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First-principles homogenization theory for periodic metamaterials
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We derive from first principles an accurate homogenized description of periodic metamaterials made of
magnetodielectric inclusions, highlighting and overcoming relevant limitations of standard homogenization
methods. We obtain closed-form expressions for the effective constitutive parameters, pointing out the relevance
of inherent spatial dispersion effects, present even in the long-wavelength limit. Our results clarify the limitations
of quasistatic homogenization models, restore the physical meaning of homogenized metamaterial parameters,
and outline the reasons behind magnetoelectric coupling effects that may arise also in the case of centersymmetric
inclusions.
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I. INTRODUCTION AND MOTIVATION

The electromagnetic homogenization of natural and arti-
ficial materials has a long-standing tradition,1–7 and several
theories are available to define macroscopic averaged quan-
tities that represent the effective constitutive parameters of
periodic or random collections of molecules or inclusions. The
same way in which we define permittivity and permeability of
natural materials, by averaging out irrelevant microscopic field
fluctuations at the atomic or molecular level, also in the field of
artificial materials and mixtures homogenization and mixing
rules have been put forward over the years to avoid solving
for the complex electromagnetic interaction among a large
number of inclusions.7 Homogenized descriptions of natural
and artificial materials can hold only in the long-wavelength
regime, i.e., for effective wavelengths and averaged field
variations much larger than the material granularity. Within
these limits, such descriptions have proven to be accurate and
of great advantage for analysis and design purposes.

With the advent of metamaterials,8 i.e., artificial materials
with anomalous and exotic electromagnetic response, the ne-
cessity of more advanced concepts and improved homogeniza-
tion models has become evident, since often the topological
and/or resonant properties of the inclusions and building
blocks do not allow a description of their properties in terms of
simple averaging procedures. Often, the exotic metamaterial
properties are inherently based on these anomalous features,
which cannot be captured by simple homogenization schemes
inspired to natural materials. The necessity for improved
models has been outlined in several recent papers on the
topic,9–26 which describe different approaches to the problem.

The simplest homogenization technique consists of retriev-
ing the effective parameters from the scattering properties
of a metamaterial sample. The Nicholson-Ross-Weir (NRW)
retrieval method postulates the equivalence between a complex
metamaterial array and a uniform slab of same thickness
with unknown constitutive parameters, usually limited to
permittivity and permeability.27–29 This approach, appealing
for its simplicity, often provides constitutive parameters
with nonphysical frequency dispersion, in particular near the
inclusion resonances, yielding complex values of permittivity
and permeability that violate basic passivity and causality
constraints.30 The typical presence of “anti-resonant” artifacts

in the dispersion of the effective constitutive parameters,
wrong sign of their imaginary parts, wrong slope of their
real part, and inherent dependence of these parameters on the
metamaterial boundaries and excitation31 are all clear signs
of the inadequacy of this approach when applied to resonant
artificial materials, as more extensively discussed in Ref. 32.

In the recent literature, these anomalies have been gener-
ically related to strong spatial dispersion, which should be
taken into account in more refined homogenization models. In
this context, analytical and semi-analytical methods have been
put forward to address the homogenization in a more rigorous
fashion. Generalized Clausius-Mossotti techniques have been
extended to the case of complex inclusions, including bian-
isotropic effects, possible presence of spatial dispersion and
accurate modeling of the inclusion interaction.14–22 As another
successful approach, averaging a planar sheet of inclusions and
then considering the mutual interaction among parallel layers
as a Bloch lattice has also been proposed.9–13 In these schemes
too, however, spatial dispersion can often generate artifacts
and dependence of the extracted effective parameters on the
choice of excitation and boundary conditions, effects that are
not easily explained on clear physical grounds.

In order to circumvent these issues, a rigorous ap-
proach to the homogenization of periodic arrays of dielectric
inclusions23–26 has been put forward based on the Floquet
representation used in optical crystals,33 i.e., by introducing a
single generalized permittivity tensor that includes all the po-
larization effects, including artificial magnetism, bianisotropy,
and higher-order spatial dispersion effects. This technique
is limited to dielectric-only periodic metamaterials and the
single-permittivity representation may often make challenging
to relate weak spatial dispersion effects in the generalized
permittivity tensor to artificial magnetic or bianisotropic
effects. It would be more desirable to describe these effects in
terms of local permeability or chirality parameters,34 whenever
possible. In addition, the spatial dispersion properties of the
generalized permittivity tensor makes more challenging to
apply usual boundary conditions and dispersion relations valid
for materials with local properties.

In most circumstances, for frequencies well below the
inclusion resonances, for which both the background wave-
length and the effective guided wavelength are significantly
larger than the average array granularity, local constitutive
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parameters should be sufficient to characterize the meta-
material response, and spatial dispersion effects may be
negligible.35 In this paper, we develop from first-principles
a new homogenization theory that combines the advantages
of currently available homogenization schemes, without their
drawbacks and limitations: we extend the rigorous approach
of Floquet-based theories23,33 to magnetodielectric metamate-
rials and, putting forward a modified averaging scheme, we
combine it with the generality of retrieval techniques and with
the convenience of local homogenization schemes, extending
their validity and applicability to resonant metamaterials. We
develop a self-consistent Floquet homogenization theory for
metamaterial arrays formed by arbitrary electric and magnetic
inclusions, which can rigorously take into account the complex
wave interaction among inclusions, and which does not depend
on the form of excitation, converging to a local model in the
long-wavelength limit.

Our analysis clarifies limits and approximations of other
homogenization techniques, highlighting the reasons and
physical mechanisms behind artifacts and nonphysical dis-
persion of homogenized parameters and demonstrating that
a rigorous analysis of the array coupling inherently requires
considering frequency and spatial dispersion effects at the
lattice level, even when higher-order multipolar interaction
or bianisotropic effects within the unit cell are negligible.
These effects modify the usual form of effective constitutive
models and are associated with a direct manifestation of
the finite phase velocity with respect to the array period,
particularly relevant in the case of more densely packed, and
possibly resonant, metamaterials. Our findings establish the
foundations of a new, physically meaningful description of a
wide class of metamaterials, valid even when the density of
inclusions is not small and classic homogenization models,
like Clausius-Mossotti relations,7 lose their accuracy even in
the long-wavelength regime.

The paper is organized as follows: in Sec. II, a Floquet-
based homogenization approach on the model of23,33 is gener-
alized to the presence of electric and magnetic materials and
arbitrary sources. This generalization is particularly important,
since it will allow defining, for the first time to our knowledge,
metamaterial constitutive parameters that inherently do not
depend on the form and nature of excitation. In addition,
we introduce a Taylor expansion of the polarization and
magnetization currents to derive a self-consistent definition
of averaged fields, which is able to extract weak spatial
dispersion effects and allows an averaged local description in
the long-wavelength limit. In Sec. III, closed-form expressions
for the new effective constitutive parameters are derived,
highlighting the mentioned advantages of independence on the
applied sources and on the wave vector in the long-wavelength
limit. In Sec. IV, this general theory is applied to the special
circumstance of absence of impressed sources, showing that
in this case the general constitutive relations may be written
in terms of equivalent constitutive parameters, which coincide
with those obtainable using simple retrieval procedures. This
alternative model is shown to hide inherent spatial dispersion
effects and nonphysical features, and its use should be limited
to the solution of practical scattering problems in absence of
impressed sources. This discussion will highlight the limita-
tions and inherent approximations of other homogenization

schemes and will provide physical insights into the more
rigorous averaged description of metamaterials introduced
here. Sections V and VI analyze the homogenization model
in the long-wavelength and in the resonant limits, regions of
special interest for metamaterial applications. Finally, Sec.
VII validates our theory with numerical examples and further
discussions.

II. GENERAL HOMOGENIZATION THEORY
FOR PERIODIC MAGNETODIELECTRIC

METAMATERIALS

In this section, as the first objective of this paper, we
develop from first principles a general homogenization theory
for periodic arrays of arbitrarily shaped dielectric, magnetic,
and/or conducting inclusions, extending the rigorous Floquet
approach commonly used in optical crystals33 and dielectric
metamaterials23 to arbitrary inclusions and arbitrary form of
excitation. We also define a new averaging procedure by
using a Taylor expansion of the microscopic field variations,
which will allow defining constitutive parameters that have
local properties in the long-wavelength limit. For simplicity
of notation, we assume here a cubic lattice with period d, but
extension to arbitrary lattices may also be envisioned.

The most general description of a periodic array in its linear
operation may be developed, without loss of generality, in
the Fourier domain.33 Our goal is to derive the general form
of macroscopic constitutive relations for any arbitrary pair
(ω,β), relating spatially averaged field quantities that vary as
eiβ·re−iωt . Only a limited set of eigenvectors β are supported
by the array at a given frequency ω in the absence of impressed
sources. These correspond to the eigenmodes of the system,
which are usually the focus of homogenization theories and
will be analyzed in detail in Sec. IV. However, an average
description of the array as a bulk material should not depend
on the possible presence of impressed embedded sources or
on the relative amplitude of electric and magnetic fields at a
specific point in space. Therefore, we assume here the presence
of impressed sources with arbitrary eiβ·re−iωt plane-wave-like
dependence, uniformly distributed all over the array. This
ensures an averaged space-time distribution of the induced
fields with the same eiβ·re−iωt dependence, in which the
variables ω,β are independent of each other. In practice, it may
be challenging to realize a distribution of uniformly impressed
sources with plane-wave dependence within a metamaterial
array, so this excitation should be interpreted as a test excitation
to isolate the metamaterial response in the Fourier domain or
as a specific Fourier component of embedded sources with
localized space-time distribution. We will specialize these
results to eigenmodal propagation (source-free scenario) in
Sec. IV.

In the most general case, the microscopic37 field distribution
at any point in the array satisfies

∇ × E(r) = iωμ0H(r) + iωM(r) − Kexte
iβ·r

(1)∇ × H(r) = −iωε0E(r) − iωP(r) + Jexte
iβ·r,

where E (r), H (r) are the local electric and magnetic fields,
P (r) is the local polarization vector, M (r) is the local
magnetization vector, Jext and Kext are complex vectors of
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independently impressed distributed electric and magnetic cur-
rent density sources with explicit plane-wave dependence eiβ ·r,
and ε0, μ0 are the background permittivity and permeability,
respectively. Due to the linearity of the problem, we have
suppressed in Eq. (1) a common e−iωt time dependence. In
the presence of electric or magnetic conductors, the induced
current densities Jind, Kind are implicitly embedded in P(r) =
iJind(r)/ω and M (r) = iKind(r)/ω in Eq. (1).

The distributed impressed source distributions may also be
seen as sustaining impressed fields with the same eiβ·re−iωt

plane-wave dependence and complex amplitudes satisfying

iβ × Eext = iωμ0Hext − Kext
(2)

iβ × Hext = −iωε0Eext + Jext.

Notice that the arbitrary choice of Jext and Kext in Eq. (1)
implies that the complex amplitudes of impressed fields
Eext and Hext are independent of each other. This will
be very important to ensure the general validity of the
effective homogenization model proposed here, as discussed
below.

Due to the periodicity of the crystal, we may write Eq. (1)
in the eiβ·re−iωt Fourier domain

iβ × Ē = iωμ0H̄ + iωM̄ − Kext

iβ × H̄ = −iωε0Ē − iωP̄ + Jext,
(3)

where the bar denotes the averaging operation Ē =
1
d3

∫
V

E (r) e−iβ·rdr, and similarly for all the other vectors in
Eq. (3). This averaging procedure, consistent with Refs. 33
and 23, filters out the dominant contribution to the local
field E (r), varying as Ēeiβ·r, of interest for a macroscopic
homogenized description of the array. Equation (3) relates the
complex amplitudes of the spatially averaged macroscopic37

field quantities, which all vary with an implicit eiβ·re−iωt

space-time dependence due to the chosen form of impressed
excitation and the linearity of the problem.

Inspecting Eq. (3), one may be tempted to define spa-
tially averaged displacement vectors as B̄ = μ0H̄ + M̄ and

D̄ = ε0Ē + P̄, and the associated constitutive relations B̄ =
μ

g
· H̄, D̄ = εg · Ē, which would generalize the metamaterial

homogenization approach used in Refs. 33 and 23 to the case
of magnetodielectric materials. However, this macroscopic
description has several shortcomings: the permittivity εg

and permeability μ
g
, respectively, coincide with ε0 and μ0

when the inclusions are formed, at the microscopic level,
by purely magnetic (P (r) = P̄ = 0) or dielectric (M (r) =
M̄ = 0) materials, respectively. This implies that artificial
magnetic or polarization effects, stemming from the rotation
of electric or magnetic polarization respectively, remain
hidden as spatial dispersion effects in the permittivity εg

or permeability μ
g

tensors. In particular, εg coincides with
the generalized permittivity defined in Ref. 23 in the case
of dielectric-only or conducting inclusions. This description,
therefore, cannot converge to a local constitutive model in the
long-wavelength limit in the presence of common artificial
magnetic or dielectric effects. For instance, in the case of a
metamaterial formed by conducting split-ring resonators,25

this model would predict M (r) = M̄ = 0, μ
g

= μ0I (with
I being the identity matrix), despite the evident presence of
magnetic effects, which remain hidden in the weak spatial
dispersion of εg . We propose in the next subsection a different
averaging scheme that takes these effects into account and
provides a homogenized description converging to a local
model in the long-wavelength limit.

A. Multipolar expansion

In order to overcome the issue outlined above, we assume
that the unit cell is sufficiently smaller than the wavelength of
operation to ensure that the induced microscopic polarization
and magnetization vectors slowly vary within each unit cell,
as usual in metamaterials. In such circumstances, it is possible
to expand P̄ in a Taylor series around the origin of each unit
cell, to obtain38

P̄ = 1

d3

∫
V

P (r) e−iβ·rdr = 1

d3

⎡⎣∫
V

P (r) dr + iβ × ∫
V

r×P(r)
2 dr − iβ

2 · ∫
V

[rP (r) + P (r) r] dr+
−β × ∫

V

r×P(r)×r
6 dr × β + β

2 ×
[
β · ∫

V
[r×P(r)]r+r[r×P(r)]

3 dr
]

+ · · ·

⎤⎦ (4)

= PE − β × ME

ωμ0
− iβ

2
· Qe

E
+ β

iω
×

[
P̄′

E × β − β · Qm

E

2

]
+ · · ·

where

PE = 1

d3

∫
V

P (r) dr

ME = − iωμ0

d3

∫
V

r × P (r)

2
dr

Qe

E
= 1

d3

∫
V

[rP (r) + P (r) r] dr (5)

P′
E = − iω

d3

∫
V

r × P (r) × r
6

dr

Qm

E
= − iω

d3

∫
V

[r × P (r)] r + r [r × P (r)]

3
dr

represent the first electric and magnetic multipole moments
associated with the induced electric polarization distribution
P (r). In particular, PE and ME are the fist-order contribution
to the electric and magnetic dipole moments, respectively;
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Qe

E
and Qm

E
are the electric and magnetic quadrupole moment

contributions; P′
E is the third-order contribution to the electric

dipole moment. The subscript E for all these quantities
indicates the microscopic electrical origin of these multipole
moments, all stemming from the electric polarization P (r).
We can apply analogous considerations to the microscopic-
induced magnetization M (r)

M̄ = MH + β × PH

ωε0
− iβ

2
· Qm

H

+ β

iω
×

[
M′

H × β + β · Qe

H

2

]
+ . . . , (6)

with analogous definitions for the corresponding multipole
moments:

MH = 1

d3

∫
V

M (r) dr

PH = iωε0

d3

∫
V

r × M (r)

2
dr

Qm

H
= 1

d3

∫
V

[rM (r) + M (r) r] dr (7)

M′
H = − iω

d3

∫
V

r × M (r) × r
6

dr

Qe

H
= iω

d3

∫
V

[r × M (r)] r + r [r × M (r)]

3
dr,

and the subscript H refers to the microscopic magnetic origin
of these multipole moments. It should be stressed that for
dielectric-only or conducting metamaterials the quantities
in Eq. (7) are all zero, since M (r) = 0. This does not
mean that magnetic effects are excluded, as the rotation
of P (r) can produce artificial magnetic effects captured by
ME in Eq. (5). Dual considerations apply to magnetic-only
inclusions.

Using the previous expansions, in the general magnetodi-
electric case, we may write Eq. (3) as

iβ ×
[

Ē − PH

ε0
− iβ × M′

H + iβ

2
· Qe

H

]

= iω

(
μ0H̄ + MH − iβ

2
· Qm

H

)
− Kext

(8)

iβ ×
[

H̄ − ME

μ0
− iβ × P′

E − iβ

2
· Qm

E

]

= −iω

[
ε0Ē + PE − iβ

2
· Qe

E

]
+ Jext,

in which we have neglected the effects of higher order multi-
pole moments (beyond the electric and magnetic quadrupole
moments) in Eqs. (4), and (6).

B. Definition of averaged fields

Equation (8) ensures that, by correcting the definition of
the averaged fields as

Eav = Ē − PH

ε0
− iβ × M′

H + iβ

2
· Qe

H
+ · · ·

Hav = H̄ − ME

μ0
− iβ × P′

E − iβ

2
· Qm

E
+ · · ·

Dav = ε0Ē + PE − iβ

2
· Qe

E
+ · · ·

Bav = μ0H̄ + MH − iβ

2
· Qm

H
+ · · · ,

(9)

the macroscopic (averaged) Maxwell’s equations take the
expected usual form

iβ × Eav = iωBav − Kext

iβ × Hav = −iωDav + Jext
(10)

for any arbitrary pair (ω,β). Different from the simple spatial
averaging in Eq. (3), this averaging solves the issues outlined
above and ensures the proper representation of artificial
electric and magnetic effects, making sure that the constitutive
relations tend to local parameters in the long-wavelength limit,
even in the presence of artificial magnetic or polarization
effects. This averaging procedure, based on a rigorous first-
principle approach, constitutes a general framework that
properly takes into account weak forms of spatial dispersion
associated with artificial magnetism and polarization, at the
basis of common metamaterial effects, and it allows their
description in a local sense in the long-wavelength limit.
Equation (9) shows that the proper expression for averaged
electric and magnetic fields Eav and Hav is obtained after
correcting the spatial averages Ē and H̄ for the possible
presence of these artificial effects, associated with the rotation
of P (r) and M (r). This ensures that these effects are correctly
attributed to local constitutive parameters (permeability and
permittivity, respectively) in the long-wavelength limit. In
the special case of dielectric-only and conducting inclusions
M (r) = 0, Eav = Ē and Bav = μ0H̄, ensuring that E (r) and
B (r) are the direct source fields, consistent with the homog-
enization of optical crystals and dielectric metamaterials.23,33

Still, instead of defining a generalized permittivity tensor εg ,
as in Ref. 23, the definition of average magnetic field Hav

[Eq. (9)] ensures that artificial magnetic effects are correctly
associated to local permeability, consistent with Ref. 34.
Conversely, if only magnetization is present at the microscopic
level P (r) = 0, then Hav = H̄ and Dav = ε0Ē are the source
fields, as considered and discussed in Ref. 25. Equation (9)
represents a generalization of these two scenarios to the case
of magnetodielectric inclusions, for which both averaged fields
Eav and Hav need to be corrected for the possible presence of
artificial electric and magnetic effects, respectively. This is the
only way to ensure that these weak spatial dispersion effects are
properly taken into account within a homogenized description
that converges to a local model in the long-wavelength limit.

C. Relations between averaged fields in the
long-wavelength limit

In the general case, the constitutive relations among the
averaged displacement vectors Dav and Bav and the averaged
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field vectors Eav and Hav explicitly depend on β, implying
that strong spatial dispersion effects associated with higher-
order multipole contributions may be in general present. In the
long-wavelength limit of interest here, however, it is expected
that the distributions of P (r) and M (r) may be described
exclusively in terms of electric and magnetic dipole moments,
which is the case when the unit cell is sufficiently smaller than
the wavelength of operation, and the inclusions are not too
densely packed. In such circumstances, the explicit effects of
spatial dispersion disappear in Eq. (9):

Eav = Ē − PH /ε0

Hav = H̄ − ME/μ0

Dav = ε0Ē + PE

Bav = μ0H̄ + MH ,

(11)

and the constitutive model relating averaged displacement and
field vectors may be written in the local form

Dav = ε0Eav + PE + PH = ε0Eav + Pav

Bav = μ0Hav + MH + ME = μ0Hav + Mav,
(12)

where we have combined averaged polarization and magne-
tization stemming from electric and magnetic microscopic
effects into Pav and Mav.39

Combining Eqs. (12) and (2) into (10), we can write a
general relation between averaged and external fields and
averaged polarization and magnetization vectors,

iβ × (Eav − Eext) = iωμ0 (Hav−Hext) + iωMav

iβ × (Hav − Hext) = − iωε0 (Eav−Eext) − iωPav.
(13)

These equations may be further manipulated to yield[
k2

0 + β × β×]
(Eav − Eext) = −k2

0
Pav

ε0
+ k0η0β × Mav

μ0[
k2

0 + β × β×]
(Hav − Hext) = −k2

0
Mav

μ0
− k0

η0
β × Pav

ε0
,

(14)

where k0 = ω
√

ε0μ0 and η0 = √
μ0/ε0.

Henceforth, for simplicity of notation, we consider only
averaged and impressed field distributions that are transverse-
electromagnetic (TEM) waves propagating along the direction
β̂ (where the hat indicates a unit vector).40 A more general
tensorial notation may be used for arbitrary propagation but is
not adopted here in the interest of notational simplicity. In this
situation, Eq. (14) may be compactly written as follows:

Eav = Eext + k2
0

β2 − k2
0

Pav

ε0
− βk0

β2 − k2
0

η0β̂ × Mav

μ0
(15)

Hav = Hext + k2
0

β2 − k2
0

Mav

μ0
+ βk0

β2 − k2
0

β̂

η0
× Pav

ε0
,

where β = |β|. This is a very general result, which relates
averaged and impressed fields for any arbitrary (ω,β) pair
and holds for any metamaterial array and any combination of
electric and magnetic excitations. Observe that, similar to the
way both electric- and magnetic-induced currents contribute to
electric and magnetic averaged polarization in Eq. (12), both
averaged polarization and magnetization vectors contribute

to averaged electric and magnetic fields. In other words, an
inherent form of magnetoelectric coupling at the unit cell
level stems from weak spatial dispersion effects when β �= 0,
associated with finite phase velocity across each unit cell.
These effects are neglected in quasistatic homogenization
methods.

Equation (15) defines a general relation among averaged
and impressed fields, which is independent of the specific
nature of the metamaterial inclusions. In the following section,
we introduce the inclusion into the picture, and we use this
result to define the first-principle effective constitutive model
of an arbitrary metamaterial array.

III. EFFECTIVE CONSTITUTIVE PARAMETERS

After having established the proper definition of averaged
fields and their general relations, we are now ready to derive
a macroscopic homogenized description of the array, once we
relate averaged polarization and magnetization vectors to the
local fields, as a function of the specific inclusion geometry.
Since we are assuming that dipolar terms are dominant,39 we
may compactly describe the unit cell response in terms of its
polarizability coefficients, which relate the induced electric
and magnetic dipole moments in the unit cell p000 = d3Pav

and m000 = d3Mav to the local fields at its center,

p000 = ε0αeEloc − ε0αemη0β̂ × Hloc
(16)

m000 = μ0αmHloc − μ0αem
β̂ × Eloc

η0
,

where αe, αm and αem are the electric, magnetic, and mag-
netoelectric polarizability coefficients, respectively. All these
coefficients have dimensions of an inverse volume, and they
are considered scalar here due to the assumptions of TEM
propagation and isotropic unit cell. In addition, in writing
Eq. (16), we have implicitly assumed that the inclusions are
reciprocal.41

The fields Eloc and Hloc represent the local fields at the
unit cell center in absence of the inclusion. They are due to the
superposition of the impressed fields Eext, Hext and the induced
fields scattered from the rest of the array:

Eloc = Earray + Eext = C
p000

ε0
− η0Cemβ̂ × m000

μ0
+ Eext

(17)

Hloc = Harray + Hext = C
m000

μ0
+ Cem

η0
β̂ × p000

ε0
+ Hext.

The interaction constants C and Cem may be evaluated
using the dipolar radiation from the generic unit cell at
rlmn = (ld,md,nd) and applying the Floquet condition plmn =
p000e

iβ·rlmn , mlmn = m000e
iβ·rlmn :

C =
∑

(l,m,m)�=(0,0,0)

p̂ · Gee (rlmn) eiβ·rlmn · p̂

(18)
Cem =

∑
(l,m,m)�=(0,0,0)

p̂ · Gem (rlmn) eiβ·rlmn · m̂,

where Gee (rlmn) and Gem (rlmn) are the electric and mag-
netoelectric dyadic Green’s functions43 and p̂ and m̂ are
unit vectors oriented along p000 and m000, respectively.
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Fast-converging expressions for these summations are avail-
able in Refs. 15,16, and 20.

Combining Eqs. (16) and (17), we may now derive a general
relation between impressed fields and averaged polarization
vectors:

Eext = d3

(
1

αe + α2
em/αm

− C

)
Pav

ε0

+ η0d
3

(
αem

αeαm + α2
em

+ Cem

)
β̂ × Mav

μ0
(19)

Hext = d3

(
1

αm + α2
em/αe

− C

)
Mav

μ0

+ d3

η0

(
αem

αeαm + α2
em

− Cem

)
β̂ × Pav

ε0
,

which, substituted in Eq. (15), provides the important relations

Eav =
[

d3αm

αeαm + α2
em

− d3Cint

]
Pav

ε0

+
[

d3αem

αeαm + α2
em

+ d3C ′
em

]
η0β̂ × Mav

μ0
(20)

Hav =
[

d3αe

αeαm + α2
em

− d3Cint

]
Mav

μ0

+
[

d3αem

αeαm + α2
em

− d3C ′
em

]
β̂

η0
× Pav

ε0
.

Here we have used the reduced interaction constants

Cint = C −
[

1

d3

k2
0

β2 − k2
0

]
(21)

C ′
em = Cem −

[
1

d3

βk0

β2 − k2
0

]
,

which respectively coincide with p̂ · Cint · p̂ and p̂ · Ce,m · m̂
derived in Ref. 23 using an alternative spectral-domain
representation.

Equation (20) represents another important result, since
it shows, directly from first-principle considerations, that it
is possible to establish a general relation between averaged
electric and magnetic fields and averaged polarization vectors
[as defined in Eq. (11)], which depends on the array period
and the polarizability coefficients for any given pair (ω,β), but
that is completely independent of the relative amplitude of the
impressed sources Jext and Kext. This is a relevant property
of this homogenization theory, since a proper homogenized
description of the metamaterial should not depend on the type
and form of external excitation, as commonly happens in more
approximate homogenization models.

The relations [Eq. (20)] also show that there is an inherent
form of magnetoelectric coupling (usually negligible in natural
materials) relating Eav to the rotation of Mav, and Hav to the
rotation of Pav. As expected, part of this coupling is associated
with the presence of αem, which represents the possible
bianisotropy within the unit cell, stemming from asymmetric
or noncentered inclusions.44 However, Eq. (20) predicts that,
even when inclusions are perfectly centersymmetric and with
no inherent bianisotropy, a form of magnetoelectric coupling
is still expected, associated with the presence of C ′

em. This

additional coupling term is due to lattice effects and the
nonzero value of β. We will discuss the implications of this
coupling in more detail in the following.

Using Eq. (12), we can finally write for the constitutive
relations of the metamaterial array:

Dav = ε0Eav + Pav = εeffEav − (
χe

eff + χo
eff

)
β̂ × Hav

Bav = μ0Hav + Mav = μeffHav − (
χe

eff − χo
eff

)
β̂ × Eav,

(22)

with

εeff = ε0

[
1 + d−3

[
α−1

m(eff) − Cint
](

α−1
e(eff) − Cint

)(
α−1

m(eff) − Cint
) − C ′2

em + α2
em(eff)

]
μeff = μ0

[
1+ d−3

(
α−1

e(eff) − Cint
)(

α−1
e(eff) − Cint

)(
α−1

m(eff) − Cint
) − C ′2

em + α2
em(eff)

]
χe

eff = 1

c0

d−3αem(eff)(
α−1

m(eff) − Cint
)(

α−1
m(eff) − Cint

) − C ′2
em + α2

em(eff)

χo
eff = 1

c0

d−3C ′
em(

α−1
e(eff) − Cint

)(
α−1

m(eff) − Cint
) − C ′2

em + α2
em(eff),

(23)

where c0 = 1/
√

ε0μ0, α−1
e(eff) = αm/�, α−1

m(eff) = αe/�,

α−1
em(eff) = αem/�, and � = (αeαm + α2

em) [in the absence of
magnetoelectric coupling at the unit cell level αem = 0 and
αe(eff) = αe, αm(eff) = αm].

A. General properties of the effective constitutive parameters

The expressions [Eq. (23)] represent general closed-form
effective constitutive parameters, rigorously obtained from
first-principle considerations. They are valid for any pair
(ω,β) and any form of external excitation Jext, Kext, ensuring
that this homogenized description does not depend on the
specific impressed field distribution in each unit cell but instead
represents the inherent response of the metamaterial as a
bulk to an arbitrary electric and/or magnetic excitation. It is
important to stress that the ratio of averaged fields Eav/Hav,
i.e., the local wave impedance, inherently depends on the
specific choice of impressed sources Jext, Kext as in Eq. (13)
and as expected in presence of arbitrarily impressed sources.
However, the constitutive parameters defined in Eq. (23)
do not depend on this ratio, thus compactly describing the
macroscopic polarization and magnetization properties of the
array for arbitrary excitation. This fundamental property
does not apply to less rigorous homogenization models that
focus only on eigenmodal propagation, as we discuss more
extensively in Sec. IV.

Effective permittivity and permeability are found in closed
form as the first two expressions [Eq. (23)]. These generalize
the Clausius-Mosotti homogenization formulas6,7,23 by rigor-
ously taking into account the coupling among the inclusions
and their polarization properties. More importantly, this
theory demonstrates the inherent presence of magnetoelectric
coupling via the coefficients χe

eff and χo
eff in Eqs. (22) and (23).

The first portion of the bianisotropy coefficient χe
eff , even with

respect to β, is associated with magnetoelectric effects at the
inclusion level, and satisfies the usual reciprocity constraints
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for bulk materials. An additional contribution to bianisotropy
is χo

eff , odd with respect to β, which is associated to inherent
magnetoelectric coupling effects arising at the lattice level.
These latter effects cannot be neglected in general, even in
the case of centersymmetric inclusions for which αem = 0,
as long as C ′

em �= 0. The presence of this odd bianisotropy
coefficient has been pointed out theoretically and numerically
in Refs. 21 and 22, and the present theory explains its physical
nature and relevance from first-principle considerations: χo

eff
is a weak spatial dispersion effect associated with the finite
phase velocity along the array, not negligible even in the
long-wavelength limit as we show in the following numerical
examples (Sec. VII). Its nature is associated with the inherent
asymmetry introduced by phase propagation across a unit cell
of finite size, and this explains why, at first sight, its occurrence
in Eq. (22) does not satisfy the reciprocity relation for local
bianisotropic materials. Its odd response with respect to β

ensures that, by reversing the direction of propagation for given
frequency, its contribution also changes sign, ensuring that
the constitutive relations [Eq. (22)] are actually describing a
reciprocal medium. This shows the drastic difference between
the bianisotropy stemming from lattice effects χo

eff and the
one associated with magnetoelectric coupling at the inclusion
level χe

eff . Its relevance in the homogenization of metamaterials
and in restoring the physical meaning of their constitutive
parameters is discussed in further detail in Ref. 32.

Due to the inherent properties of the summations in Eq. (18),
which for real β satisfy15,16,20,23

Im [C] = k3
0

/
(6π )

Im [Cem] = 0
(24)

and the lossless conditions on the polarizability coefficients45

Im
[
α−1

e

] = Im
[
α−1

m

] = k3
0

/
(6π )

Im [αem] = 0,
(25)

it is recognized that all the constitutive parameters in Eq. (23)
are real for lossless particles and real β, as required in lossless
bianisotropic materials, ensuring power conservation.

Before concluding this section, it is worth stressing that
the closed-form expressions [Eq. (23)] apply to any plane-
wave-like field distribution in the homogenized material, any
form of excitation and any pair (ω,β), representing an accurate
and self-consistent homogenization model for the array. The
constitutive parameters may still be, in the general case, weakly
dependent on β, as a symptom of spatial dispersion. However,
as discussed in Sec. V, the homogenized parameters tend to a
local nondispersive model in the long-wavelength limit (small
β). The present theory proves that it is possible to rigorously
derive from first-principles a self-consistent constitutive model
for metamaterials. In addition to artificial magnetism and
polarization effects stemming from weak spatial dispersion,
this theory shows that the rigorous consideration of the array
coupling requires an additional magnetoelectric constitutive
parameter, even in the case of centersymmetric inclusions.
In the following section, we consider the special case of
eigenmodal solution (without impressed sources) and relate
our general theory to other common eigenmodal approaches
to homogenization.

IV. EIGENMODAL PROPAGATION AND EQUIVALENT
CONSTITUTIVE PARAMETERS

In the eigenmodal case, i.e., in the absence of external
sources, Eq. (19) ensures that nontrivial solutions are available
only for specific instances of β (ω), satisfying the array
dispersion relation(

α−1
e(eff) − C

)(
α−1

m(eff) − C
) = C2

em − α−2
em(eff). (26)

The corresponding eigenvectors, obtained solving Eq. (19),
satisfy

p000 · p̂
m000 · m̂

= Pav

Mav
= 1

η0

Cem + αem(eff)

α−1
e(eff) − C

= 1

η0

α−1
m(eff) − C

Cem − αem(eff)
, (27)

which provides a specific constraint on the ratio Pav/Mav. Re-
arranging Eqs. (22) and (13), in this regime, we may also write

iβ × Eav = iω
μeff

1− c0(χo
eff −χe

eff)
β/k0

Hav = iωμeqHav

iβ × Hav = −iω εeff

1− c0(χo
eff +χe

eff)
β/k0

Eav = −iωεeqEav,
(28)

where c0 is the velocity of light in free-space. Equation (28)
shows that the eigenmodal propagation may be described in
terms of equivalent permittivity and permeability parameters
εeq, μeq, which embed the magnetoelectric coupling effects
as a form of weak spatial dispersion. Their validity is strictly
limited to eigenmodal propagation, since the ratio Pav/Mav

is in general a function of the impressed sources. The
description of the array in terms of equivalent parameters is
particularly attractive in the absence of bianisotropic effects
at the inclusion level, when αem = χe

eff = 0. In this case,
the residual magnetoelectric coupling associated with lattice
effects may be embedded into equivalent permittivity and
permeability parameters related to the effective parameters
through the, normalization factor 1 − c0χ

o
eff

β/k0
.

Classic homogenization models that aim at describing
metamaterial arrays in terms of permittivity and permeability
(see, e.g., Refs. 13–20), on the model of natural materials,
extract and define these equivalent quantities and thus implic-
itly introduce a form of weak spatial dispersion when χo

eff is
not negligible. It is evident that this may easily translate into
inconsistencies and lack of physical meaning in the extracted
or retrieved parameters, as discussed in more detail in Ref. 32,
and verified in several recent examples in the literature.27,28 It
is worth stressing that the equivalent parameters are an implicit
function of the specific ratio Pav/Mav in Eq. (27), i.e., they are
bound to change when impressed sources are introduced that
can arbitrarily modify the local ratio Pav/Mav, in sharp contrast
with the general independence of the effective constitutive
parameters [Eq. (23)] on the local value of Pav/Mav.

A. Secondary parameters and relations between equivalent and
effective descriptions

It follows straightforwardly from Eq. (28) that the disper-
sion relation β (ω) may be rewritten as

β2 = ω2μeqεeq, (29)
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which, after using Eqs. (23) and (21), may be shown to coincide
with Eq. (26).

In addition, we can define the effective characteristic
impedance of the array for eigenmodal propagation:

ηeff = Eav

Hav
=

√
μeq

εeq

=
√

μeff

εeff

√
β/k0 − c0

(
χo

eff + χe
eff

)
β/k0 − c0

(
χo

eff − χe
eff

) . (30)

In the absence of bianisotropic effects in the inclusions
αem = χe

eff = 0, and Eq. (30) becomes

ηeff = Eav

Hav
=

√
μeq

εeq
=

√
μeff

εeff
. (31)

Therefore, in absence of bianisotropy the eigenmodal charac-
teristic impedance is not directly affected by magnetoelectric
coupling at the lattice level, and the same characteristic
impedance is obtained using either the ratio of effective or
equivalent parameters. In addition, using Eq. (22), we may
write in the general case

Pav

Mav
= (εeff − ε0)ηeff + (

χe
eff + χo

eff

)
(μeff − μ0) − ηeff

(
χe

eff − χo
eff

) , (32)

which, for αem = χe
eff = 0, becomes

Pav

Mav
= ηeff

εeq − ε0

μeq − μ0
. (33)

Equations (29) and (33) coincide with classic retrieval
procedures used to determine the effective permittivity and
permeability of a metamaterial sample from its secondary
parameters, i.e., its eigenmodal wave number β and its char-
acteristic impedance ηeff .20,29 This means that the equivalent
representation [Eq. (28)], introduced here from first principles,
exactly coincides with classic homogenization models based
on retrieved parameters.

This is a salient finding, since it allows us to relate
the present theory to classic homogenization schemes and
shows that simple constitutive models assigned a priori may
effectively hide weak spatial dispersion effects. In source-free
problems, for which the excitation is placed outside the
metamaterial sample, as in classic retrieval schemes, it is
tempting to put aside the magnetoelectric coupling coefficient
χo

eff and use the equivalent parameters to model the array
scattering. This is indeed possible, and from the scattering
point of view effective and equivalent descriptions are equiv-
alent in this source-free scenario, since the corresponding
secondary parameters coincide. However, our theory shows
that the equivalent representation, so common in standard
metamaterial homogenization schemes, has a very limited
physical meaning and it should not be used to separately
describe the electric and magnetic response of a metamaterial,
since it hides an inherent form of spatial dispersion and
magnetoelectric coupling when χo

eff is not negligible. It is
not surprising that the frequency dispersion of the equivalent
parameters may contain nonphysical artifacts and may not
satisfy passivity, reciprocity, or other causality constraints
typical of local parameters.32

As a final remark with respect to standard homogenization
schemes, the relation between the equivalent parameters and
classic retrieval techniques shows that, even at frequencies
where spatial dispersion and χo

eff are negligible, and we can
safely write

Dav = εeqEav

Bav = μeqHav,
(34)

as in a natural material, the averaged fields Eav and Hav

are defined through Eq. (11) and not as the simple spa-
tial averages Ē, H̄ of the microscopic fields. This means
that standard retrieval techniques based on the local model
[Eq. (34)] implicitly assume:

εeq = ε0Eav + Pav

Eav
= ε0Ē + PE

Ē − PH/ε0
(35)

μeq = μ0Hav + Mav

Hav
= μ0H̄ + MH

H̄ − ME/μ0
.

The nature of the averaged polarization currents within
each unit cell, whether stemming from microscopic electric
or magnetic effects, inherently determines the definition of the
spatial averages used to calculate the constitutive parameters,
and weak spatial dispersion effects associated with artificial
magnetism or polarization have a different role (contributing
to Eav and Hav) than the direct polarization and magnetization
vectors (contributing to Dav and Bav). Our theory effectively
shows that any time we describe metamaterials in terms of
permittivity and permeability we implicitly define the averaged
fields as in Eq. (11) and not by simply taking the spatial
averages of the microscopic fields. In particular, Dav and
Bav take into account only the direct macroscopic effects PE

and MH of the microscopic polarization and magnetization,
respectively. Conversely, the average fields Eav and Hav are
implicitly obtained after subtracting the artificial electric and
magnetic effects PH and ME from the spatial averages of E(r)
and H(r).

V. LONG-WAVELENGTH LIMIT AND CONVERGENCE TO
A LOCAL MODEL

The effective parameters εeff , μeff and χe
eff in Eq. (23) are

even functions of β, as expected from reciprocity consid-
erations. This implies that for βd � 1, they tend to local
parameters, one of the relevant advantages of this model,
compared to other Floquet approaches to homogenization.23,33

In contrast, χo
eff is an odd function of β, which varies

linearly with βd in the same long-wavelength limit. These
considerations imply that the constitutive model [Eq. (22)]
converges to the local relations

Dav = εeffEav − χe
effβ̂ × Hav − κeffβ × Hav

Bav = μeffHav − χe
effβ̂ × Eav + κeffβ × Eav,

(36)

where κeff = χo
eff/β

32 is also an even function of β, and all the
effective parameters in Eq. (36) may be assumed local in the
long-wavelength limit. Equation (36) stresses the relevance of
the magnetoelectric coefficient κeff even in this limit, which is
one of the relevant results of the present theory, discussed in
more details in Ref. 32.
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For sufficiently long wavelength and away from the
inclusion resonances, under the conditions k0d � 1, βd � 1,
this lattice effect becomes negligible:

C ′
em � 0, κeff � 0. (37)

Under this simple condition, and in the absence of bian-
isotropic effects at the inclusion level αem = 0, the constitutive
parameters [Eq. (23)] become

εeff = εeq = ε0

(
1 + d−3

α−1
e − Cint

)
(38)

μeff = μeq = μ0

(
1 + d−3

α−1
m − Cint

)
,

which coincide with generalized Clausius-Mossotti relations
in Ref. 23. Under condition [Eq. (37)] and αem = 0, we find
for the eigenmodal solution:

β = ±ω
√

μeffεeff

p000 · p̂
m000 · m̂

= Pav

Mav
= ηeff

εeff − ε0

μeff − μ0
,

(39)

which coincides with Eqs. (29) and (33) for equivalent
parameters. This proves that εeq and μeq, as well as the
retrieved parameters as defined in Ref. 20, are identical
with εeff and μeff when (a) there are no impressed sources
and (b) magnetoelectric effects at the lattice level are
negligible.

If, in the very long-wavelength limit, Cint may also be
assumed independent of β, then, by Taylor expanding its
expression in terms of k0, we get the known approximation6

Cint (ω,β → 0) = 1

3d3
+ j

k3
0

6π
, (40)

which proves that Eq. (38) and this homogenization method
both converge to local classic Clausius-Mossotti formulas for
periodic arrays5–7 when ω,β → 0. In Sec. VII, we show that
the assumptions [Eqs. (37) and (40)] do not necessarily hold in
metamaterials, even for k0d < 1, and that the homogenization
approach introduced here may provide results significantly
different from quasistatic approaches.

VI. SPATIAL DISPERSION AND EXTREME
METAMATERIAL PARAMETERS

It is near the inclusion resonances that metamaterials find
the most practical interest, since it is in this frequency range
that the constitutive parameters assume extreme (very large,
very low, or negative) values. The homogenization model
described here is very general, and in principle applicable
to any value of (ω,β). However, the same definition of
homogenization implies the inherent neglect of the array
granularity. This is particularly relevant near these resonances,
since, despite a small k0d, the effective eigenmodal wavelength
may become comparable with the period as βd increases.
Although these resonant regions are quite limited in bandwidth
for passive inclusions in the long-wavelength regime, it is here
that the effects of χo

eff and spatial dispersion are most relevant.

A. Near-zero effective material parameters

Limiting ourselves to the lossless scenario for clarity,
consider first the low-index regime, for which βd � 0 for
finite k0d, of interest in a variety of applications.46–51 This
regime includes ε-near-zero, μ-near-zero, and low-index
metamaterials. In this frequency range, the eigenwave number
β passes from being imaginary to real valued, since one of the
two equivalent parameters crosses the real axis [see Eq. (29)].
As expected, the effective parameters εeff , μeff , and χe

eff in
Eq. (23) are real valued also when β is purely imaginary,
since they are even functions of β. On the other hand, χo

eff is
purely imaginary for imaginary β and crosses zero for β = 0,
due to its odd nature. This ensures that when χe

eff = 0 and the
equivalent representation is appealing, also εeq and μeq are real
valued (and one of them negative) in Eq. (28), despite β being
imaginary. As shown in some of the following numerical ex-
amples, this zero-index region provides significant deviations
between the equivalent parameters (εeq, μeq) and the effective
parameters (εeff, μeff), as a symptom of inherent spatial
dispersion, consistent with the results in Ref. 26. It should
be stressed that in this region β, C ′

em, χeff are all very close
to zero, implying very long effective wavelengths and weak
magnetoelectric coupling; however, the ratio χo

eff/β = κeff is
not necessarily small in the denominator of Eq. (28) and in
Eq. (36), providing relevant nonlocal effects in the equivalent
parameters.32

B. Effective parameters near the bandgap regions

Another region of interest for metamaterial applications
is the one near the edge of the lattice band gaps, for which
βd � π . Around this region, large positive or negative values
of permittivity and permeability are obtained, of interest in a
variety of applications.18,52,53 It is evident that in this scenario
the inclusion interaction may become very complex, and an
average over the unit cell may not provide much insight into
the physical behavior of an eigenmode that flips its phase
within a single unit cell. In particular, inside the band gap the
same definition of homogenized parameters is not meaningful,
as they become complex even for lossless inclusions, since
β is in general complex. It is meaningful, however, to
study the transition between the homogenization and the
bandgap regimes, where extreme metamaterial parameters are
found. It is in this transition region that our homogenization
technique becomes particularly important, since here weak
spatial dispersion effects as in Eq. (36) become relevant, even
in the long-wavelength limit k0d < 1. Exactly at the band-gap
edge the periodic properties of Cem require that

Cem (β = π/d) = 0 ∀ω. (41)

For centersymmetric inclusions (αem = 0), this implies that
the general dispersion relation [Eq. (26)] simplifies into[

α−1
e − C (ω, π/d)

] [
α−1

m − C (ω, π/d)
] = 0. (42)

In the long-wavelength limit for which C is small, Eq. (42)
ensures that a band gap may be reached exclusively near an
electric or a magnetic resonance, for which one of the two
α−1 = C � 0.54 It follows directly from Eqs. (23) and (28)
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that at such resonance one of the equivalent parameters

μeq = μ0
(
for α−1

e = C
)
or εeq = ε0

(
for α−1

m = C
)
.

(43)

Correspondingly, using Eq. (29), the other equivalent
parameter has to become

εeq = ε0
π2

(k0d)2

(
for α−1

e = C
)

or

μeq = μ0
π2

(k0d)2

(
for α−1

m = C). (44)

For instance, if we consider the band gap associated with
a magnetic resonance α−1

m = C, as is the case for the first
resonance of a dielectric inclusion (see example 2 in the follow-
ing section), the eigenwave number β and the corresponding
effective permeability μeff rapidly increase approaching the
band gap from below. At the resonance α−1

m = C, εeq = ε0,

μeq = μ0
π2

(k0d)2 , and therefore, using Eq. (28),

εeff

ε0
= 1 − c0χ

o
eff

π/ (k0d)
(45)

μeff

μ0
= π

k0d

(
π

k0d
− c0χ

o
eff

)
.

Equation (30) is indeed satisfied by Eq. (45), and it implies

ηeff

η0
= β

k0
= π

(k0d)
, (46)

which suggests that, independent of the inclusion geometry,
at a magnetic band-gap edge the normalized characteristic
impedance coincides with the normalized wave number (index
of refraction). An analogous derivation for electric resonances
α−1

e = C provides the inverse of Eq. (46). It is evident that in
this regime χo

eff may not be neglected and its effect is indeed
comparable, if not more important, than the effects captured by
εeff and μeff . In this frequency range the equivalent parameters
[Eq. (28)] lose their physical meaning and strongly diverge
from the effective parameters [Eq. (23)], as discussed in further
detail in Ref. 32.

It is evident from this discussion that regions with extreme
(very large, very low, or negative) metamaterial parameters
are those for which the present homogenization technique
is most useful, as it diverges from classic homogenization
schemes applicable for natural materials and mixtures. It is
interesting that a simple local model as in Eq. (36) can capture
these effects and fully restore the physical meaning of effective
homogenized parameters. We provide numerical examples in
Sec. VII to illustrate how this rigorous model may correctly
capture the exotic features of metamaterials and highlight the
weak spatial dispersion effects that are usually at the root of
inconsistencies in less rigorous homogenization models.

VII. NUMERICAL EXAMPLES AND FURTHER
DISCUSSION

In this section, we discuss the homogenization of three spe-
cific metamaterial geometries. Although our general formula-
tion is applicable to lossy, bianisotropic and magnetodielectric

inclusions, arbitrary source distribution, and any choice of
(ω,β), here we focus on metamaterials composed of lossless
dielectric or conducting spheres and on eigenmodal propaga-
tion. This choice has the advantage of providing a clearer pic-
ture of the difference between this homogenization approach
and other available techniques, tailored for eigenmodal exci-
tation. In addition, the choice of centersymmetric inclusions
ensures that bianisotropic effects can only stem from the effects
captured by χo

eff . We limit our analysis to a dipolar model and
long-wavelength regime (k0d) < 1, usually considered safe for
quasistatic homogenization models of metamaterials.9–11 For
this reason, we concentrate here on dielectric or conducting
inclusions, whose magnetic effects are properly captured by
the magnetic polarizability, consistent with the note in Ref. 39.
In future works we will apply our general multipolar approach
introduced in Sec. II to arbitrary metamaterial inclusions and
extend our numerical analysis to the presence of embedded
sources and magnetodielectric inclusions.55 Since we deal with
spherical particles, we can use analytical closed-form expres-
sions for αe, αm,56 well aware of the small causality violations
introduced by this assumption, as discussed in Ref. 42. The
parameter γ = a/d is introduced to define the ratio of sphere
radius over lattice period, as a measure of the array density.

Figure 1(a) shows in logarithmic scale the amplitude
of the normalized polarizability coefficients (thick lines for
the normalized electric polarizability, thin for the magnetic
one) for three different geometries of interest: (1, solid
lines) dielectric spheres with relative permittivity εr = 20
and permeability μr = 1; (2, dashed) dielectric spheres with
εr = 120 and μr = 1; (3, dotted) perfectly conducting spheres.
For convenience, Fig. 1(b) shows the ratio |αe| / |αm|, in
order to highlight the ratio between electric and magnetic
response at the inclusion level. Both plots show their variation
as a function of (k0d), for the density factor γ = 0.45. The
chosen geometries represent specific situations of interest
in common metamaterial arrays: in case 1 (solid lines), a
regular array of dielectric spheres is considered, far from their
individual resonances, but still with a good contrast compared
to the background: a dominant electric polarization is expected
all over the spectrum of interest; in case 2 (dashed), the
permittivity is increased to support a magnetic and an electric
resonance within the frequency band of interest, in analogy
with established designs to realize negative metamaterial
parameters18: in this case, more interesting features are
expected in the metamaterial response near the inclusion
resonances. As expected, the electric response is dominant
for lower frequencies, but the first resonance is magnetic.
Finally, in case 3 (dotted), conducting particles are considered,
for which electric and magnetic responses are comparable,
and for lower frequencies the electric polarizability is exactly
twice the magnetic one. It is noticed that in all these examples,
lossless conditions [Eq. (25)] strictly apply. The application of
this theory to magnetodielectric spheres that support negative
index of refraction has been considered in Ref. 32.

Figure 2(a) shows the dispersion of normalized eigenwave
number (effective index of refraction) for the array 1 with
γ = 0.45. The figure compares the exact eigenmodal solution
β/k0 (solid line), as obtained from Eq. (26), with various ap-
proximate solutions obtained neglecting spatial dispersion and
magnetoelectric effects, as follows: the dashed line refers to
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FIG. 1. (a) Frequency dispersion of the electric (thick lines) and
magnetic (thin) normalized polarizability of the individual inclusions
for the three metamaterial arrays considered in the following figures:
(solid) dielectric spheres with permittivity ε = 20 ε0; (dashed) di-
electric spheres with ε = 120 ε0; (dotted) conducting spheres; (dash-
dotted) magnetodielectric spheres with ε = 20 ε0 and μ = 20 μ0;
(b) Ratio of electric over magnetic polarizability for the same
geometries. Here γ = 0.45.

the dispersion of βem, obtained neglecting the magnetoelectric
coupling term C ′

em, as in Eq. (37); the dotted line shows
βCM , which in addition neglects the dispersion effects in Cint,
implying C ′

em = 0 and Cint as given by Eq. (40), coinciding
with the quasistatic Clausius-Mossotti homogenization model;
the dash-dotted line refers to βe, obtained neglecting the
magnetic polarizability effects associated with the magnetism
of the inclusions (which is small in this geometry) but still
using the exact Cint expression; finally the dash-dot-dot line
refers to βe−CM, which neglects the magnetic effects and uses
Eq. (40) for Cint. We consider all these approximate expres-
sions to show how the different spatial and frequency disper-
sion terms, usually neglected in quasistatic homogenization
models, affect the metamaterial homogenization accuracy,
within the same dipolar approximation. As expected, all
these expressions converge to the same quasistatic limit when
(ω,β) → 0, but the approximate expressions start deviating
from the exact expression of β for relatively low values of k0d.
In particular, by neglecting the magnetic polarizability of the
particles, which in this example is orders of magnitude smaller

FIG. 2. Frequency dispersion of the guided wave number and its
approximations as defined in the text for an array of dielectric spheres
with ε = 20 ε0, with (a) γ = 0.45, and (b) γ = 0.3.

than the electric one (see Fig. 1(b)), the dispersion of βe/k0

surprisingly diverges quite drastically from the exact model,
implying that the small magnetism of these dielectric particles
cannot be neglected, as one may be tempted after inspecting
Fig. 1(b). The effects of nonlocality and spatial dispersion in
Cint start playing a role much earlier in frequency than one
would generally expect for such simple topology, comparing
βCM with β. In comparison, magnetoelectric coupling effects
have a much weaker role, and start being relevant only
around k0d � 1. Figure 2(b), in comparison, shows the same
curves for the case of a less dense array, with γ = 0.3.
As visible, the trend is quite similar, although effects of
spatial dispersion are proportionally less relevant here, as
the interaction among inclusions is weaker. In particular,
magnetoelectric coupling effects associated with C ′

em are
negligible all over the considered frequency range, as βem

practically coincides with β in this less dense configuration.
Nonlocal effects in Cint and the influence of the small magnetic
properties of the inclusions have still some relevant effects in
this less dense scenario.

Figure 3 shows the eigenmodal dispersion of effective
constitutive parameters for this array for γ = 0.45. The top
panel compares: the effective permittivity εeff (solid black
line); εem, calculated after neglecting the magnetoelectric
coupling coefficient C ′

em, as in Eq. (38) (dashed); εloc,
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FIG. 3. (Color online) Frequency dispersion of the effective
constitutive parameters and their approximations as defined in the
text for the array of Fig. 2(a).

calculated neglecting also the effects of spatial dispersion
in Cint, but still considering its dependence on ω for β = 0
(dash-dotted); εCM , obtained using the quasistatic expression
for Cint given in Eq. (40) (dotted), which coincides with the
Clausius-Mossotti definition for periodic arrays derived in
Ref. 5; finally εeq (solid light green), defined in Eq. (28).
All these expressions yield a purely real permittivity, as
expected from the lossless assumption. However, εCM rapidly

FIG. 4. Frequency dispersion of the effective wave number and
characteristic impedance calculated from the constitutive parameters
of Fig. 3.

diverges from the first-principle permittivity εeff . The value
of εeff actually decreases with frequency for any k0d < 0.65,
due to the small noncausal feature introduced by the dipolar
approximations used here, particularly relevant in the case
of more densely packed arrays.42 Magnetoelectric coupling
has very little relevance here, as εem practically overlaps with
εeff , but the effects of spatial and frequency dispersion of the
interaction constants are quite relevant, as seen by comparing
εloc and εCM with εeff . Finally, the divergence of εeq from
the correct value εeff is a symptom of nonnegligible spatial
dispersion and magnetoelectric coupling in the array, which
are evidently not negligible in such dense arrays.

In comparison, the permeability is accurately predicted
by all approximate models, and even the local or Clausius-
Mossotti approximations predict extremely well its weak
dispersion, due to the significantly lower magnetic response
of the spheres all over the frequency range of interest.
Interestingly, only μeq shows a moderate deviation from μeff ,
which highlights how the effects of χo

eff may not be neglected
even in this long-wavelength regime. Finally, the value of χo

eff
(bottom panel) becomes relevant only towards the higher end
of this frequency range, explaining the divergence of effective
and equivalent parameters.

Figure 4 calculates the secondary effective parameters of
this material, obtained using the different homogenization
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models of Fig. 3. In particular, Fig. 4(a) compares the exact
value of normalized wave number β/k0, as from Fig. 2(a),
with the approximate values βi/k0 = √

εiμi , where the pedix
i stands for any of the approximate models used in Fig. 3
(i = eff, em, CM, loc). This plot offers several interesting
insights: first of all, it is noticed that βeff follows extremely well
the dispersion of βem, consistent with the weak effects of C ′

em
on the effective parameters. However, both curves moderately
diverge from the correct value β/k0 in the range 0.5 < k0d <

1, confirming that the effects of χo
eff cannot be neglected in this

frequency range. The Clausius-Mossotti model βCM fails even
more substantially. Figure 4(b) compares the corresponding
values of effective characteristic impedance ηi/η0 = √

μi/εi .
As noticed in the previous section, χo

eff does not play a direct
role in the impedance when χe

eff = 0, and therefore the param-
eters obtained neglecting C ′

em yield an accurate approximation
of the effective impedance ηeff . It should be noted, however,
that the relation between ηeff and Pav/Mav may not be assumed
as simple as Eq. (39), due to the effects of χo

eff for relatively
larger frequencies. As seen in this figure and discussed in Sec.
IV, the equivalent parameters, despite hiding the magnetoelec-
tric effects, predict correct values of the secondary parameters
of the array, consistent with Eqs. (29) and (30). This ensures
that their use for scattering purposes in absence of embedded
sources is perfectly legitimate, if one avoids assigning them
the physical meaning of local permittivity and permeability.

In the less dense array case of Fig. 2(b) (not reported here
for brevity), as expectable the effects of nonlocality and spatial
dispersion are much less relevant, but still Clausius-Mossotti
homogenization formulas would considerably deviate from the
effective parameters.

Consider now the second metamaterial of interest, com-
posed of spheres with εr = 120, which support a magnetic
and an electric resonance within the low frequency range
considered here. Figure 5 shows the eigenwave number dis-
persion for such array with γ = 0.45, with symbols analogous
to Fig. 2. It is immediately recognized that the exact dispersion
of normalized wave number β/k0 (solid lines) is much more
intricate than in the previous example. As expected, β/k0

initially grows with frequency, until hitting the first band
gap of the array at (k0d) = 0.594, at the magnetic resonance
frequency α−1

m − C = 0. The narrow frequency region within
the band gap should be completely disregarded in terms of
homogenization, since, as discussed above, the effects of array
granularity plays a major role here. Passed the magnetic band
gap, a branch with imaginary wave number β = iβi is entered
(thin solid line), which connects with the next real branch at
(k0d) = 0.723, at the point for which β = 0. The following
band gap is then hit at the electric resonance frequency
α−1

e − C = 0, at (k0d) = 0.891, and the next real branch is
obtained at (k0d) = 0.909. As seen in Fig. 5, this behavior
is well described by approximate dispersion relations, after
neglecting the effects of C ′

em or the spatial dispersion in Cint,
as in βem and βCM, respectively. This is due to the fact that
in this array the local inclusion resonances dominate the array
response and hide weak spatial dispersion effects at the lattice
level. Of course, in this scenario it is not possible to neglect
the magnetic effects in the dielectric particles, as for βe and
βe−CM, since this would completely miss the first magnetic
band-gap resonance.

FIG. 5. Frequency dispersion of the guided wave number and its
approximations as defined in the text for an array of dielectric spheres
with ε = 120 ε0 and γ = 0.45. The thin solid line corresponds to the
imaginary branch of β.

The effective constitutive parameters of this array are shown
in Fig. 6, with analogous symbols as described in Fig. 3. Even
if the spatial dispersion effects are negligible in evaluating
β (ω) in Fig. 5, they play a major role in the correct definition
of constitutive parameters, in particular near the electric and
magnetic resonances of the inclusions. First, it is noticed
that Clausius-Mossotti formulas completely miss the relevant
magnetoelectric coupling arising near the band gaps, and the
permittivity especially suffers of this approximation, starting
from very low frequencies. Towards the first (magnetic)
resonance, εem may approximate relatively well the effective
permittivity εeff , confirming that the effect of C ′

em is small on
the permittivity dispersion, dominated by the local inclusion
resonances. However, the value of χo

eff assumes large values
near the two resonances, and it cannot be neglected. Near the
magnetic resonance, the effective permittivity experiences a
sharp Lorentzian resonance, completely missed by εCM and
even by εloc, which is an evident symptom of magnetoelectric
coupling in the array. In contrast, the various models for mag-
netic permeability all have good agreements with the effective
model (with the exception of a small resonant feature arising
at the electric band-gap resonance of the array). In the region
where β is imaginary, immediately following the band gaps, all
the models correctly predict a negative effective permeability
or permittivity region, which crosses zero at (k0d) = 0.723 and
(k0d) = 0.909, together with the value of β. In this negative
parameter range, as expected, χo

eff is imaginary (dashed lines
in the bottom panel), which ensures that the equivalent
parameters are real quantities (one of them negative).

Special attention should be paid to the dispersion of the
equivalent permittivity εeq in Fig. 6(a) (lighter green line).
Its slope is negative all the way until the magnetic band
gap, producing an anti-resonant dispersion consistent with
usual artifacts arising in common retrieval procedures near
magnetic resonances.20–29 It is evident that these effects are
associated with χo

eff , hidden in the definition of equivalent
permittivity. It is true that the equivalent parameters may
describe well the secondary parameters of the array, but their
physical meaning in this case considerably diverge from the
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FIG. 6. (Color online) Frequency dispersion of the effective
constitutive parameters, and their approximations as defined in the
text for the array of Fig. 5. Dashed lines in the bottom panel refer to
branches with imaginary values.

first-principle definition of permittivity and permeability. A
simple homogenization model based on the equivalent repre-
sentation would fail to capture the physics of the array near the
band-gap resonance, predicting εeq = ε0 [Eq. (43)], when in
reality the averaged polarization vector has a strong resonance.
These effects are discussed in more detail in Ref. 32.

FIG. 7. (Color online) Frequency dispersion of the effective wave
number and characteristic impedance calculated from the constitutive
parameters of Fig. 6.

If the discrepancy between εeq and εeff was expected near
resonance, another transition region in which the equivalent
parameters εeq, μeq lose their physical meaning is the region
near (k0d) = 0.723, for which β � 0. As confirmed by
Fig. 6(a), and consistent with the analysis in Sec. VI A, in this
region

εeff � εem � εloc

μeff � 0.

χo
eff � 0

(47)

Indeed, the correct value of effective permittivity coincides
with the local value εloc, since β � 0, but this value is
substantially different from εeq. This is due to the fact that,
although the magnetoelectric coefficient is near zero, the ratio
χo

eff/β = κeff is finite, causing εeq to diverge from εeff and
to lose its meaning of average electric polarizability. In this
near-zero index region, the weak spatial dispersion captured
by κeff in Eq. (36) cannot be neglected, even if the effective
wavelength is very large. This confirms the results in Ref. 26
derived for periodic arrays of split-ring resonators, in which
the presence of nonnegligible spatial dispersion effects in the
long-wavelength (βd � 0) scenario is discussed.

Figure 7 shows the dispersion of the effective index of
refraction and characteristic impedance obtained through the
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FIG. 8. Frequency dispersion of the guided wave number, and its
approximations as defined in the text, with frequency for an array of
conducting spheres, for (a) γ = 0.45 and (b) γ = 0.3.

various parameters of Fig. 6, similar to Fig. 4. All the curves
agree with high accuracy within the real branches, since their
dispersion is dominated by the local resonances at the inclusion
level. This example clearly shows that indeed β and η for
this array may be easily derived applying local concepts,
like Clausius-Mossotti relations or simple retrieval procedures,
since they are dominated by local resonances at the inclusion
level; however, inferring from these secondary parameters the
physical values of permittivity and permeability, as commonly
done in standard homogenization techniques, leads to physical
artifacts and inconsistencies.32

As a third example, we consider the case of an array of
conducting particles. Figure 8 shows the dispersion of wave
numbers for γ = 0.45 (a) and γ = 0.3 (b), analogous to
Fig. 2. In this case, the wave numbers predicted using just
electric effects of the particles are evidently incorrect, since
the magnetic contribution for conducting particles is never
negligible. Moreover, the effect of the coupling coefficient
C ′

em is particularly relevant in this conducting scenario, which
shows significant divergence between β and βem, due to the
relevance of the magnetic effects even at very low frequencies.

Figure 9 shows the corresponding constitutive parameters
for the case γ = 0.45. εeff also in this scenario shows a
distinctly negative slope, all over the range of frequencies

FIG. 9. (Color online) Frequency dispersion of the effective
constitutive parameters, and their approximations as defined in the
text, for the array of Fig. 8(a).

considered here, due to small noncausal features introduced
by the polarizability model.42 This is compensated by the
positive slope of the effective permeability, which assumes, as
expected, diamagnetic values.57 Only the Clausius-Mossotti
quasistatic model εCM predicts a permittivity with positive
slope, whereas all the other models consistently follow the
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FIG. 10. Frequency dispersion of the effective wave number and
characteristic impedance calculated from the constitutive parameters
of Fig. 9.

trend of εeff . To confirm the strong influence of χo
eff , the

equivalent parameters εeq and particularly μeq considerably
deviate from the effective parameters. Figure 10, finally,
shows the dispersion of the calculated wave numbers and
characteristic impedances obtained using the effective consti-
tutive parameters of Fig. 9. It is seen how all curves agree
reasonably well with the exact dispersion of ηeff , except
the quasistatic Clausius-Mossotti formula, which neglects
frequency and spatial dispersion effects of the interaction
constants. The divergence of all the curves from the exact
dispersion of β is particularly striking, as a symptom of
the relevance of the magnetoelectric coefficient χo

eff in this
example. We have also analyzed the less dense configuration
γ = 0.3, as in Fig. 8(b) (not reported here for brevity), which
indeed provides analogous results, but less strong variations
from the background parameters, similar to the previous
examples.

VIII. CONCLUSIONS

We have laid out here from first principles a general
homogenization theory to define the effective constitutive
parameters of periodic metamaterials. Our theory can describe
periodic arrays of arbitrary inclusions within a homogenized
model that has been proven not to depend on the external
form of excitation and to preserve the physical meaning of
constitutive parameters, overcoming and correcting several
limitations and artifacts of other homogenization approaches.
The present theory effectively combines the rigorous approach
of Floquet-based homogenization theories with the advan-
tages of locality and general applicability of less accurate
retrieval techniques. We have distinguished between a rigorous
and general description of metamaterials, based on their
effective constitutive parameters, which inherently requires
taking into account weak spatial dispersion effects in the form
of magnetoelectric coupling at the lattice level, and a simpler
equivalent constitutive model, applicable only to eigenmodal
propagation and consistent with standard retrieval techniques.
Our theory shows that the commonly used equivalent rep-
resentation can accurately capture the secondary parameters
of the array, implying that in absence of embedded sources
they can provide a reasonable description of the array for
scattering purposes. However, they should not be used to
deduce the permittivity and permeability of the array, as their
physical meaning is severely limited by the presence of hidden
spatial dispersion effects,32 which have been revealed here.
A rigorous retrieval procedure to extract the first-principle
effective parameters from scattering measurements will be
presented in an upcoming paper. Although our theory is very
general, the numerical results presented here have focused on
isotropic arrays, centersymmetric inclusions, lossless dielec-
tric materials, and eigenmodal propagation within a dipolar
model, in order to better highlight the specific effects of spatial
dispersion, neglected in simpler homogenization models. For
space constraints, we have not discussed here the effects
of losses, of magnetodielectric and bianisotropic inclusions,
of impressed sources, and of non-TEM propagation and of
higher-order multipoles, which will be analyzed separately. We
have applied the present theory to model finite metamaterial
devices in Refs. 58 and 59.
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58X. X. Liu and A. Alù, J. Nanophoton. 5, 053509 (2011).
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