be
calculated. Finally, the magnetoconductance (MC) can be
evaluated by calculating

MC = I (B) − I (0)

I (0)
100%. (7)

The original two-site model6 has been developed for the limit
ωhf/ωhop � 1, i.e., for the slow-hopping regime. We have
checked and confirmed that the obtained line shapes from
the density-matrix calculations in this regime are identical
to the ones from the original model. In this paper we will
focus on elucidating properties of the different models that are
not reported in literature; hence we will focus on calculating
properties of the bipolaron model in the intermediate- and
fast-hopping regime.

C. Hopping-rate dependence

All MC line shapes reported in the literature are calculated
for ωhf/ωhop � 1, i.e., when mixing is much faster than
hopping. In this section we will show how the MC and
linewidths change as a function of the hopping rate.
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FIG. 3. (Color online) (a) Influence of the hopping rate rαβ on
the magnetoconductance in infinitely large fields. On increasing the
hopping rate the MC is effectively quenched. (b) MC line shapes for
different hopping rates and b = 100. The inset shows one of the line
shapes for small applied fields. The lines in (a) and (b) serve as a
guide to the eye.

To study the dependence of the MC on the hopping rate,
calculations are performed where ωhf/ωhop is changed by
changing the rate rαβ and keeping the branching b, defined as
rαβ/rαe, constant. For all calculations we have chosen reα =
10 rαβ . In Fig. 3(a) the MC in large fields, MC∞, is plotted
as a function of rαβ for three different branching ratios. The
curves are obtained by averaging over random configurations
of the hyperfine fields. It can be observed that, on increasing the
branching ratio, the absolute value of the magnetoconductance
also increases, which corresponds to the conclusions of Bob-
bert et al.5 and Wagemans et al.6 On increasing the hopping
rate and leaving the hyperfine-field strengths constant, the MC
decreases until it reaches zero. In the fast-hopping regime, the
polaron pairs hop so fast that precession around the hyperfine
fields is too slow to mix the spin states; thus there is no
influence of the hyperfine interactions, resulting in a negligible
OMAR.

In Fig. 3(b) the MC is plotted as a function of the applied
field for different hopping rates. On increasing the hopping
rate not only the magnitude of the magnetoconductance
decreases, but also an increase in linewidth is observed. This
broadening of the curves is caused by a subtle balance of
average polaron pair lifetimes and the amplitude and speed of
dephasing, as can be intuitively seen from a simplified classical
model. This simplified model, where we consider a single spin

precessing around the sum of an applied field and hyperfine
field, yields the following relation for the total amount of
mixing in the fast-hopping limit:

�mix(Bapp) ∝ ω2
hf

ω2
hop

(
C − (gμBBapp/h̄)2

ω2
hop

)
, (8)

where C is a constant. Two things become apparent from
this equation. First, the total amount of mixing becomes
small, as can be seen from the prefactor ω2

hf/ω
2
hop. Second,

the linewidth is determined by the ratio between the applied
field and the hopping rate; hence, increasing the hopping
rate also increases the line-width. Note that in this regime
the linewidth is not related to the hyperfine-field strength, in
sharp contrast to the slow-hopping regime. Conclusively, it is
thus not only the hyperfine fields and branching ratio that can
influence the linewidths of the MC in OMAR experiments, but
also the polaron-pair lifetimes, which is a surprising result from
the calculations. Note that this line-shape broadening has not
yet been reported in literature, but could be very important for
interpreting experimental results. For example, in the recent
deuteration experiments performed by Nguyen et al.21 not only
the hyperfine-field strength changes on deuterating, but also
the ratio ωhf/ωhop. The change in linewidth observed in these
experiments might thus not be solely caused by the hyperfine
interaction strength. Furthermore, in hopping rates between
minority and majority charge carriers could also play a role in
the large difference in observed linewidths in the sign-change
experiments by Bloom et al.22

Finally, another important feature can be observed in the
line shapes depicted in Fig. 3(b). For small applied fields a
small positive effect emerges on entering the intermediate-
hopping regime, as has recently been discussed by Wagemans
et al.23 and Kersten et al.24 To accentuate this effect one of the
curves from Fig. 3(b) is depicted in the inset, only zoomed in
around the zero applied field. The ultrasmall magnetic-field
effect (USMFE) has experimentally been shown to be an
intrinsic effect in OMAR,21 in both unipolar and bipolar
devices.25 The effect is naturally reproduced by the stochastic
Liouville equation for the bipolaron model, but also for the
e–h pair model discussed in the next section, this without
adding any extra terms to the polaron-pair Hamiltonian.
The width and size of the effect are determined by the
various model parameters and originate from the competition
between spin mixing and bipolaron/exciton formation for
intermediate-hopping rates, similar to the broadening of the
line shapes. In passing we note that adding a small exchange
or dipolar interaction to the Hamiltonian will also give rise
to the USMFE, as it introduces additional singlet-triplet level
crossings for small applied fields.

IV. ELECTRON-HOLE PAIR MODEL

A. Basic concepts

A different model for OMAR based on the spin-dependent
reactions of polaron pairs is the e–h pair model. The current
in an organic semiconductor can be influenced by the recom-
bination rate of polarons. A free hole and electron can form
an exciton, which can subsequently decay to the ground state
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p

qS, qT+ +

free e + h polaron pair

kS, kT

exciton

+

ground state

FIG. 4. The e–h pair model as described by Prigodin et al.3 Free
electrons and holes form polaron pairs, which can either form an
exciton or dissociate. An exciton can decay to the ground state
by recombination of the electron and hole. A difference in exciton
formation or pair dissociation rate of singlet and triplet e–h pairs
yields a MC.

by recombination of the electron and hole, hence removing
free charges from the device. Prigodin et al.3 have suggested a
model based on the spin-dependent recombination of e–h pairs
to explain OMAR, where the recombination rate is susceptible
to an applied magnetic field.

A schematic diagram explaining the model is depicted in
Fig. 4. In the model it is assumed that before exciton formation,
i.e., before spin mixing is frozen by the large exchange
interactions, electrons and holes pass through an intermediate
state in which they are bound by their Coulomb interaction,
but the distance between the pairs is large enough for exchange
interactions to be negligible. In this intermediate e–h pair state,
the pairs form excitons and subsequently recombine with rates
kS and kT and dissociate with rates qS and qT for singlet and
triplet pairs, respectively. Prigodin et al. assume that e–h pairs
with a singlet component have a larger exciton formation rate
kS and thus a larger recombination probability. However, Xu
and Hu conjecture that the magnetoresistance is not caused by a
difference in recombination rate of singlet and triplet e–h pairs,
but by a difference in dissociation rate due to the more ionic
nature of the singlet e–h pairs.26 As the resulting influence
on the MC for both mechanisms is almost identical, we will
focus on the model of Prigodin et al., where we assume that
there is a smaller recombination rate of triplet than singlet e–h
pairs. Note that this is in sharp contrast to what is concluded
by Kersten et al.,27 where the triplet e–h pairs have the largest
recombination rate. As it does not lie within the scope of this
paper to justify these assumptions we use the model of Prigodin
et al. in the calculations.

Just as in the bipolaron model, the hyperfine fields
experienced by the polarons in the pair mix the singlet
and triplet spin states. On applying a magnetic field, the
mixing by the hyperfine fields is suppressed. If one now
assumes that singlet pairs have a larger recombination rate
than triplet pairs, increasing the magnetic field leads to
less pair states being mixed with the singlet state and thus
less recombination, ordinarily resulting in a larger current.
However, not only recombination but also space charge plays
an important role in the current through an organic light-
emitting diode (OLED). Therefore, there is a different relation
between the recombination probability and the current for
different operating regimes. In this paper we will for simplicity
restrict the calculations to the space-charge-limited transport
regime; however, extending the calculations to other regimes is
straightforward.

B. Electron-hole recombination: Density-matrix calculations

The current through an OLED operated in the space-charge-
limited transport regime is given by3

J = 3ε

4

√
2πμeμh(μe + μh)

μrec

(
V 2

d3

)
, (9)

where μe and μh are the electron and hole mobilities,
respectively, μrec the so-called recombination mobility, ε is
the dielectric constant of the material, d is the thickness of
the device, and V is the applied voltage. Note that the relation
is valid for only a trap-free bipolar device and two ohmic
contacts. Prigodin et al. argue that a magnetic field changes
the recombination mobility of Coulombically bound e–h pairs.
The recombination mobility is given by28

μrec = εaPrec

2e
, (10)

where a is given by the Langevin equation3 and Prec is the
probability that after formation an e–h pair recombines instead
of dissociates. To calculate the recombination probability we
consider an e–h pair on two neighboring localized sites α and
β. The spin part of the polaron-pair Hamiltonian is given by
Eq. (5). On creation of the polaron pair again it is assumed
that the spins show no correlation; hence the density matrix at
t = 0 is proportional to the identity matrix. The time evolution
of the density matrix of an ensemble of e–h pairs created at
t = 0 is given by

∂ρ

∂t
= − i

h̄
[H,ρ] − 1

2
(qS + kS){�S,ρ}

− 1

2
(qT + kT){�T,ρ}. (11)

ρ(t) can now be calculated by solving Eq. (11). The recombi-
nation probability of an e–h pair is given by

Prec =
∫ ∞

t=0

kSρS(t) + kTρT(t)

(kS + qS)ρS(t) + (kT + qT)ρT(t)
dt, (12)

where ρS(t) and ρT(t) are, respectively, the singlet and triplet
densities of the ensemble, which are just the diagonal elements
of ρ in a basis of the eigenstates of the total spin operator �S2.
Solving the set of coupled differential equations and integrat-
ing the results is, however, a numerically demanding task. A
more convenient approach to this problem is given by Hansen
and Pedersen,29 who consider a system of interacting radical
pairs that are continuously being created. The steady-state
solution of the system is used to calculate the recombination
probability of a single radical pair. This steady-state approach
yields results identical to the ones obtained by integrating the
time-dependent solutions of the system, as long as there is no
spin-dependent interaction between the individual pairs.

Equation (11) is adapted by adding a source term, resulting
in the following steady-state relation:

0 = − i

h̄
[H,ρ] − 1

2
(qS + kS){�S,ρ}

− 1

2
(qT + kT){�T,ρ} + 1

4
p�, (13)

where p is the e–h pair formation rate and � is the identity
matrix. Note that the resulting equation has exactly the same
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FIG. 5. (Color online) MC as a function of the applied field for
the e–h pair model for three values of q/kS while qS = qT = q and
kT = 0. The dots are the results from the calculations while the lines
are fits of the data with Lorentzians.

form as the stochastic Liouville equation from Eq. (4). After
solving Eq. (13), Prec is calculated with

Prec = kSρS + kTρT

(kS + qS) ρS + (kT + qT) ρT
. (14)

Note that the recombination probability of the e–h pair is
independent of the formation rate p. Prec can now be used
to calculate the recombination mobility with Eq. (10). By
entering the recombination mobility in Eq. (9) the current in
the space-charge-limited transport regime is calculated.

Finally, the MC is obtained by evaluating Eq. (7). By
following this procedure MC line shapes can be calculated.
In the next sections we will show how the model parameters
of the e–h pair model change the MC in OLEDs. Furthermore,
an application of this density-matrix approach is illustrated by
investigating the influence of a difference in g factors of the
electron and hole.

C. Magnetoconductance and line shapes

For the e–h pair model of Prigodin et al.3 no theoretical MC
line shapes have ever been reported in the literature. Therefore
some line shapes are calculated and analyzed here. For the cal-
culations we assumed qS = qT = q, i.e., the triplet and singlet
pairs have equal dissociation rates, and kT = 0, meaning that
triplet pairs cannot recombine. Furthermore, calculations are
performed in the slow-hopping limit, so ωhf/ωhop � 1. The
resulting line shapes are depicted in Fig. 5. The first thing
to notice is that the MC due to e–h pair recombination is
positive, i.e., an applied field increases the current. Second,
the line shapes can be fitted reasonably well with a Lorentzian,
which is one of the two experimentally observed OMAR line
shapes.30Also, the Lorentzian has previously been obtained
from simple calculations on the MC due to suppression of
the hyperfine fields by an applied field.31 One of the reasons
that the obtained line shapes are not exactly Lorentzian is
the averaging over the random hyperfine fields, as adding the
Lorentzians from the single hyperfine-field strengths yields a

FIG. 6. Contour plot of the MC as a function of q/kS and kT/kS

in the e–h pair model.

sligthly broadened curve at small fields. A final observation
that can be made is that the line shapes are altered by model
parameters. On increasing the ratio q/kS a broadening of
the line-shape is observed, resulting in a larger deviation
from the Lorentzian line shape. From this observation we
can conclude that not only the hyperfine-field strength and
polaron-pair lifetime, but also the rates influence the line
shape. We would like to note that the dependence of the
line shapes on the model parameters in the e–h pair model
is less pronounced as compared with the bipolaron model, as
in the latter non-Lorentzian line shapes can be produced due to
strong blocking of crucial percolation paths,6 whereas in the
e–h pair model the line shapes always more closely resemble
Lorentzians.

To further investigate the influence of the model parameters
in the e–h pair model, a contour plot of MC∞ is shown in
Fig. 6 for different values of the ratios q/kS and kT/kS. What
can be observed is that, irrespective of the value of q/kS,
increasing the triplet recombination rate kT leads to a smaller
MC; thus the larger the difference between the triplet and
singlet recombination rates, the larger the MC. When kT/kS =
1, no MC is observed as singlets and triplets recombine with
the same rate.

On increasing q/kS we see in Fig. 6 that at first the MC
increases, but starts decreasing after reaching a maximum.
This can be qualitatively explained as follows: When q � kS,
ρS and ρT are not changed by the magnetic field as the spin-
dependent recombination step becomes small compared with
spin-independent dissociation. When q 	 kT, pairs with only
a triplet component will also recombine; hence suppression of
spin mixing by the applied magnetic field does not influence
the recombination probability of the polaron pairs. This means
that for moderate values of q with respect to kS and kT the
maximum MC can be observed.

To sum up our findings we can conclude that calculations
on the MC due to e–h pair formation yield Lorentzian-like

075204-6



MICROSCOPIC MODELING OF MAGNETIC-FIELD . . . PHYSICAL REVIEW B 84, 075204 (2011)

B
Δg = 0

B B B
Δg ≠ 0(b)(a)

FIG. 7. (Color online) Classical representation of spin mixing
due to the �g mechanism. (a) The e–h pair starting in the |T0〉 state
remains in the |T0〉 state as both spins precess in phase around the
applied field. (b) The |T0〉 state is mixed with the |S0〉 state due to a
difference in precession frequency.

line shapes. Linewidths are affected by both hyperfine-field
strengths and recombination/dissociation rates, while the size
of the effect is mostly determined by the latter. We note that in
real devices there is a distribution of hopping rates due to the
disordered nature of the organic semiconductors. Averaging
over these different hopping rates could result in more realistic
line shapes, but is a numerically demanding task.

D. �g mixing

In the e–h pair and bipolaron model, a spin-pair Hamilto-
nian is used where the g factors of both the charge carriers
are identical. However, this is not necessarily the case for
realistic devices, where the g factors of the electrons and
holes might differ. Furthermore, polarons with the same charge
might also have different g factors due to a slightly different
chemical environment.32 In the literature it is suggested that
this difference in g factors leads to a magnetic-field-dependent
mixing of the |S0〉 and |T0〉 states in large applied fields. It is
argued that this �g mechanism yields a

√
B magnetic-field

dependence of the recombination rate for radical pairs,17 but
it has never been explicitly shown that this dependence holds
for the different OMAR models as assumed, for example, by
Wang et al.7 Therefore, we will study the MC in the e–h pair
model with a small difference in g factors of the electron and
hole using the stochastic Liouville equation.

The |S0〉 and |T0〉 states can classically be thought of as
the states with the spins perpendicular to the applied magnetic
field, where in the |T0〉 state the spins precess in phase around
the magnetic field, while in the |S0〉 state the spins precess out
of phase around the field. A difference in g factors results in
a difference in precession frequency, hence the |S0〉 and |T0〉
states are mixed by the applied field. A schematical drawing
illustrating this dephasing is shown in Fig. 7. Note that a small
exchange interaction or dipole coupling is necessary to observe
the �g mechanism, because the |T0〉 and |S0〉 states need to
be split in energy at zero field, otherwise the |S0〉 and |T0〉
states are already fully mixed by the hyperfine interactions;
hence an increased mixing due to the �g mechanism would
not be observable. The following term has to be added to the
polaron-pair Hamiltonian in Eq. (5):

Hex = J
(

1
2 + 2�Sα · �Sβ/h̄2

)
, (15)

where J is the exchange interaction strength, which depends
on the overlap of the wave functions of the electron and hole.

To illustrate how a MC line shape is influenced by the
�g mechanism, calculations are performed in the e–h pair

FIG. 8. (Color online) MC line shapes due to �g mixing in the
e–h pair model in the slow-hopping regime. The lines are fits to double
Lorentzians. The chosen model parameters are kT/kS = 0, q/kS = 1,
and J = 0.3 μBσhf .

model, where a small difference in g factors of the electron
and hole is introduced. The resulting line shapes for three
differences in g factors are shown in Fig. 8. The calculated
line shapes show a sharp increase around zero field due to the
suppression of the hyperfine mixing of the |T1〉 and |T−1〉 states
with the |S0〉 and |T0〉 states. On increasing the magnetic field
further a decrease in magnetoconductance is observed due to
increasing �g-mixing. The decrease of the MC resembles a
Lorentzian-like line shape, as the total line shapes are fitted
reasonably well with two Lorentzians. At large fields the MC
is saturated, because the |S0〉 and |T0〉 states are completely
mixed. The high field linewidth is determined by the difference
in g factors and the exchange interaction strength, while the
magnitude of the effect is determined by the relative size of
the exchange and hyperfine interactions.

The most important conclusions on the �g mechanism
that can be drawn from the calculations are (i) �g gives a
Lorentzian-like line shape in the e–h pair model, different
from the

√
B dependence proposed and reported in the

literature.7 This discrepancy is caused by the fact that in the
literature it is assumed that the exchange energy is negligable
compared with the �g mixing, while the effect is most
pronounced when both interactions are of equal magnitude.
Furthermore, random encounter processes are taken into
account as the derivation is performed for free radicals in
solution. This means that although many successful models
for magnetic-field-dependent reactions have been introduced
in spin chemistry,17 one has to be careful with naively applying
them to OMAR. (ii) The linewidth is solely determined by the
exchange interaction and the difference between the g factors.
(iii) The magnitude of the �g mechanism is determined by the
ratio of the hyperfine and the exchange interactions. (iv) The
�g mechanism yields an opposite effect to the suppression
of the hyperfine fields, in contradiction to the suggestions in
the literature.7 (v) Because the exchange interaction has to be
of the order of the hyperfine interaction strength for the �g

mechanism to be significant, the difference in g factors needs
to be large (≈1%) for the effect to be visible in experimentally
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feasible magnetic fields (<1 T). We therefore conjecture that
high-field effects in the current in OLEDs with linewidths of
≈100 mT cannot be explained by a difference in g factors
between the electron and hole in a pair.

V. TRIPLET-CHARGE REACTIONS

A. Basic concepts

Johnson et al.33 have shown that triplet exciton reactions
in anthracene single crystals can give rise to a magnetic-field
effect on the delayed photoluminescence in these crystals. In
the literature the high-field effect on the photocurrent, and even
regular OMAR, is sometimes explained by these reactions
of triplet excitons.34,35 However, most of the calculations
on triplet reactions in the literature are focused on single
crystals.13,33,36 We will use the stochastic Liouville equation
to study the magnetic-field-dependence of triplet reactions in
disordered organic semiconductors. We will discuss the two
most important magnetic-field-dependent reactions involving
triplet excitons, namely triplet–triplet (T–T) annihilation and
triplet-charge reactions.

Triplet excitons, which in general have a far longer lifetime
in organic semiconductors than singlet excitons,37,38 can react
with trapped charges in the following manner:39

T + e ⇐⇒ [T + e] =⇒ S0 + e∗, (16)

where T is the triplet exciton, e and e∗ are a trapped and a
free electron, respectively, and S0 is the singlet ground state
of a molecule. Note that the electron could also be a hole,
as the reaction of a hole with a triplet is identical. Therefore,
we refer to an electron or a hole as a doublet (D), since both
have a total spin of 1/2. The reactions of triplet excitons with
trapped charges can have a severe influence on the current of
an OLED, as the mobility of the charges can be enhanced,
especially under photoexcitation. In the literature the term
photoenhanced current is introduced for this effect.40

Because the total spin of the triplet–doublet pair (T–D pair)
after the reaction is 1/2, the total spin of the two particles
before the reaction is required to also be 1/2 due to spin
conservation. Because the triplet is a spin-1 particle and the
trapped charge carrier a spin-1/2 particle, the total spin of
the pair can be either 3/2 (quartet |Q〉) or 1/2 (doublet |D〉).
It is thus required that the two-particle wave function has a
doublet character in order to react. Note that we refer to the
doublet spin state of the T–D pair with the ket notation, i.e.,
|D〉, while we refer to the doublet as the individual electron
or hole particle with D. As the reaction in Eq. (16) annihilates
triplet excitons, we will call this process T–D quenching.

B. Density matrix implementation

To perform calculations on T–D quenching, we use a model
that is schematically depicted in Fig. 9. Triplets and doublets
form T–D pairs with a rate k1 and dissociate with a rate k−1.
The two-particle T–D pair wave function will evolve in time
according to the corresponding Hamiltonian and during this
time the quartet and doublet states can mix. The triplet in
a pair that has a doublet character will relax to the ground
state with a rate k2 on detrapping the charge carrier by

T-D pair
|Q   

T-D pair
|D

Ground state + free charges

k2

mixing

Triplet excitons + trapped charges

k-12/3 k1 1/3 k1 k-1

FIG. 9. Schematic diagram of triplet-charge reactions. Only pairs
in the doublet state can react, where the triplet exciton will transfer
its energy to detrap the charge. The mixing rate is magnetic-field
dependent, yielding a magnetic-field-dependent T–D reaction rate.

transferring its energy. To model T–D quenching the following
spin Hamiltonian is used:

H = HZ,T + HZ,D + Hhf,T + Hhf,D + Hzfs,T,

HZ,i = gμB

h̄
�Bapp · �Si,

(17)
Hhf,i = gμB

h̄
�Bhf,i · �Si,

Hzfs,T = Dzfs

h̄2 S2
T,z + Ezfs

h̄2

(
S2

T,x − S2
T,y

)
,

where �ST and �SD are the spin operators for the triplet and
doublet particle respectively, ST,x , ST,y , and ST,z are the Pauli
spin matrices for the triplet exciton, Dzfs and Ezfs are the zero-
field splitting (zfs) parameters of the triplet exciton, and �Bhf,T

and �Bhf,D are the hyperfine fields experienced by the triplet and
doublet, respectively. The zfs of an exciton is caused by spin-
spin interactions, for example, a dipole coupling, between the
hole and the electron, thus splitting the energy of the |T1〉, |T0〉
and |T−1〉 states. Finally, it has to be noted that the Hamiltonian
is valid only in a coordinate system of the molecule where the
x, y, and z axes coincide with the principal zfs axes.

To calculate the magnetic-field dependence of T–D quench-
ing, the following stochastic Liouville equation has to be
solved:

0 = − i

h̄
[H,ρ] − 1

2
(k−1 + k2){�D,ρ}

− 1

2
k−1{�Q,ρ} + 1

6
k1�, (18)

where �D and �Q are projection operators on the doublet and
quartet spin states. Note that again the steady-state approach is
used to simplify calculations. After solving Eq. (18), the T–D
quenching probability Pq can be calculated as follows:

Pq = k2ρD

(k2 + k−1)ρD + k−1ρQ
, (19)

where ρD and ρQ are, respectively, the doublet and quartet
densities of the ensemble, which can be easilly obtained from
the density matrix. Pq is the probability that, on forming a T–D
pair, the triplet is quenched and the charge carrier is detrapped.
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(a)

(b)

FIG. 10. (Color online) (a) T–D line shapes for two specific
orientations of the zfs principal axis with respect to the magnetic
field. (b) T–D line shape after averaging over all possible orientations
of a molecule in an applied field. The line is a fit with a Lorentzian.
Calculations for (a) and (b) are performed for Dzfs = 10μBσhf and
k2 = 10 k−1

When Pq is small, i.e., Pq 	 1, the triplets and doublets do not
react, while a large Pq, i.e., Pq ≈ 1, indicates a large reaction
rate. The relative change in the reaction rate on applying a
magnetic field is defined as

�Pq(B) = Pq(B) − Pq(0)

Pq(0)
100 %. (20)

The influence of triplet-charge reactions on the current can
be both positive (by detrapping of charges or reduced site
blocking by triplet excitons41) and negative (by quenching of
excitons), depending on the operating conditions of the device.
Therefore, �Pq(B) will be the main parameter of interest in
the calculations. A macroscopic device model is required to
investigate the final influence of �Pq(B) on the current, which
is beyond the scope of this paper.

C. Calculations

In Figs. 10(a) and 10(b) calculations are shown of the triplet
quenching rate as a function of the applied magnetic field. The
zfs interaction strengths are chosen to be Dzfs = 10μBσhf , as in
general the zero-field interaction is stronger than the hyperfine
interaction.42 To reduce computation time, Ezfs is set to zero,
so there is only one principal axis, hence a larger symmetry
in the system. Calculations are performed in the slow-hopping
regime, i.e., in the regime where mixing is faster than the rates
in the Liouville equation.

In Fig. 10(a) the magnetic-field dependence of the quench-
ing rate is plotted for two angles φ between the magnetic field
and the principal zfs axis, which is the z axis in the molecular
frame of reference. Numerical averaging is performed over
random orientations of the hyperfine fields. In the graph a sharp
feature can be observed for small applied fields, which can be
attributed to the hyperfine interactions. At larger fields, around
Dzfs, peaks can also be observed for specific orientations,
which are due to level crossings of the doublet and quartet
states.

For the devices studied in this paper, the molecules have
a random orientation in the sample, i.e., the medium is disor-
dered. Note that in the literature no quantitative calculations
have been performed on the line shapes due to T–D quenching
in disordered media; only calculations on single crystals have
been reported.36 To calculate the quenching rate for these
disordered media; a numerical integration is performed over
the different orientations of the triplet host molecule in the
applied field. A typical result of such a calculation is plotted in
Fig. 10(b). The quenching rate is now a monotonous decreasing
function of the magnetic field and can be fitted remarkably well
with a Lorentzian, although the fit is not perfect, which could be
expected as the curves in Fig. 10(a) are no Lorentzians either.
Important to notice is that the influence of the hyperfine fields
is canceled out by the integration over the different angles,
hence no features are visible for small applied fields. This
means that the width is fully determined by the zfs strength
and not by the hyperfine interactions.

To see how the T–D pair lifetime influences the quenching
probability, calculations are performed where the recombina-
tion/dissociation ratio k2/k−1 is kept constant. Again the pair
creation rate k1 is not of interest for Pq, since the pairs do
not interact with each other. The results of the calculations are
shown in Fig. 11. Here the T–D quenching probability in large
fields is plotted as a function of the dissociation rate. What
can be observed is that, for small dissociation rates, hence
also small recombination rates, the magnetic-field effect is
large. On decreasing the pair lifetime, i.e., increasing k−1, first
mixing by the hyperfine fields is lost, as the precession period
of the spins around the field becomes larger than the pair
lifetime. This loss of hyperfine mixing results in the bump,
i.e., a small decrease followed by a small increase, observed
in the graph. On further decreasing the pair lifetime the zfs
interactions also become too weak to mix the spin states; hence
the magnetic-field effect is totally quenched. This second result
is identical to what we see on decreasing polaron-pair lifetimes
in the polaron-pair models, where the magnetic-field effect
vanishes for very small lifetimes, as can be seen in Fig. 3(a).
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FIG. 11. (Color online) Influence of the T–D pair lifetime on the
reaction probability in large applied fields. Increasing the hopping
rates results in a quenching of the magnetic-field effect, as mixing
by the hyperfine and zfs reactions plays no role for very small pair
lifetimes.

To summarize our findings of this section, we have success-
fully calculated line shapes due to T–D quenching in a disorded
semiconductor, taking the zfs and hyperfine interactions into
account. We have seen that an applied magnetic field decreases
the reaction rate between triplet excitons and charge carriers.
An important result is the Lorentzian-like line shape with a
linewidth determined by the zfs strength, which is obtained
after averaging over all possible angles between the magnetic
field and the molecule hosting the triplet exciton. The influence
of the hyperfine interactions on the line shapes is effectively
removed by this averaging procedure. Finally, the effect of the
lifetime of the T–D pair on the reaction rate is investigated.
When the lifetime of the pair is sufficiently small, the
magnetic-field effect on the reactions is effectively quenched,
comparable to the polaron-pair models. The influence of the
pair lifetime is more complicated in the T–D case, as both the
hyperfine and the zfs interactions have different characteristic
mixing times.

VI. TRIPLET-TRIPLET ANNIHILATION

Another magnetic-field-dependent reaction of triplet ex-
citons in organic semiconductors is the mutual annihilation
of triplet excitons. When two triplet excitons react, they can
annihilate on creation of a ground-state singlet and an excited
singlet, which will quickly relax to the ground state on emitting
a photon:33

T + T ⇐⇒ [T + T] =⇒ S0 + S1 =⇒ S0 + S0 + hν. (21)

The energy of both triplets is transferred to the excited singlet
exciton state. As triplet excitons can influence the mobility of
charge carriers,44 a magnetic-field dependence of the mutual
annihilation of triplet excitons could yield a magnetic-field
effect on the current, as the triplet density becomes sensitive
to an applied magnetic field.

Spin conservation rules require that a T–T pair needs to
have zero total spin to annihilate, i.e., the T–T pair needs to

T-T pair
|Q  ,| T

T-T pair
|S

Ground state + singlet exciton 

k2

mixing

Free triplet excitons

k-18/9 k1 1/9 k1 k-1

FIG. 12. Schematic diagram of the mutual annihilation of triplet
excitons. Only singlet pairs react, resulting in an annihilated exciton
and an excited singlet. The mixing rate between the singlet, triplet, and
quintet spin states is magnetic-field-dependent, yielding a magnetic-
field-dependent T–D reaction rate.

have a singlet character. The magnetic-field effect on T–T
annihilation is very similar to the T–D quenching effect,
and a schematic diagram of the T–T annihilation process is
shown in Fig. 12. T–T pairs are formed with a rate k1, and
the spin state of the pair evolves in time according to the
pair Hamiltonian. When a T–T pair has a singlet character, it
will annihilate with a rate k2. Pairs also dissociate back into
free triplets with a rate k−1, irrespective of the spin state of
the pair. Due to the many similarities with T–D quenching,
like the interactions responsible for mixing, we will show
only a limited amount of calculations on T–T annihilation.
More calculations on this reaction have been reported in the
literature.13,45

The typical Hamiltonian of a molecular T–T pair is

H = HZ,α + HZ,β + Hhf,α + Hhf,β

+Hzfs,α + Hzfs,β , (22)

where the Zeeman, hyperfine, and zfs terms are identical to the
ones in Eq. (17). To calculate the magnetic-field dependence
of T–T annihilation the following stochastic Liouville equation
is used:

∂ρ

∂t
= − i

h̄
[H,ρ] − 1

2
(k−1 + k2){�S,ρ}

− 1

2
k−1{�T,Q,ρ} + 1

9
k1�, (23)

where �S and �T,Q are projection operators on the singlet and
triplet-quintet spin states. By solving Eq. (23) for steady-state
conditions, the probability that a formed T–T pair annihilates
can be calculated with

PA = k2ρS

(k2 + k−1)ρS + k−1ρT,Q
, (24)

where ρS and ρT,Q are respectively the singlet and triplet-
quintet densities. As we investigate the magnetic-field effect
in disordered systems, we need to average over every possible
mutual orientation of the zfs principal axes of the two excitons.
In the literature, averaging over different orientations has
been performed using different methods;43,45 however, the
perturbation theory used in both articles is valid for only
a limited range of model parameters. In Fig. 13 we present
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FIG. 13. (Color online) T–T annihilation line shapes after av-
eraging over random zfs principal axes and hyperfine fields. The
lines are fits with Lorentzians while the dots are the results from the
density-matrix calculations. In the calculations Dzfs = 10μBσhf and
k1 = k2.

the resulting line shapes for T–T annihilation for disordered
organic semiconductors. Averaging has been performed over
random configurations of the hyperfine fields and zfs principal
axes. In the calculations Dzfs = 10μBσhf and k1 = k2 while
the line shapes for different k−1 are plotted.

What can be observed from the calculations in Fig. 13
is that the resulting line shapes for T–T annihilation in
organic semiconductors cannot be fitted as accurately with
a Lorentzian as the ones for T–D quenching. However, as
for T–D quenching, the line shape is fully determined by
the zfs interactions while the hyperfine fields are canceled
out. The calculations support the claims made by Avakian
et al.43 and Mezyk et al.46 that T–T annihilation for randomly
oriented molecules results in a monotonous decrease of the
T–T annihilation rate.

VII. OUTLOOK

We have shown in this paper that with a single mathematical
framework, namely the stochastic Liouville equation, it is
possible to perform calculations on different spin-dependent
reactions in organic semiconductors. Besides the reactions
discussed in this article, there are many more mechanisms that
could be investigated by only slightly altering the stochastic
Liouville equation. For example, one could model the spin-
dependent generation of a photocurrent by using this method.
Furthermore, there are possibilities to further improve the
method in a way to represent realistic devices more accurately.
One could, for example, take diffusion of the particles in a pair
into account in the stochastic Liouville equation, as has been
done by Suna.47 Also, integrating over a distribution of hop-
ping rates that is realistic for the studied devices could provide
more insight into the physics governing these devices. Another
interesting approach is to combine the Liouville equation with
the device model as presented by Bloom et al.,48 making it
possible to study not only the microscopic properties but at the
same time also the influence on the macroscopic properties of

the system under investigation. This can be done by adding the
magnetic-field-dependent recombination probability Prec(B)
to the transport simulations used by Bloom et al.

Finally, combining the results from calculations and mea-
surements could prove useful in interpreting experimental
data, especially where not only low-field (<20 mT) but
also high-field effects are visible. By studying parameters
like the linewidth and sign of the effects as a function of
operating conditions of a device and comparing them with the
microscopic calculations, further insight into charge transport
in organic semiconductors can be obtained.

VIII. CONCLUSIONS

The stochastic Liouville equation enabled us to perform
calculations on the two-site bipolaron model for general
polaron-pair lifetimes. An important observation is that
a decrease in polaron-pair lifetime not only quenches the
magnitude of the MC, but that the polaron-pair lifetime also
strongly influences linewidths of the MC.

Line shapes for the e–h pair model have been calculated.
The magnetic-field dependence of e–h pair recombination
yields mainly Lorentzian line shapes. The influence of the
different model parameters has been investigated. Also the
influence of a difference in g factors between the electron and
hole in a pair has been studied, yielding a contribution to the
MC in large applied fields that is opposite to the contributions
due to suppression of the hyperfine fields. The �g mechanism
yields a Lorentzian-like line shape, which is different from the√

B dependence reported in the literature.
Finally, the magnetic-field dependence of the reactions

involving triplet excitons has been calculated. The detrapping
rate of charges by triplet excitons has been examined in the
case of disorder media, resulting in Lorentzian-like line shapes
that are monotonically decreasing on increasing the applied
field. Linewidths are fully determined by the zfs strength
while the influence of the hyperfine fields is washed out. A
similiar conclusion can be drawn for the mutual annihilation
rate of triplet excitons in an external field, confirming claims
by Avakian et al.43 and Mezyk et al.46

More important, we have shown that the stochastic
Liouville equation is a powerful and versatile tool to perform
calculations on all the different models for organic magne-
toresistance referred to in the literature. By adapting both the
stochastic Liouville equation as the system Hamiltonian we
were able to calculate the magnetic-field dependence of the
various spin-dependent reactions. By combining the stochastic
Liouville equation with experimental data, more insight into
which particular spin-dependent reactions dominate magnetic-
field effects on charge transport in organic semiconductors
could in the future be obtained.
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