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Understanding and correcting the spurious interactions in charged supercells
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The supercell technique is widely spread for the simulation of charged point defects. Charged defects in a
supercell are unfortunately subjected to spurious image interactions, which are usually handled by introducing
two correcting terms: a Madelung-type correction that accounts for the electrostatic interactions of repeated
charges in a compensating background and a potential alignment term that refers the charged supercell to the
electron reservoir. We demonstrate that the Madelung correction already brings a large potential shift that slowly
converges as 1/L with increasing supercell sizes. We hence define a potential alignment devoid of any double
counting. We finally propose a simple evaluation for the nearest-neighbor interaction that removes the remaining
spurious hybridization of the defect wave functions between images. The application of these three corrections
together drastically speeds up the convergence with respect to supercell size for all defects that are not too
shallow.
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I. INTRODUCTION

The accurate prediction of the properties of point defects
is a key target of computer simulations in condensed matter
since defects govern many aspects of the physics of materials.
For instance, applications in electronics, optoelectronics, and
photovoltaics all rely on the fine control of charged defects in
semiconductors.1 With the advent of large supercomputers, it
has been possible to address the ab initio calculation of point
defects for over two decades now, thanks to density functional
theory (DFT).2

The ab initio calculation of defects in condensed matter
usually relies on the supercell approach.3 In this framework,
the isolated defect one intends to study is placed in a large
cell, which is periodically replicated. The advantages of this
approach are numerous, in particular the use of standard
plane-wave codes. The supercell approach is so practical that it
prevailed over competing frameworks, such as Mott-Littleton4

or Korringa-Kohn-Rostoker Green’s function.5

Nonetheless, the supercell approach suffers from one
main drawback: the spurious interaction between the defect
and its periodic images. This problem becomes particularly
prominent for charged systems that are subjected to the
long-range Coulomb interaction between images. No supercell
size accessible to modern (or future) computers would be
sufficient to render this interaction negligible. Indeed, the
magnitude of this spurious contribution to the total energy
scales as N−1/3, with N being the number of atoms in the
supercell.

This fact has given rise to the design of correction
schemes that would accelerate the slow convergence of
charged supercells. Correction schemes are numerous,3,6–11

but they generally rely on the evaluation of two contribu-
tions: a correction of the energy and/or a correction of the
potential. The correction for the energy �Eel is intended
to remove the spurious long-ranged electrostatic interaction
between the charged defect, its images, and the compensating
background. The potential shift �V should account for the
change of the reference energy for the electrons in the
charged supercell compared to the electrons in the pristine
bulk. Then the formation energy Ef (D,q) of defect D with

charge q in the Zhang and Northrup formalism12 finally
reads13

Ef (D,q) = ED,q − EHost −
∑

i

niμi

+ q(εVBM + εF + �V ) + �Eel(q), (1)

where ED,q is the raw energy of a supercell containing the
defect D and an extra charge q and EHost is the energy of the
perfect supercell with no defect. The energy of the added
or removed atoms ni is referred to the chemical potential
of reservoirs for the different elements μi . For electrons,
the chemical potential is governed by the Fermi energy EF ,
the zero of which is conventionally set at the valence band
maximum of the bulk material εVBM.

Much effort has been devoted to the design of intelligent
electrostatic corrections �Eel ; comprehensive discussion on
this point can be found elsewhere.9,14–16 A multitude of
conflicting ways have also been suggested to calculate the
potential alignment, but no convincing arguments have yet
been put forward for which is the most suitable. Some
authors suggest taking an average of the total Kohn-Sham
potential,15,17,18 and others suggest an average of the electro-
static potential only.13,19,20 This average is then taken either
over the entire supercell17,19 or in some localized region,
usually as far as possible from the defect.8,9,14 Some authors
even refrain from including potential alignment at all, due
to a (not entirely unfounded) fear of double counting some
terms when employing an electrostatic correction and potential
alignment together.21 Even more worryingly, there seems to
be a discontinuity in the community in the sign convention
used when defining potential alignment. It appears that many
authors take the potential shift defined in Eq. (1) as the average
potential in the defect cell minus the average potential in the
host cell, whatever their definition of these averages is,20,22,23

while other authors do completely the opposite.17,24

Hence, the best way to proceed when attempting to improve
the convergence for the supercell technique for charged defects
is rather unclear. As a first illustrative example, we provide
in Fig. 1 the convergence of the formation energy of two
charged defects in silicon: the tetrahedrically coordinated
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FIG. 1. (Color online) Convergence as a function of the supercell
size of the formation energy (top) of a silicon interstitial Si2+

Tet and
(middle) of a silicon vacancy V2+

Si . The raw energies are represented
with circles. The Madelung corrected energies are represented with
squares. The horizontal lines represent the converged values, and the
thin dashed lines are tentative extrapolations with the usual function
γ1N

−1/3 + γ2N
−1. (bottom) A cut of the difference in electronic

densities between the defective and host cells, ndefect(r) − nbulk(r),
along the (110) direction, passing through the bond centers for a
1000-atom cubic supercell.

self-interstitial SiTet (top panel) and the silicon vacancy VSi
(middle panel). The two defects have been considered in their
2+ charge state. For this charge state, they both have no
occupied state in the band gap. They are both embedded in
the same silicon host. In principle, one could have expected
the same behavior as a function of the supercell size. Figure 1
obviously contradicts this prediction. The uncorrected data
monotonously converge with a quite fair N−1/3 behavior in the
case of Si2+

Tet. In the case of V2+
Si , the convergence experiences

a turning point. The inclusion of the simple Madelung
electrostatic correction performs very well for the former and
very poorly for the latter. This different behavior could not
easily be anticipated from the electronic structure. The bottom
panel of Fig. 1 shows a cut of the difference of electronic
density between the defective and pristine supercells. Except
in the vicinity of the defect, the electronic density differences
at middle range simply show some Friedel’s type oscillations
with similar amplitudes. This clearly shows that the solution
to the problem does not lie in an improved definition of
electrostatic corrections.

In this article, we carefully address the different errors af-
fecting the energy obtained in supercell calculations. We leave
aside the elastic relaxations that produce much weaker effects,
and we concentrate on the electronic structure problems. We
summarize the computational aspects in Sec. II. In Sec. III,
we demonstrate that the electrostatic interactions induce a
position-dependent shift in the potential. As a consequence,
the definition of the potential alignment should be revised to
ensure the electrostatic contribution is not erroneously double
counted. Furthermore, our proposed potential alignment is
opposite in sign to some definitions (Sec. IV). We finally
identify a prominent contribution to the error in the supercell
technique: the spurious hybridization of defect wave functions
onto several images. This contribution is usually completely
disregarded. We provide in Sec. V a simple and practical
way to evaluate this involved term. The performance of our
three corrections is then demonstrated using various typical
examples.

II. COMPUTATIONAL DETAILS

All the DFT calculations presented here utilized the local
density approximation (LDA) for the exchange-correlation
functional, as implemented within the plane-wave code
ABINIT.25 Norm-conserving Troulliers-Martins26 pseudopo-
tentials were used for sodium and chloride, with only the
1s electrons treated as core for sodium. For silicon, we
developed an extremely smooth pseudopotential using the
FHI-98PP program.27 This pseudopotential has a very large
cutoff radius of 4.0 bohr for both the s and the p channels. This
somewhat crude pseudopotential yields a surprisingly good
lattice parameter (5.408 Å) and defect formation energies.
The very low plane-wave cutoff of 2.0 Ha enabled us to study
phenomenally large supercells (up to 4096 atoms). For NaCl
and for Si, 4 × 4 × 4 and 2 × 2 × 2 shifted Monkhorst-Pack28

k-point grids were used for primitive cells and supercells,
respectively. A lattice constant of 5.646 Å was used for NaCl,
and the cells were left unrelaxed throughout the calculations.
For silicon, following Ref. 9, the four neighbors nearest to
the defect have been relaxed in the 64-atom cell, and these
positions of the nearest neighbors are used for all further
calculations.

III. EVALUATING THE POTENTIAL SHIFT INDUCED
BY THE ELECTROSTATIC CORRECTION

In this section, we demonstrate that the electrostatic
correction �Eel and the potential alignment �V are, indeed,
connected quantities. Having this connection in mind will
allow us to propose an evaluation of the potential alignment
that does not double count the spurious electrostatic potential
of the supercell approach.

In order to keep the discussion simple we consider here
the simplest electrostatic correction, the monopole Madelung
term, as first proposed by Leslie and Gillan:3

�Eel = Eisolated
el − E

periodic
el ≈ αq2

2εL
, (2)

where α is the Madelung constant of the lattice, q is the
unbalanced charge, and L is the edge of the periodic box. The
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monopole correction is designed to transform the electrostatic
energy of a lattice of point charges in a neutralizing background
into the electrostatic energy of a single point charge. In
polarizable medium such as a solid, the Coulomb interaction is
further screened by the electrons, and the electrostatic energy
should be divided by the electronic dielectric constant ε. Here
we use ε∞ since the atoms are not allowed to relax in the
present study.

Some authors attempt to improve convergence by including
the third-order quadrupole in the electrostatic correction. We
have avoided doing this for three reasons. First, one of our
primary aims in this work was to produce an effective,
useful, and, crucially, simple correction scheme. Hence, we
utilize the simplest possible electrostatic correction. Second,
as mentioned in Sec. I, the similarity in the electronic density
difference between two silicon defects that converge at vastly
different rates proves that improving our definition of the
electrostatic correction will not solve the problem. In fact,
this electronic density difference is the key quantity in the
quadrupole term, lending further weight to this assumption.
Finally, a relatively recent study8 showed that the quadrupole
correction does not always improve results, leaving its utility
somewhat in question. In fact, since the quadrupole term al-
ways acts in the opposite direction to the Madelung monopole,
it will always worsen results for defects that are converging
from below after the monopole correction has been applied
(e.g., the silicon interstitial in Fig. 1).

Let us now prove rigorously that the monopole term in
Eq. (2) already introduces a shift in the potentials. The
Kohn-Sham (KS) potential vKS is obtained by the functional
derivative of the total energy minus the kinetic energy with
respect to the electronic density n(r):2

vKS(r) = δ(E[n] − T [n])

δn(r)
. (3)

If the energy E[n] requires an electrostatic correction �Eel ,
so will the obtained potential.

The functional derivative of the KS potential with the
electrostatic correction can easily be tracted if the expression
of the charge q as a function of the density is introduced:

q =
∑

i

Zi −
∫

drn(r), (4)

where
∑

i Zi is the total of the ionic charges in the cell.
Hence, the periodic KS potential also contains a spurious

contribution when compared to the isolated KS potential, if
one assumes a monopole correction:

v
periodic
KS (r) = visolated

KS (r) − d

dq
(−�Eel) (5)

= visolated
KS (r) + αq

ε∞L
, (6)

where the minus sign in the first line comes from the
differentiation of Eq. (4) with respect to the electronic density.
Finally, we see the KS potential in a periodic supercell is
shifted with respect to the KS potential that an isolated charge

would have, by the Madelung potential constant vM , which
reads11

vM = − αq

ε∞L
. (7)

We have thus demonstrated that the charged-supercell ap-
proach introduces a significant shift in the KS potentials, which
slowly decays as 1/L. Therefore, one cannot consider inde-
pendently correcting the electrostatic energy and correcting
via potential alignment.

Keeping this in mind, what should be the practical proce-
dure to perform a consistent, reliable potential alignment? In
order to approach this problem, we have implemented a simple
Poisson solver for periodic systems, based on fast Fourier
transforms, completely analogous to the technique used in
periodic DFT codes. This code allowed us to produce the data
for Fig. 2 that present the electrostatic potential of a positive
point charge (in reality, a Gaussian with a very small width)
as it would be calculated in any periodic code. The parameters
were chosen to represent a positive charge, located at zero in a
cubic 512-atom supercell of sodium chloride. The interactions
were scaled down with the calculated dielectric constant ε∞.
The choice of NaCl is governed by the desire to have localized
defects that ease understanding.

A truly isolated point charge q in a medium should create
a long-range Coulomb potential q/ε∞r , as represented by a
solid line in Fig. 2. The potential created by the truly isolated
point charge goes asymptotically to zero. The calculated
electrostatic potential of a point charge in a supercell with
a compensating background, represented by the dashed line,
deviates significantly from the single isolated charge. In
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FIG. 2. (Color online) Electrostatic potentials created by a single
point charge in an infinite sample (solid red line), an array of
point charges with compensating background (dashed black line),
and a single point charge in an infinite sample shifted by the
Madelung potential −vM (dot-dashed blue line). The parameters
(lattice constant, dielectric constant) have been chosen to mimic a
cubic 512-atom supercell of NaCl. The green diamonds represent the
deviation of the Na 2s core levels with respect to the bulk Na 2s

levels, as obtained from a real calculation of a 512-atom supercell
containing a vacancy V+

Cl. The horizontal lines show the asymptotic
values of the single point charge potentials.
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the vicinity of the charge, the periodic potential appears
as shifted with respect to the isolated potential. At the
box boundary, the periodic potential experiences the two
neighboring point charges equally and therefore shows a
spurious plateau shape. We also introduced, with a dot-dashed
line, the isolated potential shifted by the Madelung potential
vM following Eq. (5). We observe that this shifted potential
closely reproduces the periodic potential in the vicinity of
the point charge but asymptotically converges to −vM . The
divergence of the shifted isolated point-charge potential from
the KS potential further away from the point charge would be
reduced if higher-order terms in the Makov-Payne expansion
were considered in Eq. (2). It is now obvious that the difference
between the periodic potential and the shifted isolated potential
is worst at the box boundary. Finally, in order to demonstrate
that our modeling bears some connection to reality, we added
the deviation in the 2s level of sodium with respect to bulk in
an actual 512-atom supercell calculation of a chlorine vacancy
V+

Cl. As shown by the diamonds in Fig. 2, the calculated
points and the periodic potential agree impressively well.
The positions of the Na2s levels are simply governed by the
screened electrostatic potential of the periodically replicated
charges in a compensating background.

Many authors have prescribed performing the potential
alignment by considering the electrostatic potential far from
the charged defect as the zero of the potential.8,9,13 In our
opinion, this approach presents several problems. First of
all, applying an electrostatic energy correction already brings
about a shift in the potential, proportional to 1/L. There is
no need, therefore, to introduce another electrostatic potential
alignment term that also goes as 1/L, as this leads to double
counting the same contribution. Second, when considering an
energy correction brought about by an electrostatic potential
shift, one needs to divide by a factor of 2, as shown when
going from Eq. (7) to Eq. (2). This is not always clear in other
potential alignment methods. Third, no matter how far from
the defect one measures the potential alignment and no matter
how large one makes the supercell, one can never recover
the infinite-limit correct potential, with its long-range 1/r

behavior. Fourth, considering the potential far from the defect
is precisely the position where the deviation of the periodic
potential from the isolated charge is the most striking: at the
box boundary, the potential is equally generated by charges
from different cells.

These conclusions show the crucial need to redefine the
potential alignment. This is the topic of the next section.

IV. DEFINING THE PROPER POTENTIAL ALIGNMENT

Our goal is now to find a proper definition for the potential
alignment �V introduced in Eq. (1). Potential alignment is
needed for charged defects since the formation energy of a
charged defect is a function of the Fermi level εF , i.e., the
energy of the electrons from a reservoir. The energy zero is
conventionally set to the top valence band of the bulk material,
and the Fermi level is usually varied within the range of the
band gap.

It was recognized very early on that the band structures of
defective supercells are shifted with respect to their pristine
counterparts and that, therefore, a potential alignment cor-

rection was needed.29 Unfortunately, the potential alignment
correction was mainly thought to correct for the spurious
electrostatic potential, even though this contribution is usually
already corrected through the electrostatic correction. Our
definition for the potential alignment is, therefore, deliberately
set up to ensure the electrostatic correction is not double
counted. We suggest a correction that provides a naı̈ve,
extremely simple measurement of the potential shift yet
performs surprisingly well, as we will show in the following.

We propose a scheme similar to that suggested in Ref. 17,
whereby the average of the total potential over the entire
supercell 〈vKS〉 is considered:

〈vKS〉 = 1

�

∫
�

drvKS(r), (8)

where � is the volume of the supercell. Why do we focus on
this particular quantity?

First, the total average potential is completely free of any
electrostatic contribution. Indeed, the average value of the
electrostatic potential in a periodic cell is conventionally set
to zero; otherwise, it would give rise to divergent terms.
By considering the average potential we ensure that the
electrostatic potential shift does not enter into the correction
again, having already taken care of it via the previously defined
�Eel term.

Second, a reference electron from the reservoir is one
delocalized in a region infinitely far from the defect. In Fig. 3,
this ideal situation is represented in the top schematic. The
delocalized electron experiences the KS potential of the perfect
bulk averaged over a large region. In practice, however, we
perform a supercell calculation (schematic in the bottom panel
of Fig. 3) where there is no region of space unaffected by
the defect. An infinitely distant delocalized electron would

< >

FIG. 3. (Color online) Schematics illustrating the role of the
potential alignment �V . (top) The system we intend to simulate: a
single charged defect Dq in a single supercell (dark blue), embedded
in the infinite bulk (light pink). (bottom) The system we actually
calculate with the supercell approach: an array of replicated defects
Dq. (middle) The corresponding running average potentials, with a
solid red line for the truly isolated defect and a dashed blue line for
the supercell approach.

075155-4



UNDERSTANDING AND CORRECTING THE SPURIOUS . . . PHYSICAL REVIEW B 84, 075155 (2011)

experience the KS potential of the defective supercell averaged
over a large region. The potential alignment �V represented in
the middle panel should, therefore, bring the average potential
of the defective cell onto the reference average potential of the
bulk cell:

�V = 〈
vbulk

KS

〉 − 〈
vdefect

KS

〉
. (9)

Note that this definition of the potential alignment differs in
sign with respect to the definition of some authors.9,23 This
potential alignment clearly states that the average potential
obtained from supercell calculations is erroneous and should
be corrected to fit the average potential of the pristine bulk.
Finally, it should also be noted that the value defined in
Eq. (8) is part of the standard output of the electronic structure
code used in this study,25 making evaluation of the potential
alignment defined in Eq. (9) extremely quick and simple.

Let us demonstrate for a selected case the quality of the
potential alignment we proposed in Eq. (9). As we intend
to isolate the effect of potential alignment without the other
corrections, we need it to be sizable. In Fig. 4 we considered the
negatively charged sodium vacancy in NaCl. This particular
case was chosen because one could expect a good performance
of the Madelung correction in this defect. Indeed, the charge
associated with the defect is very well localized; it is almost a
point charge even for the smallest supercells. An informative
sample case is a defect that is well converged after applying
an electrostatic correction and potential alignment. We need
this to hold even for small supercells, for which the potential
alignment is large and its effect can be seen most clearly. The
highly localized, nonshallow nature of the sodium vacancy
allows it to agree with this demonstrative requirement.
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FIG. 4. (Color online) Convergence as a function of the supercell
size of the formation energy of a sodium vacancy V−

Na. The raw ener-
gies are represented with circles. The Madelung corrected energies are
represented with squares. The data with potential alignment following
Eq. (9) together with the Madelung correction are represented by
diamonds. The data with potential alignment following Ref. 9 together
with the Makov-Payne monopole and quadrupole corrections are
represented by open triangles. The horizontal line represents our
converged value, and the thin dashed line is a tentative extrapolation
with the usual function γ1N

−1/3 + γ2N
−1.

After the usual Madelung correction, the potential aligned
data in Fig. 4 using Eq. (9) converge to the asymptotic value
extremely quickly. Note that with a supercell as small as 16
atoms, the potential alignment q�V is as large as 0.18 eV,
and applying it (along with the Madelung correction) leads
to a corrected formation energy less than 10 meV from its
converged value. This is somewhat compelling evidence that
the sign convention we introduced in Eq. (9) is correct.
For comparison, we also show in Fig. 4 results obtained
with a quite popular alternative correction scheme, which
combines the Makov-Payne correction (including terms up
to the quadrupole) and an electrostatic potential alignment, as
detailed in Ref. 9. As shown clearly in Fig. 4, our scheme
appears to be converging to a slightly different value and at
a much faster rate. Another correction scheme, detailed in
Ref. 10, has already been shown to yield similar results to
ours in the case of defects in NaCl, although it is rather more
complicated to implement.

Note also that the potential alignment goes to zero very fast
for larger supercells, as predicted. This may explain why, to
date, it has proved difficult for the defect community to reach
an agreement on the definition of potential alignment.

V. CORRECTING THE REMAINING NEIGHBOR’S
INTERACTION

After correcting the electrostatic energy and the Fermi
level with potential alignment, we are still left with some
unexplained, slowly converging terms. For instance, neutral
defects, which are unaffected by the two aforementioned
corrections, may sometimes also experience a very slow
convergence.30,31 This behavior can be attributed, at least in
part, to the quantum interaction between the defect and its
images. Instead of being localized around one single defect, the
defect-related wave functions can be delocalized over several
images. This hybridization may lead to a change in the defect
energy.

A similar behavior is observed and well documented in
the context of adatoms on surfaces, where effective lattice gas
models have been introduced.32 We will now follow the same
philosophy but simplify the situation by considering only a
single kind of neighbors. The effective Hamiltonian Hn for a
defect in a supercell interacting with n neighbors of the same
kind reads

Hn = H0 + nV, (10)

where H0 is the effective Hamiltonian with no neighbor
interactions and V is the magnitude of the neighbor-neighbor
interaction. The Hamiltonian H0 is the target quantity, and Hn

is the quantity obtained from a supercell calculation. In the
modeling of Eq. (10) we assumed two-body interactions only.

We then propose to fit the two parameters H0 and V of
the model in Eq. (10) with two ab initio calculations. The first
calculation is of a regular supercell, and the second calculation
uses a nonregular supercell, for which one direction has been
doubled. In doing so and assuming the next-nearest-neighbor
interactions are small, we vary the number of interacting
neighbors n and hence can extract the two parameters of the
model.
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FIG. 5. (Color online) Convergence as a function of the supercell
size of the formation energy of a chlorine vacancy V+

Cl. The raw ener-
gies are represented with circles. The Madelung corrected energies are
represented with squares. The data with potential alignment following
Eq. (9) together with the Madelung correction are diamonds. The
triangles represent the final data including the removal of the neighbor
interaction according to Eq. (10). The horizontal line represents the
converged value, and the thin dashed lines are tentative extrapolations
with the usual function γ1N

−1/3 + γ2N
−1.

The method is better explained with a practical example.
We consider the chlorine vacancy V+

Cl in NaCl in Fig. 5. In this
case, again, the Madelung correction together with the poten-
tial alignment already yields a significantly improved result:
the 16-atom supercell is converged to within 0.12 eV. NaCl is
a textbook example for an ionic compound. The binding of the
crystal is mediated through the isotropic Coulomb interaction.
It is hence most probable that the defect states are isotropic too.
As a consequence, we will assume that doubling the supercell
in one direction will cut the magnitude of the interaction with
neighbors by half. In practice, a calculation for a 16-atom
face-centered-cubic supercell (2 × 2 × 2 unit cells) provided
the value for Hn = 1.50 eV (after applying the Madelung
correction and potential alignment), and a calculation for a
32-atom elongated face-centered-cubic supercell (4 × 2 × 2
unit cells) set the value for Hn/2 = 1.45 eV. The extrapolated
value for no defect-defect interactions is then easily obtained:
H0 = 1.40 eV, which lies within 0.02 eV of the converged
value. The same procedure was also performed for larger
supercells with a very good accuracy, as shown in Fig. 5.
Our approach appears to be computationally relevant as well
since the calculations of two small supercells (16 atoms and
32 atoms) offer an accuracy superior to the calculation with
64 atoms.

The model we propose considerably speeds up the conver-
gence with respect to supercell size, at the expense of two
calculations instead of one and some knowledge of the system
under study. The approach crucially relies on the identification
of the important directions of the crystal, with respect to the
defect-defect interactions. In the case of NaCl, we assumed
that all directions are equally important. However, returning
to the case of silicon that we used as an introduction, we assume

that the defect-defect interactions are preferentially mediated
along the (110) zigzag chains of the diamond structure.20 We
thus considered the neighbors in these directions as the most
relevant for the hybridization of defect states and set the values
of n in Eq. (10) accordingly. When using a face-centered-cubic
supercell, the (110) directions are, indeed, the first-nearest
neighbors, and moving from a regular supercell to one doubled
in one direction drops the number of nearest neighbors from
12 to 6.

When using a simple cubic supercell, it is the second-
nearest neighbors that lie in the (110) directions. For ex-
tremely small simple cubic supercells, the assumption that
the hybridization occurs only along the (110) directions is
doubtful since the (100) neighbors are much closer. However,
in order to assess the simplicity and the robustness of the
present scheme, we will stick to our convention. For cubic
supercells, the number of (110) neighbors drops from 12
to 4 when the length of one side of the cell is doubled.
We used this framework to produce Fig. 6. First, note once
again the performance of our potential alignment represented
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FIG. 6. (Color online) Convergence as a function of the supercell
size of the formation energy of (top) a silicon interstitial Si2+

Tet and
(bottom) a silicon vacancy V2+

Si . The raw energies are represented
with circles. The Madelung corrected energies are represented with
squares. The data with potential alignment following Eq. (9) together
with the Madelung correction are diamonds. The triangles represent
the final data, which include the removal of the neighbor interaction
according to Eq. (10). The horizontal lines represent the converged
value, and the thin dashed lines are tentative extrapolations with the
usual function γ1N

−1/3 + γ2N
−1.
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with the diamonds. The triangles then show the final result
of the present study including our three corrections. The
agreement with the converged value is impressively good even
for supercells as small as 54 atoms. The effect of the shape
of the supercells becomes obvious: all the face-centered-cubic
supercells converge to the asymptotic value from one side, and
all the simple cubic supercells converge from the other. Finally,
we should stress that this hybridization correction can also be
utilized in the case of troublesome neutral defects. Indeed, the
correction should prove particularly useful in these cases since
the electrostatic and potential alignment terms do not apply.

VI. CONCLUSIONS

Calculations of charged point defects within the supercell
approach are impossible to converge with a brute-force ap-
proach. Even our calculated 4096-atom supercells for defects
in silicon still deviate largely from the asymptotic values. This
makes it clear that more subtle approaches need to be designed
and implemented. Many previous works addressed this issue,
utilizing many different approaches, but the situation remains
rather unsatisfactory.

The present contribution is twofold: a theoretical derivation
that demonstrates that the spurious electrostatic energy intro-
duced by the nonbalanced charge in the supercell induces a
shift in the potential and a practical scheme using three simple
corrections that significantly improve the convergence of the
supercell approach.

The practical scheme we propose is extremely robust and
simple and does not require additional coding. The only
unconventional data needed here are the Madelung constant for

nonregular cells. Our scheme reads (i) electrostatic correction,
(ii) potential alignment, and (iii) hybridization correction.
We showed that the simplest electrostatic correction of all,
namely, the Leslie-Gillan Madelung correction,3 is sufficient.
We then showed that, if this electrostatic correction is applied,
the potential alignment should be based on the total average
Kohn-Sham potential to avoid double counting of the slowly
converging 1/L term. Note that our definition uses a sign
convention opposite to the definition of many authors. Finally,
we could reduce the error due to the hybridization of defect
states onto several images by using a simplistic model
Hamiltonian and fitting it with two ab initio calculations. This
hybridization correction could also be applied just as well, in
principle, to the case of a slowly converging neutral defect.

Even though all the calculations presented here were based
on local density approximation (LDA), the scheme could also
be used in combination with hybrid functionals or the GW

approximation.33–35 The only cases that cannot be corrected
within our scheme are those of shallow defect states, which
are delocalized over regions that are impossible to fit into a
tractable supercell. Besides this limitation, the efficiency and
accuracy of our scheme has been impressive for all the cases
tested so far.
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