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Controlled leaky wave radiation from anisotropic epsilon near zero metamaterials
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We investigate the emission of electromagnetic waves from biaxial subwavelength metamaterials. For
anisotropic structures that exhibit a vanishing dielectric response along the longitudinal axis and possess a
tunable transverse dielectric response, we find remarkable variation in the launch angles of energy associated
with the emission of leaky wave radiation. We write closed-form expressions for the energy transport velocity
and corresponding radiation angle ϕ, defining the cone of radiation emission, as functions both of frequency and
of material and geometrical parameters. Full wave simulations exemplify the broad range of directivity that can
be achieved in these structures.
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I. INTRODUCTION

Metamaterials are composite structures engineered with
subwavelength components, with the purpose of manipulating
and directing electromagnetic (EM) radiation. Recently many
practical applications have emerged, and structures related
to cloaking, metamaterial perfect absorbers,1 and chirality2,3

have been fabricated. The desired EM response to the incident
electric (E) and magnetic (H) fields typically involves tuning
the permittivity ε and permeability μ in rather extraordinary
ways. This includes double-negative-index media (negative
real parts of both ε and μ), single-negative-index media
(negative real part of ε or μ), matched impedance zero-
index media4,5 (real part of ε and μ is near zero), and
epsilon-near-zero (ENZ) media (real part of ε is near zero).
Scenarios involving ENZ media in particular have gained
prominence lately as useful components to radiative systems
over a broad range of the EM spectrum.6–8 Composites
containing an array of nanowires can behave as birefringent
materials with ENZ properties along one direction.9 Grating
structures can also be designed to have properties akin to
ENZ media.10 In conjunction with ENZ developments, there
have also been advances in infrared (IR) metamaterials, where
thermal emitters,11 optical switches,12 and negative index
metamaterials2,13 have been fabricated. Due also in part to
the broad possibilities in sensing technologies, this EM band
is of considerable importance. Smaller scale metamaterial
devices can also offer more complex and interesting scenarios,
including tunable devices,14 filters,9 and nanoantennas.15

Anisotropy is an inextricable feature of metamaterials that
plays a crucial role in their EM response. For instance, at
optical and infrared frequencies, incorporating anisotropy into
a thin planar (nonmagnetic) waveguide can result in behav-
ior indicative of double-negative-index media.16 Anisotropic
metamaterial structures can now be created that contain
elements that possess extreme electric and magnetic responses
to an incident beam. The inclusion of naturally anisotropic
materials that are also frequency dispersive (e.g., liquid
crystals) allows additional control in beam direction. It has also
been shown that metamaterial structures requiring anisotropic
permittivity and permeability can be created using tapered
waveguides.17 By assimilating anisotropic metamaterial leaky

wave structures within conventional radiative systems, the
possibility exists to further control the emission characteristics.

Prompted by submicron experimental developments and
the potential for unconventional beam manipulation, we
investigate a planar anisotropic system with an ENZ response
at near-IR frequencies along one of the principle axes (the
longitudinal z direction). By tuning the electric and magnetic
responses along the transverse axes, we demonstrate the ability
to achieve remarkable emission control and directivity. When
excited by a source, the direction of energy flow can be due to
the propagation of localized surface waves. There can also exist
leaky waves, whereby the energy radiatively “leaks” from the
structure while attenuating longitudinally. Indeed, there can
be a complex interplay between the different types of allowed
modes, whether radiated or guided, or some other mechanism
involving material absorption. Through a judicious choice of
parameters, the admitted modes for the metamaterial can result
in radiation launched within a narrow cone spanned by the
outflow of energy flux.

Some of the earliest works involving conventional leaky
wave systems reported narrow beamwidth antennas with
prescribed radiation angles18 and forward and backward leaky
wave propagation in planar multilayered structures.19 In the
microwave regime, photonic crystals11,20,21 and transmission
lines can also can serve as leaky wave antennas.22 More
recently, a leaky wave metamaterial antenna exhibited broad
side scanning at a single frequency.22 The leaky wave
characteristics have also been studied for grounded single-
and double-negative metamaterial slabs.23 Directive emission
in the microwave regime was demonstrated for magnetic
metamaterials in which one of the components of μ is small.24

Nonmagnetic uniaxially anisotropic slabs can also yield varied
beam directivity.25

II. DISPERSION EQUATION

To begin our investigation, a harmonic time dependence,
exp(−iωt), for the EM fields is assumed. The planar structure
contains a central biaxial anisotropic metamaterial of width 2d

sandwiched between the bulk superstrate and substrate, each of
which can be anisotropic (see Fig. 1). In general, metamaterials
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FIG. 1. (Color online) Schematic of the planar metamaterial
structure. The central biaxial anisotropic metamaterial (region 2) is
sandwiched between the superstrate (region 1) and substrate (region
3). All regions in general can have anisotropic permittivity and
permeability tensors, εi and μi , respectively [see Eqs. (1) and (2)].
The direction of energy outflow at the top surface of the metamaterial
is depicted by the arrow in the xz plane and oriented at an angle ϕ

relative to the z axis.

are resonant structures made from composite materials with
inclusions or unit cells in principle much less than the operation
wavelength. Depending on the geometry, strength of the
resonance, and the material dissipation, the permittivity often
cannot be described by the widely used Maxwell-Garnett
approximation. More complicated expressions for the effective
permittivity can be calculated by solving the full Maxwell
equations. Regardless of the detailed nature of the permittivity,
which may deviate from the conventional Drude type, the
metamaterial can be considered homogeneous along any
translationally invariant axis. In our case, the propagation
distance of the leaky wave should be much longer than the
unit cells in the longitudinal direction, while the thickness
of the slab and the effective wavelength of the leaky wave
should be much larger than the unit cells in the transverse
direction.

We assume the material in each region is linear with a
biaxial permittivity tensor,

εi = εxx
i x̂ x̂ + ε

yy

i ŷ ŷ + εzz
i ẑ ẑ, (1)

for i = 1,2, or 3. Similarly, the biaxial magnetic response is
represented via

μi = μxx
i x̂ x̂ + μ

yy

i ŷ ŷ + μzz
i ẑ ẑ. (2)

The translational invariance in the y and z directions allows the
magnetic field in the ith layer, H i , to be written [we consider
transverse magnetic (TM) modes]:

H i(x,z) = ŷhy

i (x)ei(γ z−ωt), (3)

and the electric field, Ei , as

Ei(x,z) = [
x̂ex

i (x) + ẑez
i (x)

]
ei(γ z−ωt). (4)

We define26 the complex propagation constant, γ , in terms of
the longitudinal phase, β, and attenuation α:

γ ≡ β + iα. (5)

We focus on leaky waves propagating in the positive x direction
and possessing nonnegative β and α. Upon matching the

tangential E and H fields at the boundaries, we arrive at the
general dispersion equation that governs the allowed modes
for this structure,

εzz
2 k⊥,2

(
εzz

3 k⊥,1 + εzz
1 k⊥,3

)
+ [(

εzz
2

)2
k⊥,1k⊥,3 − εzz

1 εzz
3 k2

⊥,2

]
tan(2dk⊥,2) = 0, (6)

where the transverse wave vector in the superstrate (referred
to as region 1), k⊥,1, is

k⊥,1 = ±
√

εzz
1 /εxx

1 (β2 − α2) − k2
0μ

yy

1 εzz
1 + 2iαβεzz

1 /εxx
1 .

(7)

For convenience in the leaky wave analysis that follows, we
have explicitly divided the argument of the square root in
Eq. (7) into its real and imaginary parts. For the metamaterial
region (region 2), we write

k⊥,2 = ±
√

k2
0μ

yy

2 εzz
2 − γ 2εzz

2 /εxx
2 , (8)

and for the substrate (region 3), we write

k⊥,3 = ±
√

γ 2εzz
3 /εxx

3 − k2
0μ

yy

3 εzz
3 , (9)

where k0 = ω/c. The choice of sign in regions 1 and 3 plays
an important role in the determination of the physical nature
of the type of mode solutions that will arise. The two roots
associated with k⊥,2, however, result in the same solutions to
Eq. (6). The dispersion equation [Eq. (6)] can also be obtained
from the poles of the reflection coefficient for a plane wave
incident from above on the structure.

III. COMPLEX PROPAGATION CONSTANT

The factors of the E field in region 1 that depend on the
transverse x direction are

ez
1(x) = − ik⊥,1

k0ε
zz
1

H1e
−k⊥,1(x−d), (10)

ex
1 (x) = γ

k0ε
xx
1

h
y

1, (11)

where H1 is a constant coefficient and the magnetic field factor,
h

y

1(x), is given by

h
y

1(x) = H1e
−k⊥,1(x−d). (12)

To disentangle the evanescent and leaky wave fields, we
separate the wave vector k⊥,1 into its real and imaginary parts:

k⊥,1 = ±(q− + iq+), (13)

with q+ and q− real. The wave vector k⊥,1, and components q±
are in general related, depending on sgn(εzz

1 αβ/εxx
1 ). For our

exp(−iωt) time convention and for upward wave propagation
(positive x direction), clearly we have q+q− � 0. It is also
apparent that the parameter q− represents the inverse length
scale of wave increase along the transverse x direction. The
combined evanescent and propagating modes are seen in the
spatial behavior of the H field found in Eqs. (3) and (12):

H1(x,z) = ŷF(x,z)ei[q+(x−d)+βz−ωt], (14)
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where the amplitude factor, F(x,z) is given by

F(x,z) = H1e
q−(x−d)e−αz. (15)

Here we have expanded the complex k⊥,1 and γ according to
Eqs. (13) and (5), respectively. We see that the factor F(x,z)
corresponds to wave amplitude increase in the transverse x

direction while decaying in z, a hallmark of leaky waves.
Although leaky wave modes are not localized, they can
be excited by a point or line source which gives rise to
limited regions of space of EM wave amplitude increase
before eventually decaying. When explicitly decomposing
k⊥,1 into its real and imaginary parts, there is an intricate
interdependence among γ , εi , and μi (for α �= 0):

q± = 1√
2

[√
A2 + B2 ∓ A

]1/2
, (16)

where

A = εzz
1

εxx
1

(β2 − α2) − k2
0μ

yy

1 εzz
1 , (17)

and

B = 2αβ
εzz

1

εxx
1

. (18)

It is further seen from Eq. (14) that q+ and β are the relevant
propagation factors in determining the behavior of leaky wave
emission for our structure.

At this point, the surrounding media can have frequency
dispersion in εi , and μi , while the anisotropic metamaterial
region can be dispersive and absorptive. If we now take the
limit εzz

2 → 0 and consider a perfectly conducting ground
plane, Eq. (6) can be solved analytically for the complex
propagation constant (normalized by k0),

γ ± = 1√
2

√(
εxx

2

)2 + 8(k0d)2εxx
1 εzz

1 εxx
2 μ

yy

2 ± ∣∣εxx
2

∣∣√(
εxx

2

)2 + (4k0d)2εzz
1 εxx

1

(
μ

yy

2 εxx
2 − μ

yy

1 εxx
1

)
2k0d

√
εxx

1 εzz
1

. (19)

The two possible roots correspond to distinct dispersion
branches (seen below). There are, in all, four solutions, γ ±
and −γ ±. The geometrical and material dependence contained
in Eq. (19) determines the entire spectrum of the leaky wave
modes that may exist in our system. Depending on the media
in regions 1 and 2, represented by the tensors ε1, μ1, ε2, and
μ2, as well as the frequency ω and thickness parameter d, the
leaky wave attenuation factor α (the imaginary component of
γ +) can have nontrivial behavior.

IV. ENERGY TRANSPORT VELOCITY

There are numerous quantities one can study in order to
effectively characterize leaky wave emission. One physically
meaningful quantity is the energy transport velocity, vT , which
is the velocity at which EM energy is transported through
a medium.27,28 It is intuitively expressed as the ratio of the
time-averaged Poynting vector, Savg, to the energy density, U :

vT ≡ Savg

U
. (20)

Properly accounting for frequency dispersion that may be
present, we can thus express the energy transport velocity
above the structure as

vT = c/(8π )Re[E1 × H∗
1]

1/(16π )
[
E†

1 · d(ωε1)
dω

E1 + H†
1 · d(ωμ1)

dω
H1

] , (21)

where the conventional definition29 of U has been extended
to include anisotropy. Inserting the calculated EM fields and
assuming no dispersion in the superstrate, we find

vT = ω

(
εxx

1 q+ x̂ + εzz
1 β ẑ

)
εzz

1 β2 + εxx
1 (q+)2

. (22)

The corresponding angle of energy outflow, ϕ, is determined
by the direction that vT makes, with the positive z axis (see
Fig. 1),

ϕ = arctan

(
εxx

1 q+

εzz
1 β

)
, (23)

which holds in the case of loss and frequency dispersion in
the metamaterial. We will study ϕ as a function of εxx

2 , d, and
frequency. The energy outflow direction will be shown in some
cases to vary from normal (ϕ = π/2) to broadside (ϕ = 0). For
the cases studied in this paper, ϕ was also found to be weakly
dependent on absorption in the metamaterial (arising solely
from the component εxx

2 ). It is evident that Eq. (23) satisfies
ϕ → 0 as α → 0, corresponding to the disappearance of leaky
waves and the possible emergence of guided waves. In this
limit, vT = ẑω/β, which corresponds to the expected velocity
at which plane wave fronts travel along the +z direction. There
is also angular symmetry, where ϕ(εxx

2 ) → ϕ(−εxx
2 ), when

μ
yy

2 → −μ
yy

2 . For high refractive index media (εxx
2 or μ

yy

2→ ∞), we moreover recover the expected result that ϕ tends
toward broadside (ϕ = 0).

V. RESULTS

To determine the properties of leaky waves for our
anisotropic structure, we study the normalized complex prop-
agation constant, γ +, from Eq. (19). We consider, in addition
to a perfectly conducting ground plane, the upper region
(region 1) to be in vacuum (so that εzz

1 = εxx
1 = μ

yy

1 = 1).
In Figs. 2(a) and 2(c), 3D views depict the normalized β

(real part of γ +) and normalized α (imaginary part of γ +)
as functions of the transverse dielectric response εxx

2 and
thickness parameter d (recall the width equals 2d). In Figs. 2(b)
and 2(d), corresponding 2D slices depict the normalized β and
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FIG. 2. (Color online) The real (β) and imaginary (α) parts of the complex propagation constant γ +, normalized by the vacuum wave
vector k0 at f = 280 THz (μyy

2 = 1). Panels (a) and (c) are three-dimensional (3D) global views depicting α and β as functions of εxx
2 and

the thickness parameter d . Panels (b) and (d) represent the normalized β and α, respectively, as functions of εxx
2 and for d = 0.01 μm (solid

curve), d = 0.05 μm (dotted curve), and d = 0.1 μm (dashed curve).

α as functions of εxx
2 for various fixed widths. Only the positive

root, γ +, is shown, corresponding to the leaky wave cases of
interest, where α � 0. The slight kinks in the curves observed
in Fig. 2(b) correlate with the vanishing of α at the same εxx

2 ,
observed in Fig. 2(d), and also indicate the points where the γ −
solutions would emerge (when α < 0). The values of εxx

2 corre-
sponding to these crossover points is given below, in Eq. (27).
Both panels on the left clearly demonstrate that β changes
more rapidly as a function of εxx

2 for smaller widths. Indeed,
for subwavelength widths (k0d 
 1), and to lowest order, the
real part of the propagation constant varies linearly in εxx

2 and
inversely in d,

β

k0
≈ εxx

2

2k0d
√

εxx
1 εzz

1

. (24)

If we now fix the structure width and expand Eq. (19) to lowest
order in εxx

2 , corresponding to an approximately isotropic ENZ
slab (where εzz

2 = 0 and εxx
2 is near zero), we find

β

k0
≈

√
εxx

2

2
[
√

1 + 1/(2k0d)2 + 1]1/2 (25)

and

α

k0
≈

√
εxx

2

2
[
√

1 + 1/(2k0d)2 − 1]1/2, (26)

where μ
yy

2 = 1. It is evident from these expressions and Fig. 2
that both β and α tend to zero as εxx

2 → 0 (long wavelength

limit), and we will see below that the direction of energy
outflow rapidly approaches normal to the interface. It is also
interesting that the important parameter α characterizing leaky
waves rapidly increases from zero at εxx

2 = 0 and peaks at
differing values, depending on the width of the emitting
structure [Figs. 2(c) and (d)], until eventually returning to zero
at the two points,

εxx
2 = 4[−2(k0d)2 ±

√
(k0d)2 + 4(k0d)4]. (27)

This illustrates that α is spread over a greater range of εxx
2

for larger widths, but as previously discussed in conjunction
with Fig. 2, α simultaneously suffers a dramatic reduction. For
small d/λ, the extremum of Eq. (19) reveals that the strength
of the α peaks, αmax, are approximately given by

αmax ≈ 1
2 ± k0d. (28)

Next we investigate the emission angle ϕ, which defines the
direction vT makes relative to the surface of the metamaterial
structure. We first calculate the complex γ + from Eq. (19)
and then extract α and β, which are inserted into Eq. (16)
to determine q+. We can then determine ϕ via Eq. (23) as a
function of the relevant geometrical and material parameters.
In Fig. 3(a), the behavior of ϕ is shown as a function of εxx

2 for
nonmagnetic media (μyy

2 = 1), while Fig. 3(b) corresponds
to a metamaterial with vanishing μ

yy

2 , representative of a
type of matched impedance.5 The four curves in Figs. 3(a)
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FIG. 3. (Color online) Leaky wave launch angle ϕ as a function of εxx
2 [(a) and (b)] for d = 1/5 μm (dotted red curves) and successively

smaller values of d equaling 1/20,1/40, and 1/60 (in μm). In (a) μ
yy

2 = 1, and in (b) μ
yy

2 = 0. In (c) the emission angle is shown as a
function of frequency for the same thicknesses in (a) and (b), and also for μ

yy

2 = 1. In (d) the effects of geometrical variation are presented
for εxx

2 = 0.001,0.01,0.05,0.2,0.4,0.6, and 0.8 (μyy

2 = 1). The arrow depicts the progression of curves with successively larger values of εxx
2 .

Each panel [except (c)] corresponds to the frequency in Fig. 2.

and 3(b) correspond to different widths, identified in the
caption. We see that for εxx

2 → 0, we recover the isotropic
result of nearly normal emission (ϕ ≈ 90o), discussed and
demonstrated in the millimeter regime.6 This behavior can
be understood in our system, at least qualitatively, from a
geometrical optics perspective and a generalization of Snell’s
law for bianisotropic media.30 When the magnetic response
vanishes [Fig. 3 (b)], the emission angle becomes symmetric
with respect to εxx

2 , declining from normal (ϕ = π/2) at
εxx

2 = 0 to broadside (ϕ = 0) when

εxx
2 = ±4k0d. (29)

Thus thinner widths result in more rapid beam variation as a
function of εxx

2 .
In Fig. 3(c) we show how the emission angle varies as a

function of frequency f with the transverse response obeying
a Drude form,

εxx
2 = 1 − ω2

p

ω2 + i
ω
. (30)

We set ωp = (2π )120 THz, and for simplicity and to iso-
late leaky wave effects, we also set 
 = 0. We consider
a frequency ranging from 120 to 360 THz, corresponding
to εxx

2 varying from 0 to approximately 0.89, respectively.
With increasing frequency (and hence increasing εxx

2 ), we
observe trends similar to those found in the previous figures,
where a larger dielectric response pulls the beam toward the
metamaterial.

In Fig. 3(d), a geometrical study illustrates how the emission
angle varies with thickness: For εxx

2 μ
yy

2 < 1, the emission
angle rises abruptly with increased d, before leveling off at

ϕ = arctan

(√
1

εxx
2 μ

yy

2

− 1

)
. (31)

Physically, as the slab increases in size, the complex propaga-
tion constant becomes purely real,

γ →
√

εxx
2 μ

yy

2 , (32)

and consequently

q+ →
√

1 − εxx
2 μ

yy

2 . (33)

This is consistent with what was discussed previously involv-
ing the depletion of α with d; for thick ENZ slabs, leaky wave
radiation is replaced by conventional propagating modes. For
fixed εxx

2 , there is also a critical thickness d∗ below which no
leaky waves are emitted, which by Eq. (19) is

d∗ = εxx
2

4k0

√
1 − εxx

2 μ
yy

2

. (34)

We now take our planar anisotropic structure and introduce
a magnetic line source25 operating at a frequency of 280 THz.
The resultant EM fields are calculated using a commercial
finite element software package.31 In Fig. 4, the normalized
|H| is shown (the arrows represent energy outflow) with
the source directed along the y axis (we consider only TM
mode excitations) and centrally positioned at the feed of the
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FIG. 4. (Color online) Normalized magnetic field profiles illustrating broad angular variation in beam emission. The arrows depict the
Poynting vectors throughout the spatial domain, normalized by their respective fields. The set of four panels illustrates the EM response for
an anisotropic ENZ (εzz

2 ≈ 0) structure without absorption (left set) and with a moderate amount of absorption, corresponding to an imaginary
component of εxx

2 equal to 0.3 (right set). The top and bottom rows of panels correspond to the real part of εxx
2 equaling 0.05 and 0.66

respectively. The metamaterial is subwavelength (2d = 1/10 μm) and nonmagnetic (μyy

2 = 1). Coordinates are given in units of (×10) μm.

metamaterial. We take a slab width of 1/10 μm and set εzz
2 ≈ 0

for the ENZ axis. To illustrate the range of directivity we
consider four representative values of εxx

2 : two cases with
loss (right panels) and two without loss (left panels). We find
qualitative agreement with the results of Fig. 3, in which the
leaky wave energy outflow can span a broad range as εxx

2
is varied. The figures also demonstrate [and as stated below
Eq. (23)], minimal deviation in ϕ with moderate amounts of
absorption.

VI. CONCLUSIONS

In conclusion, we have presented a transcendental disper-
sion equation for the allowed modes of a general three-region
planar system exhibiting biaxial anisotropy. We then solved
the dispersion equation for the case of a biaxial metamaterial
in vacuum possessing a vanishing dielectric response along
the longitudinal z axis and backed by a perfectly conducting
metal. We solved the dispersion equation analytically for the
complex propagation constant and extracted the relevant α and
β factors. Both α and β were studied as functions of thickness
of the metamaterial slab and the transverse component to the

permittivity tensor εxx
2 . We found a variety of leaky wave

solutions that can exist over a range of εxx
2 , smaller than

unity, and which depend on the thickness parameter d. We
calculated the energy transport velocity vT and demonstrated
that by appropriately tuning εxx

2 , the corresponding direction
of energy outflow can span a broad range of emission angles ϕ.
We also calculated the minimum thickness of the metamaterial
structure which could support leaky waves.

Although fabricating nanoscale metamaterials with low
absorption currently faces challenges, continual progress
has been made in systems involving fishnet structures,32

electromagnetically induced transparency,33 and gain-assisted
materials.34 Other viable candidates might incorporate plas-
monic and doped semiconductor materials.35 Recent nanofab-
rication techniques involving focused ion beam milling36

and nanodeposition9 also offer further progress toward the
practical creation of low-loss metamaterial nanostructures.
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