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Memory effects in nonequilibrium quantum impurity models
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Memory effects play a key role in the dynamics of strongly correlated systems driven out of equilibrium. In
this paper, we explore the nature of memory in the nonequilibrium Anderson impurity model. The Nakajima-
Zwanzig-Mori formalism is used to derive an exact generalized quantum master equation for the reduced
density matrix of the interacting quantum dot, which includes a non-Markovian memory kernel. A real-time
path integral formulation is developed in which all diagrams are stochastically sampled in order to numerically
evaluate the memory kernel. We explore the effects of temperature down to the Kondo regime, as well as the
role of source-drain-bias voltage and bandwidth on the memory. Typically, the memory decays on time scales
significantly shorter than the dynamics of the reduced density matrix itself, yet under certain conditions, it
develops a low magnitude but long-ranged tail. In addition, we address the conditions required for the existence,
uniqueness, and stability of a steady state.
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I. INTRODUCTION

Interest in the problem of intrinsically nonequilibrium open
quantum systems, in which one considers a small, strongly in-
teracting, and highly correlated region coupled to several large,
noninteracting baths, has been surging in both experiment and
theory. The aim of theory in this regard is to provide a solid
framework for understanding phenomena ranging from the
nonequilibrium Kondo effect in quantum dots to conductance
through single molecules.1 While much progress has been
made recently, based on brute-force approaches such as time-
dependent numerical renormalization-group techniques2–4 and
iterative5,6 or stochastic7–9 diagrammatic approaches to real-
time path integral formulations, the problem has never been
fully solved in a satisfactory manner. In fact, it is becoming
clearer that major gaps exist in our understanding of the
dynamics, the crossover regimes, the dependence on initial
conditions, and the behavior at steady state.

The kind of open systems discussed above are often
addressed by impurity models, which explicitly account
for the two types of regions within the problem by par-
titioning the Hamiltonian into system and bath subspaces:
H = HS + HB + V , where HS represents a low-dimensional
but interacting “system” subspace, HB represents a set of
noninteracting lead or bath subspaces, and V is a system-bath
coupling term. The dynamics generated by such Hamiltonians
can feature transients on time scales that are much longer
than the typical inverse energy scale,10 where numerically
exact approaches become intractable due to the exponential
growth of the active space or the equivalent complications
resulting from the dynamical sign problem. In many important
situations, however, the noninteracting baths can be traced
out, leading to a reduced description of the dynamics of the
interacting system at the cost of introducing nonlocality in the
time propagation.11 In path integral approaches, the effects
of the leads are accounted for by a time nonlocal influence
functional.5,7

Perhaps a more appealing approach, which has been used
to derive very successful perturbative schemes for fermionic
systems12–14 but is notoriously difficult to carry out exactly, is
based on the generalized quantum master equation (GQME).

In this formalism, a so-called memory kernel replaces the
influence functional. The complexity of solving the many-
body quantum Liouville equation is then reduced to the
evaluation of this memory kernel, which fully determines the
dynamics of the system. Furthermore, the memory kernel
contains all the information needed to resolve questions
concerning the existence and uniqueness of a steady state,15,16

as well as the values of system observables at steady state.
While the dynamical time scale of the system typically exceeds
the characteristic inverse energy scale, the memory kernel is
expected to decay on relatively short time scales for a large and
interesting class of physical situations (essentially whenever
the bandwidth of the baths is much larger than other energy
scales in the problem). Thus, brute-force approaches limited to
short times are well suited to its calculation. Once the memory
function is known, the formalism is exact and tractable at all
times.

In this paper, we explore the nature of memory in
nonequilibrium impurity models, focusing on the Anderson
problem.17 We cover the effects of temperature down to
the Kondo regime, as well as the role of source-drain-bias
voltages and bandwidth. This is accomplished by adopting the
Nakajima-Zwanzig-Mori18–20 formalism to derive a formally
exact GQME for the reduced density matrix σ (t) = Pρ(t)
of the interacting system, which includes a non-Markovian
memory kernel. The kernel of this equation is then evaluated
in a numerically exact fashion by way of the real-time path
integral Monte Carlo (RT-PIMC) method. The conjecture that
the memory decays on time scales significantly shorter than the
dynamics of σ (t) is confirmed, yet it is found that it develops
a smaller long tail when the Hubbard term is switched on.
The approach provides means to simulate the dynamics of the
strongly correlated subsystem on time scales beyond the limits
of the path integral method itself and reveals the conditions
required for the existence, uniqueness, and stability of a steady
state under a finite source-drain bias.

The outline is as follows: In Sec. II, we discuss the formu-
lation of the GQME and its application to the nonequilibrium
Anderson model in a form amenable to path integral treatment.
This is accompanied in Sec. III by a brief explanation of the
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real-time path integral Monte Carlo method as applied to the
memory kernel. Then, in Sec. IV, we display and analyze
the results of some explicit calculations we have carried out.
Finally, in Sec. V, we conclude.

II. GENERALIZED QUANTUM MASTER EQUATION

The exact equation of motion of the complete density matrix
ih̄ d

dt
ρ = [H,ρ] is governed by the Liouvillian L = [H, . . .].

If the coupling term V were to be turned off, the dynamics of
the two subspaces would be given by similar equations with
the Liouvillian replaced by the system and bath Liouvillians,
defined, respectively, as

LS = [HS, . . .], (1)

LB = [HB, . . .]. (2)

We also define a coupling Liouvillian

LV = [V, . . .]. (3)

The equation of motion for the reduced density operator

ρBσ = Pρ, (4)

P ≡ ρBTrB{. . .} (5)

(using the projection operator P onto the system subspace) is
then given by

ih̄
d

dt
σ (t) = LSσ (t) + ϑ(t) − i

h̄

∫ t

0
dτ κ(τ )σ (t − τ ), (6)

where

ϑ(t) = TrB
{
LV e− i

h̄
QLtQρ0

}
(7)

contains the initial correlations

κ (t) = TrB{LV e−iQLτQLρB} (8)

is the memory kernel in superoperator form, and

Q = 1 − P (9)

is the projection operator onto the complementary subspace.
The initial conditions are contained within the initial density
matrix ρ0, which also determines the initial bath part of the
density matrix ρB = Qρ0.

The above equation for σ (t) is exact, yet requires as
input the two superoperator functions κ(t) and ϑ(t), both of
which have been defined in terms of projected propagation.
Evaluating such projected dynamics is cumbersome and can
be reduced to solving a superoperator Volterra equation of
the second type involving a quantity �(t), which is free of
projected propagation.21,22 For the memory kernel, one finds

κ(τ ) = ih̄�̇(τ ) − �(τ )LS + i

h̄

∫ τ

0
dτ �(t − τ )κ(τ ), (10)

�(t) = TrB
{
LV e− i

h̄
Lt ρB

}
. (11)

A similar procedure exists for the initial correlation term ϑ ;
however, here we consider only the initially factorized case
ρ0 = ρB ⊗ σ (0), for which ϑ = 0. As discussed below, the
matrix elements of the superoperator � are almost identical to
quantities to which RT-PIMC has already been applied.7,8

In the Anderson impurity model,

HS =
∑
i=↑↓

εid
†
i di + Ud

†
↑d↑d

†
↓d↓, (12)

HB =
∑

k,i=↑↓
εika

†
ikaik, (13)

V =
∑

k,i=↑↓
tikdia

†
ik + t∗ikaikd

†
i . (14)

Thus, the system subspace is four dimensional, being spanned
by the states 0 ≡ |00〉 ≡ |0〉, 1 ≡ |01〉 = d

†
↓|0〉, 2 ≡ |10〉 =

d
†
↑|0〉, and 3 ≡ |11〉 = d

†
↑d

†
↓|0〉. With this notation, we can

perform a calculation to derive an expression for the system
Liouvillian

[Ls]ij,qq ′ = δiqδjq ′ {ε↑(δq2 + δq3 − δj2 − δj3)

+ ε↓(δq1 + δq3 − δj1 − δj3)

+U (δq3 − δj3)}, (15)

and for �, which takes the more complicated form

�ij,qq ′ = −δi2δj1
(
ψ

(1)
qq ′ − ψ

(2)∗
qq ′

) − δi1δj2
(
ψ

(2)
qq ′ − ψ

(1)∗
qq ′

)
+ δij0

(
ϕ

(1)
qq ′ + ϕ

(3)
qq ′

) + δij1
(
ϕ

(2)
qq ′ − ϕ

(3)
qq ′

)
+ δij2

(− ϕ
(1)
qq ′ + ϕ

(4)
qq ′

) + δij3
(− ϕ

(2)
qq ′ − ϕ

(4)
qq ′

)
, (16)

ϕ
(m)
qq ′ = 2i	

∑
k

TrB
{
ρB〈q ′|A(m)

k |q〉}, (17)

ψ
(m)
qq ′ = −2

∑
k

TrB
{
ρB〈q ′|B(m)

k |q〉}, (18)

where A
(1)
k = t↑kd↑d↓d

†
↓a

†
↑k , A

(2)
k = t↑kd↑d

†
↓d↓a

†
↑k , A

(3)
k =

t↓kd↑d
†
↑d↓a

†
↓k , A

(4)
k = t↓kd

†
↑d↑d↓a

†
↓k , B

(1)
k = t↑kd↓a

†
↑k , and

B
(2)
k = t↓kd↑a

†
↓k . All the quantities in (16)–(18) are implicitly

time dependent and can be evaluated directly with RT-PIMC
(as outlined in Sec. III).

One can draw a few analytical conclusions directly from
the block structure of �. First, while both the A

(m)
k and B

(m)
k

operators introduced above conserve the total particle number,
only the A

(m)
k conserve the particle number for each spin.

Therefore, the ψ
(m)
qq ′ are nonzero only if q,q ′ = 1,2 or 2,1

(since states 1 and 2 are the only dot states that have the same
total occupation, but differ in per-spin occupation), while the
ϕ

(m)
qq ′ can be nonzero only when q = q ′. From (16), we can then

immediately see that the diagonal density matrix elements are
coupled only to each other, with the two singly occupied off-
diagonal elements |1〉〈2| and |2〉〈1| forming a second closed
block. If our interest is limited to the state populations, only
the 16 (instead of 64) functions ϕ(m)

qq need be evaluated within
RT-PIMC.

III. PATH INTEGRAL MONTE CARLO

To apply the RT-PIMC method7,8,23 to the quantities above,
we express them in terms of a summation of influence
functionals over all possible dot occupations at every point
in time. The set of occupations as a function of time, referred
to as the “paths,” forms the Monte Carlo configuration space,
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which scales exponentially in size with the number of dot
electrons and the time. In essence, one estimates the sum over
all paths by performing a partial weighted sum: consider an
observable A having the influence functional Aσ , where σ

denotes a path. If wσ is some so-called weight functional, then

〈A〉 =
∑

σ

Aσ =
∑

σ

Aσ

wσ

ωσ =
〈
A

w

〉
w

. (19)

The weighted sum of this last expression can be evaluated
to numerical exactness by using the standard Metropolis
algorithm, with the rate of convergence largely determined
by the weight.

To work out the influence functional relating to
observables of the form ϕqq ′ (t) = TrB{ρB〈q ′|A(t)|q〉} =
Tr{|q〉〈q ′|ρBA(t)}, as in (17) and (18), one rewrites it in the
interaction picture (with H0 = HS + HB) as follows:

ϕqq ′ (t) = Tr
{|q〉〈q ′|ρBU

†
I (t)AH0 (t)UI (t)

}
. (20)

Note that if we define ρ0 = |q〉〈q ′|ρB , the system indices
q and q ′ can be interpreted as defining the dot part of the
initial density matrix, and that the initial conditions remain
uncorrelated with this definition. With this in mind, we
continue by expanding the unitary propagator U

†
I and its

adjoint in the time-ordered Dyson series

U
†
I (t) =

∞∑
n=0

(
i

h̄

)n ∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn

×VH0 (s1)VH0 (s2), . . . ,VH0 (sn). (21)

Since applying the operator V always modifies the dot
occupations, this leads to an expression that can easily be
interpreted as a path integral over the σ space:

ϕqq ′ (t) =
∞∑

n,n′=0

(−1)n
′
(

i

h̄

)n+n′

Tr

{
|q〉〈q ′|ρB

×
∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsn

×
∫ t

0
ds ′

1

∫ s ′
1

0
ds ′

2 . . .

∫ s ′
n′−1

0
ds ′

n′

×VH0 (s1)VH0 (s2), . . . ,VH0 (sn)AI (t)

×VH0 (s ′
1)VH0 (s ′

2), . . . ,VH0 (s ′
n′)

}
(22)

≡
∫

D
(
σ,σ ′)Fqq ′

(
σ,σ ′) . (23)

From (14), we can see that V = V ↑ + V ↓ is the sum of
terms involving different spins. The paths σ and σ ′ therefore
uniquely determine n and n′, the times {si} and {s ′

i}, and the
spins {χi} and {χ ′

i } associated with each such time.
Since it is possible to obtain exact analytical expressions

for the interaction picture operators AH0 (t) and VH0 (t) in all
cases of interest here, F(σ,σ ′) is always a product of simple
functions of time and traces over operator products at time
zero (when the system is at thermal equilibrium and Wick’s

rule can be applied). Specifically, if we write

ϕ
(m)
qq ′ = 2i	

∫
D(σ,σ ′)F (m)

qq ′ (σ,σ ′), (24)

then, from comparing with (23),

F (i)
qq ′ (σ,σ ′) = (−1)n

′
(

i

h̄

)n+n′

Tr

{
|q〉〈q ′|ρB

×V
χ1
H0

(s1)V χ2
H0

(s2), . . . ,V χn

H0
(sn)

∑
k

A
(i)
k

×V
χ ′

1
H0

(s ′
1)V

χ ′
2

H0
(s ′

2), . . . ,V
χ ′

n′
H0

(s ′
n′)

}
. (25)

The evaluation of traces of this kind within the Anderson model
has been addressed in the literature before.8

IV. RESULTS

In Fig. 1, we plot the nonzero elements of the memory
kernel for different values of U . Due to the block structure
and the symmetric choice of parameters, only seven dis-
tinct nonzero elements exist (two for U = 0). To make the
parametrization definite within the simulations, we assume
lead coupling densities of the form �i(E) ≡ 2π

∑
k |tk|2δ(E −

εik) = �/2
(1+eν(E−εc ))(1+e−ν(E+εc )) , where εc is the band cutoff energy

and ν is the inverse of the cutoff width. � is the maximum value
attainable by �(E) = ∑

i �i(E), as well as its wide-band limit,
and will be the unit of energy throughout the following text.
We also concentrate on εi = −U

2 , known as the symmetric
case of the Anderson model, yet the formalism is general
and this is certainly not a requirement. The temperature β

and the chemical potentials μL and μR enter the calculation

-5

0

5

10

-5

0

5

10

-5

0

5

10κ ii
,jj

/Γ
2

0 0.5 1 1.5
Γt

-5

0

5

10

κ
00,00

κ
00,11

κ
11,00

κ
11,11

κ
11,33

κ
33,11

κ
33,33

U=0Γ

U=1Γ

U=3Γ

U=6Γ

FIG. 1. (Color online) Distinct nonzero memory-kernel elements
for an initially unoccupied dot and several values of the interaction
energy U . The remaining parameters are μL

�
= −μR

�
= 1

2 , εc

�
= 20,

and β� = 1.
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through ρB at time zero, for which we assume the proper grand
canonical distribution.

In the noninteracting case (top panel of Fig. 1), a rapid
decay to zero is observed. Despite the relatively broad and
soft-edged band chosen here, the decay occurs over a time
scale smaller than the inverse coupling but comparable to
it. We can learn from this that any approximation based
on short memory should be expected to fail unless it can
allow for memories of at least this length, meaning, for
instance, that Markovian approaches to the problem can not
be expected to succeed in general (consider how Redfield
master equations fail to capture the level broadening, which
is so easy to obtain within the simple Landauer formalism).
As U is increased, it becomes clear that the interaction,
despite breaking most of the symmetries between the various
elements, does not significantly affect memory decay on
the first time scale. However, even at very small interaction
energies, a second, longer time scale develops: at this time
scale, a small part of each memory-kernel element decays more
slowly.

The formalism becomes extremely interesting if having the
memory as an input only up to some finite cutoff time tc (at
which the system’s dynamics have not yet died out) allows
accurate predictions at far longer times. This will occur if the
memory function has essentially gone to zero by this time,
such that it can be safely truncated. In the left panels of Fig. 2,
we plot the time derivative of the total population (dP/dt)
and show that, for certain noninteracting parameters, this does
indeed happen: once �tc � 0.3 dynamics at times over an
order of magnitude greater than those of the memory kernel
are reliably reproduced, and the exact steady-state result for
all diagonal elements of σ is obtained to within the numerical
errors and shown on the top right panel of Fig. 2. However,
as might be expected from the analysis of Fig. 1, in the
strongly correlated cases, a short cutoff time results in incorrect
populations when propagated for much longer times than tc
since truncating the memory at that point has not yet become
physically reasonable. For the cases of U = � and U = 6�,
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FIG. 2. (Color online) Total population derivative from direct
RT-PIMC data compared with the results of the memory-kernel
formalism (left panels) and predicted dot populations (right panels)
for an initially unoccupied dot for several values of the interaction
energy U . Remaining parameters are the same as in Fig. 1. The cutoff
time is 1.5

�
, shown on the right panels as a vertical dotted line.
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FIG. 3. (Color online) The average absolute value of memory-
kernel elements at μL

�
= −μR

�
= 1

2 , εc

�
= 20, β� = 1, and different

values of the interaction energy U .

the qualitative physics is captured correctly within �tc = 1.5
in that depopulation of the zero-electron level is accelerated at
short times; for U = 6�, one also observes that at longer times
the one-electron levels draw most of the population, while the
more energetic zero- and two-electron levels are suppressed.
However, for U = 3�, the behavior predicted by the truncated
memory function is clearly wrong, suggesting that the long
tails are of greater importance in this case.

Figures 3 and 4 explore the decay of the memory-kernel
elements more clearly by plotting the average absolute value of
the memory-kernel elements on a logarithmic scale, for various
values of U , εc, and β. Notably, while only the noninteracting
case appears to have a memory kernel that goes to within
the numerical errors of zero during the simulation time scale
shown here, strong interaction actually appears to reduce the
memory lifetime when compared with intermediate values.
This relates to the fact the U = 3� problem is “harder” in
this sense than the strongly interacting U = 6� problem, as
discussed above. While increasing either the bandwidth or
the temperature appears to affect the short-term behavior, by
reducing the shorter memory time scale, the longer time scale
appears largely unaffected by the variation of these parameters.
This observation seems to be consistent with the hypothesis
that the time scale of the tail’s memory decay is related to the
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FIG. 4. (Color online) The average absolute value of memory-
kernel elements at μL = μR = 0, εc

�
= 40, U

�
= 6, and different

temperatures β.

075150-4



MEMORY EFFECTS IN NONEQUILIBRIUM QUANTUM . . . PHYSICAL REVIEW B 84, 075150 (2011)

0 0.5 1 1.5
Γt

c

-10

0

10

σ ii
σ

00
σ

11
σ

33

FIG. 5. (Color online) The predicted steady-state values of the
diagonal density matrix elements at μL

�
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1, and U

�
= 6.

inverse Kondo temperature. However, we find that a large bias
voltage does not affect markedly the longer time scale, despite
supposedly destroying the Kondo correlations.

In addition to the time dependence, one can obtain the
steady-state result directly from the stationary state equation[

LS − i

h̄
κ̂(z → i0)

]
σ (t → ∞) = lim

z→0
zϑ̂(z) (26)

with the added condition that Trσ = 1. This means that, for an
initially uncorrelated system, a unique steady state exists if and
only if the supermatrix TrS{(|i〉〈j |)†[LS − i

h̄
κ̂(z → i0)]|k〉〈l|}

has a degeneracy of exactly one. In Fig. 5, the steady-state
values obtained from this formula for parameters close to
the Kondo regime are plotted against the cutoff time tc.
While the trace of the density matrix is conserved, physically
impossible results appear at intermediate cutoff times and
convergence is not yet achieved. The long tails of the
memory-kernel elements are therefore crucially important for
the correct prediction of both dynamical and steady-state

properties. In this context, this fact is significant not only
physically, but also computationally, since the complexity
scales exponentially with the simulation time.

V. SUMMARY AND CONCLUSIONS

In conclusion, we have developed a numerically exact
method for the formulation and solution of the reduced
dynamics of quantum impurity models and applied it to
the nonequilibrium Anderson model. It is clear from our
results that the physics of even a noninteracting electronic
junction can not be fully captured within a Markovian picture,
and that on-site interaction results in deeply non-Markovian
physics even at relatively large bandwidths, bias voltages, and
temperatures. We show that the long memory tails induced
by the Hubbard term affect both the dynamics and the steady
state, despite their relative smallness.

In the computational sense, the proposed method is ex-
tremely useful in extending the applicability of RT-PIMC to
long time scales and steady state when the memory goes
to zero within the simulation time scale, but the dynamics
do not. Improvement of the PIMC scheme is required in
situations where the memory kernel does not decay within
the simulations time scale (see the case for U = 3�). One
possible route is based on combining the present formalism
with the new sampling technique based on the noncrossing
approximation.24 This and other scenarios for improving the
PIMC scheme are currently under study.
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