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Lattice softening effects at the Mott critical point of Cr-doped V2O3
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We have performed sound velocity measurements in (V1−xCrx)2O3 in the vicinity of the critical point of
the first-order Mott transition line. The pressure sweeps at constant temperature reveal a large dip in the c33

compression modulus; this dip sharpens as the critical point is approached. We do not observe signs of criticality
on the shear modulus c44, which is consistent with a transition governed by a scalar order parameter, in accordance
with the dynamic mean field theory (DMFT) description of the transition. However, the amplitude of the effect is
an order of magnitude smaller than the one obtained from DMFT calculations for a single-band Hubbard model.
We analyze our results using a simple model with the electronic response function obtained from the scaling
relations for the conductivity.
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I. INTRODUCTION

The Mott transition, which is a metal-insulator transition
(MIT) without lattice symmetry breaking, observed in various
correlated electron systems, has been one of the major chal-
lenges in condensed matter theory.1 The theoretical interest in
this phenomenon has been boosted in the recent years by the
success of the dynamic mean field theory (DMFT) approach
of the Hubbard model.2 One of the theoretical difficulties
concerns the choice of the order parameter. Indeed, as the
transition does not break any lattice symmetry the order
parameter is not clearly identifiable. It was argued that the MIT
should be analogous to the liquid-gas transition and belongs
to the Ising universality class.3 Various quantities expressing
the metallicity of the system have been employed to represent
an order parameter.4–6

Another issue is related to the role of the lattice. Tracing
back to the earliest ideas, the electron-lattice coupling had
often been envisaged as the possible mechanism for a first-
order MIT. Although the modern DMFT approach can account
for the behavior of the resistivity in the vicinity of the critical
line within a purely electronic model,7 lattice degrees of
freedom do play a role at the transition of real materials, where
it is accompanied by a discontinuous volume change.8–11

On the experimental side, examples of widely studied
materials are the Cr-doped vanadium oxide3 and organic
charge transfer salts κ-BEDT2X.12,13 In the latter, evidences
for a lattice softening near the critical endpoint of the MIT line
were found in ultrasound experiments14 and by observation
of anomalies in the thermal expansion coefficients.15 Recently
the two-dimensional (2D) Ising scenario for these materials
has been proposed based on a scaling theory for the thermal
expansivity.16

The Cr-doped vanadium oxide (V1−xCrx)2O3 is the
archetype compound where the MIT can be induced by doping
or applying pressure. Here the transition line ends with a
second-order critical point near to T = 450 K.17 The criticality
at this point was studied by electrical transport, which
showed scaling properties expected by DMFT.3 However,

experimental facts concerning the role of the lattice in this
transition are rather scarce. The information about the lattice
response should be important for testing and refining realistic
models that take into account the orbital degrees of freedom.
Indeed, recent simulations using state-of-the-art local-density
approximation (LDA) plus DMFT techniques indicate that in
V2O3, the interplay between the correlations and the orbital
polarization effects modifies substantially the nature of the
MIT compared to that of a genuine Mott transition in the
one-band Hubbard model.18

In this work we try to shed light on the question of the lattice
contribution to the MIT through ultrasound measurements in
the vicinity of the critical point of (V1−xCrx)2O3. We show
that this experimental approach can address both the questions
of the symmetry of the order parameter and its coupling to the
lattice degrees of freedom.

II. EXPERIMENTS

All measurements were performed on single crystals with a
nominal doping of x = 1.1%, prepared using the skull melter
technique.19 This Cr concentration ensures that the sample is
on the insulating side of the transition at ambient pressure, but
a moderate pressure of a few kilobars drives the system into
the metallic state. This doping also corresponds to the one used
for transport studies in Ref. 3.

In this study we measured the propagation of acoustic waves
along the hexagonal c axis, for both longitudinal (compression)
and transverse (shear) mode. The measured sound velocities
are proportional to the square root of the corresponding elastic
constants; for the longitudinal mode it is the compression
modulus c33, and the transverse waves involve the shear
modulus c44 (the two transverse modes are degenerate for
the propagation along the caxis due to the trigonal symmetry
of V2O3).20 As it will become clear later, the choice of a high
symmetry axis is crucial for the interpretation of our data.
Here we can measure pure compression and shear modes,
whereas for almost any other direction of propagation the
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excited modes would involve a mixture of longitudinal and
transverse components of the strain tensor.20

The crystals were oriented by x-rays, and cut along
planes perpendicular to the c axis to an overall thickness of
approximately 2–3 mm. They were then polished on a lapping
machine in order to achieve parallel planes on both sides of
the sample and a surface roughness of less than 1 μm (roughly
a tenth of the wavelengths used). The velocity measurements
were performed using the standard technique where ultrasonic
waves are generated by applying short radiofrequency pulses
to a piezoelectric transducer and a phase sensitive detection is
used to measure the echo signal.20 We note that no frequency
dependence of the sound velocity was observed within the
used range of 200–500 MHz.

One of the technical difficulties encountered is that we
cannot use commercial transducers for sound generation
and detection, because in high-temperature and high-pressure
conditions transducer bonding proves difficult to achieve and
unreliable. Instead, the transducers were directly grown on
the sample by sputtering: a piezoelectric ZnO transducer
was grown on top of a thin chromium bonding layer and a
gold contact layer. The thickness of the ZnO film was about
10 μm corresponding to an acoustic resonance frequency in
the 400 MHz range. Since ZnO crystals grow with their main
piezoelectric axis parallel to the c axis, in principle only
the longitudinal mode should be excited, however, due to
imperfections in the ZnO layer it was possible to excite and
observe small transverse mode echoes on some samples. Since
the two modes have very different velocities it is in principle
easy to unambiguously separate them when both are excited
(thanks to a very broad frequency response of the transducer
we could do it using very short pulses, less than 100 ns).
Unfortunately, for T > Tc the two velocities differ by a factor
very close to 2 so that the echoes of the two modes strongly
overlap and it becomes difficult to resolve them even with the
shortest available pulses. Because of this accidental condition
we could not obtain the complete set of data for the transverse
mode.

The high-pressure conditions were obtained using isopen-
tane as pressure liquid and an externally controlled pressure
system where the cell is connected by a capillary tubing to
a pressure generator. High temperatures are obtained with a
small heater inside the cell. Experiments were performed by
sweeping continuously the pressure (at a rate of ∼20 bars/min)
at constant regulated temperature. Our measurements are
limited to a pressure of roughly 5 kbar for temperatures in the
range of T ∼ 500 K. These limitations are mainly due to the
materials used in the pressure plug and electrical connections.

III. RESULTS AND DISCUSSION

The evolution of the velocity of the longitudinal sound
waves with varying pressure at several fixed temperatures is
shown in Fig. 1. The data plotted here have been corrected for
the usual linear temperature dependence due to the thermal
expansion of the lattice22 �v/v ≡ (v(p,T ) − vlin(T ))/vlin(T )
where vlin(T ) is a linear function of T representing the
temperature dependence of the sound velocity observed far
from the critical regime (here for p ∼ 500 bars in the
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FIG. 1. (Color online) Pressure dependence of the relative veloc-
ity variation �v/v for the longitudinal mode at various temperatures
about the critical point.

interval 250–400 K). Such a linear temperature dependence
has been observed for various elastic constants and it is
usually attributed to anharmonic effects.21,22 Therefore Fig. 1
represents solely the critical contribution to the sound velocity.
Note that for T ∼ Tc the critical regime is spanning a pressure
domain large enough to affect the sound velocity even at
ambient pressure, as can be seen from the small negative
offset of the curves for temperatures close to Tc in Fig. 1. At
temperatures where a scan in the full pressure range was taken,
the relative sound velocity shows a pronounced minimum
around Pc ∼ 4000 bars. The largest effect is observed around
458 K which is close to the critical temperature of 457.5 K
estimated from transport measurements.3

The most challenging aspect of these experiments is related
to the extreme sensitivity of sound propagation to the sample
integrity (we emphasize that our samples are many times
bigger than those used for transport measurements in Ref. 3).
The sharp volume change at the transition (this change
amounts to 1% at room temperature)23 most often gives rise to
microfractures resulting probably from releasing some internal
stresses frozen during crystal growth. Such fractures spoil
or even suppress the acoustic echo signal and eventually
make the sample unusable. In practice this means that it
is forbidden to cross the first-order transition line during
pressure or temperature sweeps. For this reason, below the
critical temperature pressure scans were only performed in the
insulating low-pressure region. Note also that very close to
Tc (below 470 K), the sharpness of the minimum of �v/v

depends on the sample (c.f. two curves for 458 K), proving
that it is also very sensitive to the crystal quality and most
likely the differences in the doping inhomogeneity. In fact,
in samples showing the sharpest curves the microfractures
often appear even slightly above Tc. Therefore in order keep
the sample unaltered during the set of pressure sweeps and
to get reproducible results we are led to make a compromise
and choose a less homogeneous sample which shows a more
smooth pressure variation near Tc. All data shown in Fig. 1
were obtained on the same crystal, except one of the curves
at 458 K which comes from a sample showing the most
pronounced dip.
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FIG. 2. (Color online) Pressure dependence of �v/v of the shear
mode at various temperatures.

We now turn to the analysis of the transverse mode
velocity, shown in Fig. 2. The vertical offsets of different
curves were corrected for the temperature dependence by the
same procedure as described for the longitudinal mode. As
explained in the previous section, these measurements could
only be carried for T < Tc where the transverse echoes are not
hidden by the much larger longitudinal echoes, in this region
complete scans were not performed to avoid the expected
harm to the sample when crossing the first-order transition
line. Nonetheless the data taken up to 448 K show the general
trend, which is much different that the one observed for the
longitudinal mode. In the region closer to the critical point
all curves show a similar slow upward shift, moreover all
curves between room temperature and Tc stay parallel in the
region p ∼ 2–3 kbar, with no signs of critical behavior at Tc.
The small increase under pressure is similar to that observed
at room temperature in pure V2O3, a compound that does not
exhibit the MIT.24 The overall behavior of the transverse mode
is in contrast to the data of Fig. 1 where in the same temperature
interval a dramatic drop, developing already below 2 kbar, is
sharpening as we approach Tc. While the missing data at the
critical point does not allow us to consider this as a rigorous
demonstration, we think that this finding gives reasonable
evidence that the transverse mode does not exhibit any critical
softening close to the metal-insulator transition.

For an Ising-class MIT, the absence of criticality of the shear
modulus can be inferred from simple symmetry arguments. A
quite general approach to the effects of a phase transition
on the elastic constants was developed by Rehwald25 in the
framework of the Landau theory, especially to study soft modes
of lattice vibrations observed in structural transitions. In this
approach the Landau free energy functional contains coupling
terms which represent the interaction between the order
parameter η and the strain tensor ε. The general expression can
be written as a linear combination of products of increasing
powers of some components of both the order parameter η and
the strain tensor ε

F = αijηiεj + βijkηiηj εk + γijkηiεj εk + · · · ,
where the nonzero coefficients α, β, γ, . . . are selected by
symmetry.

It has been shown that a singular softening of an elastic
constant such as the one in Fig. 1 requires the existence of linear

coupling between η and ε. The possible combinations can
be enumerated by symmetry considerations. In the language
of group theory only the components of η and ε belonging
to the same irreducible representation of the point group
symmetry of the disordered phase can be coupled. For a
scalar order parameter this means that allowed combinations
of the strain tensor elements should form the basis functions
of the one-dimensional representation A1g . In our case, this
requirement is fulfilled for the εzz component involved in the
compression mode, since it is invariant under the operations
of the trigonal symmetry group. On the other hand one cannot
construct an invariant from a linear combination of εzx and
εzy , and therefore there is no linear coupling allowed for the
transverse mode. Our failure to detect a critical contribution
to the shear mode velocity is therefore consistent with the fact
that the Mott transition is expected to be governed by a scalar
order parameter.

In the following we will try to quantitatively analyze the
data of Fig. 1. First note that the maximal observed amplitude
of the decrease of the relative speed of sound �v/v ∼ 2%
is one order of magnitude lower than the value reported for
organic compounds. It is also smaller by the same factor when
compared to the theoretical values given by Hassan et al.11

based on DMFT calculations for a single-band Hubbard model
(e.g., at T = 1.27 Tc ≈ 580 K these calculations give a 3%
effect). On the other hand there is a qualitative agreement on
the pressure dependence, namely the width of the dip which is
of order of 2 kbar for T ∼ 500 K.

Here we will reconsider the same model in a slightly
different way. The compressible Hubbard model is based on
the work of Majumdar et al.,9 who presented the approach to
include lattice effects in this theoretical framework and treated
it in the simplest approximation where all phonon excitations
are neglected. They take into account the dependence of the
free energy on the unit cell volume V through the expression
F (V ) = Fe[D(V )] + E(V ) where Fe is the electronic contri-
bution depending on V through the variation of the bandwidth
D, and E(V ) is the elastic lattice energy. The lattice stiffness
(compression modulus)26

K ≡ −V ∂P/∂V = V ∂2F/∂V 2

can then be expressed as a sum of lattice and electronic
contributions K = Kl + Ke. The latter is negative and is
usually written as

Ke ≈ −V (∂D/∂V )2 χel,

where the electronic response function is defined as

χel [T ,D(V )] ≡ −∂2Fe/∂D2.

The purely electronic Mott transition is marked by a diver-
gence of χel at T = Tel, however in the compressible model
the instability comes from a divergence of the compressibility
1/K → ∞. At this point a first-order MIT accompanied by a
discontinuous volume change occurs to avoid the unphysical
region where K < 0. Since this happens for a finite value of
χel, the true critical temperature Tc > Tel. The sound velocity
is proportional to K1/2 therefore it was predicted in Ref. 11
that it would vanish as (T − Tc)1/2. However, this expansion is
derived assuming K close to zero (i.e., |Ke| ∼ Kl). Obviously,
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FIG. 3. (Color online) Comparison of simulations for Tel = 450
K (solid and dashed lines) with the experimental data. Main panel:
amplitude of the minimum of �v/v in function of temperature;
inset: pressure variation for selected temperatures. Dashed lines show
results assuming a Gaussian distribution of Pc

with �v/v of order of 1% we are far from reaching such a
regime. A more realistic scaling will be obtained assuming
|Ke| � Kl in the domain studied here. In this limit the sound
speed variation obviously follows that of χel. In Ref. 11, χel

was determined from DMFT calculations. Here we adopt
a different approach using the available experimental data.
Limelette et al.3 argued that in the vicinity of the critical
point the excess conductivity in the metallic state σ − σcrit

can be regarded as an order parameter. It was shown that this
quantity verifies a universal scaling relation, which, for T > Tc

is written as h1/δf [ht − γ δ(δ − 1)] where t = (T − Tc)/Tc,
h = (P − Pc)/Pc, and the exponents were shown to be close
to the mean-field values γ = 1 and δ = 3. We have calculated
χel = dσ/dh from the experimental scaling function f given
in Ref. 3. The apparent symmetry of our experimental curves
allows us to suppose that the same scaling in function of
|h| can be used on both pressure sides, which is in general
expected for T > Tc if h is considered as a conjugate field (note
that the asymmetry in the DMFT simulations11 is much less
pronounced for T > Tc). The results of simulations are shown
in Fig. 3. In contrast to the DMFT calculations, we have to treat
the amplitude of χel as an adjustable parameter. Therefore Tel

cannot be independently determined. In our simulations we
have taken Tel = 450 K for which the best agreement of the
pressure dependence can be obtained at least above 470 K. Our
curves go to zero at about 451 K whereas the value in Ref. 11
gives Tc − Tel ≈ 1.4% ≈ 6K. This discrepancy comes again
from the overestimation of �v/v and χel by the same factor.
Our approach, based on the assumption that conductivity is
directly related to χel, means that we take into account only

the effect of the electronic degrees of freedom on the lattice, but
neglect the feedback of the lattice on the electronic degrees of
freedom. This simplification is now justified by the very small
influence of the lattice on the transition temperature.

To check the effect of the sample homogeneity we also
calculated the theoretical values of v assuming a Gaussian
distribution of Pc (dashed curves in Fig. 3). To reach the
experimental values of the minimum at 458 K, it is necessary
to assume a 20% Gaussian width, an unlikely high value
that is clearly incompatible with the sharpest curve at this
temperature. We may speculate that either there is another
mechanism precipitating the transition already at very low
values of |Ke|/Kl , or at some point the divergence becomes
too narrow to be observed in real samples.

The pressure dependence of the dip is roughly reproduced
by this model but the agreement remains qualitative. In
particular, as we approach Tc, the dip on the theoretical curves
gets narrow much faster than the one observed experimentally.
In terms of the scaling function f (x), the pressure profile is the
most influenced by the behavior of f at intermediate values of
x, where the scaling relation is not perfectly obeyed (for these
simulations we took the average scaling function based on the
curves reported in Ref. 3). It is important to note however, that
independent of the scaling relations, such behavior is expected
in our approach as it is reminiscent of the pressure profiles
of the conductivity. At any rate, the failure to reproduce the
experimental curves with more accuracy cannot be considered
as a major shortcoming for this simplest model where the
complex effects of the strain on the multiband structure is
parametrized with a simple scalar function D(V ).

In conclusion, we have studied the effects of the electron-
lattice coupling in the vicinity of the critical point of the
Mott transition line of Cr-doped V2O3. Critical effects are
only observed for the symmetry-invariant component of the
strain tensor, which strongly supports the Ising scenario
for this transition. The amplitude of the lattice softening
is an order of magnitude smaller than estimations from a
single-band Hubbard model in the DMFT framework. A
simple model where the expression of the electron-lattice
interaction is reduced to a simple scalar function D(V ) gives
a qualitative agreement and is consistent with the scaling
relation for resistivity. However a more realistic modeling
would need to take into account the multiorbital nature of this
material.18
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