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Random phase approximation study of one-dimensional fermions after a quantum quench
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The effect of interactions on a system of fermions that are in a nonequilibrium steady state due to a quantum
quench is studied employing the random phase approximation. As a result of the quench, the distribution function
of the fermions is greatly broadened. This gives rise to an enhanced particle-hole spectrum and overdamped
collective modes for attractive interactions between fermions. On the other hand, for repulsive interactions, an
undamped mode above the particle-hole continuum survives. The sensitivity of the result to the nature of the
nonequilibrium steady state is explored by also considering a quench that produces a current-carrying steady
state.

DOI: 10.1103/PhysRevB.84.075143 PACS number(s): 05.70.Ln, 37.10.Jk, 71.10.Pm, 03.75.Kk

I. INTRODUCTION

Recent remarkable experiments1 with cold atoms have
motivated an explosion of theoretical interest in the area of
nonequilibrium quantum dynamics, with a focus on address-
ing fundamental questions about thermalization, chaos, and
integrability, issues that are very relevant to these experimental
systems.2 Without many general results on generic nonequilib-
rium phenomena, the analysis of specific, tractable models is a
common way to make progress. One hopes clues gathered from
these specific systems will lead to more general predictions.

One-dimensional (1D) systems are where much of the
theoretical work has taken place since a wide array of tools
is available for investigating dynamics. An interesting class of
these systems is integrable models, where conserved quantities
tightly constrain the time evolution. While a consensus is
lacking on a rigorous definition of quantum integrability,3

progress has been made using many quantum models satis-
fying classical notions of integrability. Fruitful studies have
investigated dynamics of Bethe-ansatz solvable models,4 but
the simplest integrable models are the quadratic ones. These
effectively noninteracting theories, including those considered
in this paper, allow for exact analytical treatment of the
nontrivial dynamics.5–10 In 1D, efficient numerical studies are
also possible with the time-dependent density matrix renor-
malization group (TDMRG),11,12 and exact diagonalization
studies of finite systems.13,14

Some of the analytical and numerical studies have revealed
that 1D systems after a quantum quench often reach athermal
steady states which can be characterized by a generalized
Gibbs ensemble (GGE) constructed from identifying the
conserved quantities of the system.6,7,10,15,16 There are also
many counterexamples where such a description fails, as not
all physical quantities can be described using the GGE.5,7,17–20

One important question concerns the stability of these
athermal steady states generated after a quantum quench
to other perturbations such as nontrivial interactions that
introduce mode coupling and/or the breaking of integrability.
Precisely this question was addressed recently in Ref. 21.
In particular an initial interaction quench in a Luttinger
liquid gives rise to an athermal steady state characterized by
new power-law exponents,6,7,21 which can also be captured

using a GGE. The effect of mode coupling arising due to a
periodic potential on this nonequilibrium state was studied in
Ref. 21 using perturbative renormalization group. The analysis
revealed that infinitesimally small perturbations can generate
not only an effective temperature but also a dissipation or a
finite lifetime of the bosonic modes. While the appearance of
an effective temperature, although highly nontrivial in itself,
can be rationalized on the grounds that a system after a quench
is in a highly excited state, and that interactions between
particles will somehow cause the system to “thermalize,”
the appearance of dissipation is an unexpected and nontrivial
result. Thus one of the motivations of the current paper is to
identify other physical situations where this dissipation might
appear, and to try to investigate the physical mechanisms
that could be behind it. Due to the close parallels between
interacting bosons and fermions in 1D, a natural candidate
for analyzing this question is a one-dimensional system of
free fermions that is in a nonequilibrium steady state after
a quench. We analyze the effect of weak interactions on this
system by employing the random phase approximation (RPA).

In equilibrium, 1D systems are the ideal playground for
invoking the RPA. It is an exact low-energy treatment of
weak interactions in 1D.22–25 In particular, by applying the
RPA to a 1D system of electrons26,27 one recovers the
standard bosonization of the model, described by a Luttinger
liquid.25 Note that this direct equivalence only holds for the
long-wavelength properties, while other excitations require
more sophisticated methods such as bosonization. While the
accuracy of the RPA in 1D is known in equilibrium, its
applicability out of equilibrium is not guaranteed. In the
type of quench problem considered here, the initial state has
nonzero overlap with excited eigenstates of the Hamiltonian
generating time evolution. It is far from certain that a low-
energy description captures all the important physics. While
this caveat leads to intriguing, unanswered questions, in this
paper we will use the RPA as an approximation scheme and
will not address the deeper question of its potential breakdown
out of equilibrium.

In this paper, we thus apply the RPA to a nonequilibrium
state in the XXZ spin chain. This state is prepared as follows.
The system is initially in the ground state of an exactly
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solvable Hamiltonian Hi . We choose two different models
for Hi , one corresponding to the transverse-field Ising model
with the magnetic field tuned to the critical value where the
spectrum is gapless, and the second the same as above but
with an additional Dzyaloshinskii-Moriya interaction added.
A quantum quench is then performed by switching off the
field and changing the exchange anisotropy so that the time
evolution is due to the XX model. Since this model is described
by free fermions, at long times after the quench, the system
reaches an athermal steady state characterized by a GGE. For
Hi that has Dzyaloshinskii-Moriya interactions, the steady
state is qualitatively different in that it carries a net current.
We then ask how these athermal steady states are affected
by weak Ising interactions of the XXZ chain (J z

∑
j Ŝz

j Ŝ
z
j+1)

which are assumed to have been switched on very slowly.
The effects of the Ising interactions are treated using the
RPA.

We demonstrate the existence of a single undamped collec-
tive mode for repulsive interactions (Jz > 0) which is qualita-
tively similar to the predictions of the RPA in equilibrium, but
with some quantitative changes to the mode velocity. On the
other hand, for attractive interactions (Jz < 0), no undamped
modes are found for either of the athermal states that have
been studied. This is because immediately after the quench
the distribution function of the fermions is greatly broadened,
thus creating an enlarged particle-hole continuum. As a
consequence, for attractive interactions either no solutions, or
only damped solutions that lie in the particle-hole continuum,
are found. Further, if the current in the athermal steady state is
larger than a critical value, then even the undamped mode
for repulsive interactions vanishes in the long-wavelength
limit.

These results are consistent with the ones obtained in
Ref. 21, where it was found that as a result of a quantum quench
and mode coupling, a Luttinger liquid description is replaced
by a low-energy effective theory of thermal bosons with a
finite lifetime. Indeed, in equilibrium, the undamped collective
modes obtained from the RPA can also be described as a
Luttinger liquid.25 The RPA analysis shows that for attractive
interactions the collective modes lie in the particle-hole contin-
uum and are therefore overdamped. The analysis of the present
paper thus allows one to interpret the generation of the friction
that was put in evidence by the RG analysis of Ref. 21 as due
to a generalization to an out-of-equilibrium case of Landau
damping.

The paper is organized as follows. In Sec. II the models that
will be studied and the notations and conventions are defined.
In Sec. III the RPA analysis where the quench is from the
gapless phase of the transverse-field Ising model to the XX

model is considered. In Sec. IV the RPA involving fermions
in a current-carrying steady state is presented, and in Sec. V
we summarize our results.

II. MODEL

Below we describe the two different quenches which lead
to nonequilibrium steady states without (Sec. II A) and with
(Sec. II B) currents.

A. Quench from ground state

The XY spin chain in a magnetic field is defined as

Ĥi = −J
∑

j

[
(1 + γ )Ŝx

j Ŝx
j+1 + (1 − γ )Ŝy

j Ŝ
y

j+1

]

+h
∑

j

Ŝz
j , (1)

where γ = 1 corresponds to the transverse-field Ising model.
The XY model has been extensively studied,28–30 and its
equilibrium properties are well understood. It is also a popular
model16,31,32 for studying nonequilibrium situations due to its
simple mapping to free fermions. Writing this Hamiltonian in
terms of Jordan-Wigner fermions,28

Ŝ+
j = c

†
j exp

[
iπ

∑
n<j

c†ncn

]
, (2)

Ŝ−
j = exp

[
− iπ

∑
n<j

c†ncn

]
cj , (3)

Ŝz
j = c

†
j cj − 1

2 , (4)

we obtain

Ĥi = −J

2

∑
j

[c†j cj+1 + c
†
j+1cj + γ c

†
j c

†
j+1 + γ cj+1cj ]

+h
∑

j

c
†
j cj . (5)

This is diagonalized by a Bogoliubov rotation29

Ĥi =
∑

k

εi
kη

†
kηk, (6)

where

εi
k = −J sgn

(
cos k − h

J

)√(
cos k − h

J

)2

+ γ 2 sin2 k (7)

and (
ck

c
†
−k

)
=
(

cos θk

2 −i sin θk

2
−i sin θk

2 cos θk

2

)(
ηk

η
†
−k

)
, (8)

with

cos θk = | cos k − (h/J )|√(
cos k − h

J

)2 + γ 2 sin2 k

, (9)

sin θk = sgn[cos k − (h/J )]γ sin k√(
cos k − h

J

)2 + γ 2 sin2 k

. (10)

Here cj = 1√
N

∑
k eikj ck . The ground state is obtained by

occupying all modes with negative energy. We will be
interested in the special case of γ = h/J = 1, where the
system is critical.33 The ground state is defined by ηk|�0〉 = 0
for all k, as εi

k = 2J | sin k
2 | is always non-negative.
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Given this initial state, we perform the quench by suddenly
switching off the anisotropy γ and magnetic field h. The
subsequent time evolution is due to the XX Hamiltonian,

ĤXX = −J
∑

j

[
Ŝx

j Ŝx
j+1 + Ŝ

y

j Ŝ
y

j+1

]
(11)

=
∑

k

εkc
†
kck, (12)

where εk = −J cos k and the ck are the momentum-space
Jordan-Wigner fermions defined above. At long times after
the quench, the system approaches a diagonal ensemble. To
see this, note that immediately after the quench, the following
quantities are fixed by the initial state:

〈c†kck〉0 = cos2 θk

2
〈η†

kηk〉 + sin2 θk

2
〈η−kη

†
−k〉, (13)

〈ckc−k〉0 = i sin
θk

2
cos

θk

2
[〈ηkη

†
k〉 − 〈η†

−kη−k〉]. (14)

The time evolution of the c operators takes the simple form
ck(t) = e−iεk t ck . One finds

〈c†k(t)ck(t)〉 = 〈c†kck〉0, (15)

〈ck(t)c−k(t)〉 = e−2iεk t 〈ckc−k〉0. (16)

When averaged over long times,

1

tb − ta

∫ tb

ta

dt〈ck(t)c−k(t)〉 → 0 (17)

for (tb − ta) → ∞, due to the rapidly oscillating exponential.
Thus we obtain a diagonal ensemble in the long-time limit
with a highly broadened momentum distribution given by

〈c†kck〉0 = 1

2

(
1 −

∣∣∣∣sin
k

2

∣∣∣∣
)

. (18)

Note that, as we discuss at the end of this section, such
an approximation is not necessary and one can retain the
oscillating modes. However, it considerably simplifies the
expressions to explicitly eliminate them. By equating the above
nonequilibrium distribution function to a Fermi function, one
may define a (momentum-dependent) effective temperature34

T
ck

eff = −J cos k

(
ln

[
1 + | sin k

2 |
1 − | sin k

2 |

])−1

, (19)

where one notes T
ck

eff < 0 for k < π/2. As we shall see later,
since the system is out of equilibrium, this temperature is not
universal, but depends on the quantity being studied.

Once the above steady state has been reached, we consider
the effect of nearest-neighbor Ising interactions in the XXZ

model,

Ĥf = ĤXX + J z
∑

j

Ŝz
j Ŝ

z
j+1, (20)

where we assume that J z was switched on very slowly, so that
in the absence of a quench, the fermions will evolve into the
ground state of the XXZ chain. The effects of this interaction
term will be treated within the RPA.

The basic fermionic Green’s functions defined by

GR
f (k; t,t ′) = −iθ (t − t ′)〈{ck(t),c†k(t ′)}〉, (21)

GK
f (k; t,t ′) = −i〈[ck(t),c†k(t ′)]〉 (22)

are found to be

GR
f (k; t,t ′) = −iθ (t − t ′)e−iεk (t−t ′), (23)

GK
f (k; t,t ′) = −ie−iεk (t−t ′)

∣∣∣∣ sin
k

2

∣∣∣∣sgn(εi
k). (24)

Within the RPA, the particle-hole bubbles are35

�R(1,2) = −i

2

[
GR

f (1,2)GK
f (2,1)

+ GK
f (1,2)GA

f (2,1)
]
, (25)

�K (1,2) = −i

2

[
GK

f (1,2)GK
f (2,1) + GR

f (1,2)GA
f (2,1)

+ GA
f (1,2)GR

f (2,1)
]
. (26)

In frequency-momentum space they are given by

�R(q,ω) = −i

2

∫
dk

2π

d


2π

[
GR

f (k + q,ω + 
)GK
f (k,
)

+ GK
f (k + q,ω + 
)GA

f (k,
)
]
, (27)

�K (q,ω) = −i

2

∫
dk

2π

d


2π

[
GK

f (k + q,ω + 
)GK
f (k,
)

+GR
f (k + q,ω + 
)GA

f (k,
)

+ GA
f (k + q,ω + 
)GR

f (k,
)
]
. (28)

The collective mode dispersion is defined by the roots of the
complex dielectric function,27

εRPA(q,ωq) = 1 − Vq�
R(q,ωq) = 0, (29)

where we neglect the q dependence of Vq and take it to be
Vq = J z ≡ V0. The RPA analysis is given in Sec. III.

As mentioned above, it is not critical to work with the
diagonal ensemble. If we had retained the full time dependence
in Eq. (16), the integration over the internal k variable in the
evaluation of the RPA bubbles would result in terms that decay
with time. Since we are ultimately interested in the long-time
limit, these contributions are not important for us.

B. Quench resulting in a current-carrying state

We will also be interested in how the collective dynamics
change when the athermal steady state is characterized by a net
current. This is generated by adding a Dzyaloshinskii-Moriya
interaction term36 to the XY model, Ĥi → Ĥi + ĤDM, where

ĤDM = −λ
∑

j

[
Ŝ

y

j Ŝx
j+1 − Ŝx

j Ŝ
y

j+1

]
. (30)

This new Hamiltonian is diagonalized by the same Bogoliubov
rotation37,38 that diagonalizes the pure XY model. In the
isotropic case (XX chain), this can be interpreted as a
spatially dependent, physical rotation of the spins.39,40 For
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the more general anisotropic chain, the spectrum is similarly
modified,37,41

Ĥi(λ) =
∑

k

ε′
kη

†
kηk, (31)

ε′
k = εi

k − λ sin k, (32)

with εi
k given in Eq. (7). λ has the effect of raising the energies

of states with k < 0 while lowering the energies of modes with
positive k. The occupation number is now nonzero for λ > J ,
and the η-fermion occupation is nk ≡ 〈η†

kηk〉 = θ (k)θ (k0 − k),
with

k0 = 2 cos−1 J

λ
. (33)

We will see in Sec. IV that the presence of this nonzero
“Fermi momentum” will give rise to multiple damped modes
within the particle-hole continuum that are not present for the
zero-current steady state. Furthermore, above a certain critical
filling factor the single undamped collective mode will cease
to exist.

The asymmetry in momentum space drives a current in the
modified ground state given by

〈jn〉 = J Im〈Ŝ+
n+1Ŝ

−
n 〉 =

{
0 (λ < J ),

J
π

[
1 − (

J
λ

)2]
(λ > J ).

(34)

It should be noted that this operator can be interpreted as the
current operator only within the XX model where the total
magnetization commutes with the Hamiltonian.

Performing a quench where λ, h, and γ are switched off
allows this state to evolve under the XX model, obtaining a
nonequilibrium momentum distribution

〈c†kck〉0 = 1

2

(
1 −

∣∣∣∣sin
k

2

∣∣∣∣
)

+ θ (k)θ (k0 − k)

2

(
1 +

∣∣∣∣sin
k

2

∣∣∣∣
)

− θ (−k)θ (k0 + k)

2

(
1 −

∣∣∣∣sin
k

2

∣∣∣∣
)

(35)

and a current given by Eq. (34). The distribution function for
several different current strengths is shown in Fig. 1.

After the decay of transients 〈ckc−k〉 and 〈c†kc†−k〉, we
investigate the collective modes by employing the RPA
analysis outlined in Sec. II A. The RPA requires knowledge of

−π −π/2 0 π/2 π

0

0.5

1

k

n k

k
0
 = 0

k
0
 = π/2

k
0
 = π

FIG. 1. Initial c-fermion distributions for (a) no current (k0 = 0),
(b) nonzero current (k0 = π/2), and (c) maximum current (k0 = π ).
Note the sharp discontinuity for the case of nonzero current.

the single-particle Green’s functions. The presence of a current
does not affect the retarded Green’s function [Eq. (23)], but
modifies the Keldysh Green’s function as follows:

GK
f (k; t,t ′) = −ie−iεk (t−t ′)

[∣∣∣∣ sin
k

2

∣∣∣∣(1 − nk − n−k)

− (nk − n−k)

]
, (36)

where nk = θ (k)θ (k0 − k) is the occupation number of the η

fermions in the initial state.

III. RPA FOR QUENCH FROM GROUND STATE

In this section, we investigate the effect of interactions on
the athermal steady state (Sec. II A) obtained from quenching
from the ground state of the transverse-field Ising model. The
RPA particle-hole bubbles are

�R(q,ω) = −1

2

∫
dk

2π

[
cos θk(1 − 2nk)

(ω + iδ) + εk − εk+q

− cos θk+q(1 − 2nk+q)

(ω + iδ) + εk − εk+q

]
, (37)

�K (q,ω) = i

2
(2π )

∫
dk

2π
δ(ω + εk − εk+q)

× [cos θk cos θk+q(1 − 2nk)(1 − 2nk+q) − 1].

(38)

For the case of interest, γ = h/J = 1, we have cos θk =
| sin k

2 |, and the distribution of the η fermions nk = 0.
There are some basic symmetries of the

polarization bubbles that are worth mentioning.
First �R,K (q,ω) = �R,K (−q,ω), while Re[�R](q,

− ω) = Re[�R](q,ω),�K (q, − ω) = �K (q,ω), and
Im[�R(q, − ω)] = −Im[�R](q,ω). Therefore in what
follows we will assume q > 0,ω > 0, and the results for the
other regimes can be extrapolated from the above symmetries.

There are two regimes which we will study separately. One
is ω > 2J sin q

2 where Im[�R] = �K = 0, and the other is
ω < 2J sin q

2 where Im[�R] 	= 0,�K 	= 0.

A. Evaluation for ω > 2 J sin q
2

In this regime, the integrand contains no poles, and the result
is purely real: Re[�R(q,ω)] = �R(q,ω) and Im[�R(q,ω)] =
0. One may safely take δ → 0 to find

�R(q,ω) = − cos q

4

2πi

√
ω2 − (2J sin q

2 )2

⎧⎨
⎩z+ ln

⎡
⎣1 + sin q

4
z+

1 − sin q

4
z+

⎤
⎦

− z− ln

⎡
⎣1 + sin q

4
z−

1 − sin q

4
z−

⎤
⎦
⎫⎬
⎭− sin q

4

2πi

√
ω2 − (2J sin q

2 )2

×
⎧⎨
⎩z+ ln

⎡
⎣1 + cos q

4
z+

1 − cos q

4
z+

⎤
⎦ − z− ln

⎡
⎣1 + cos q

4
z−

1 − cos q

4
z−

⎤
⎦
⎫⎬
⎭ ,

(39)
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with

z2
± = 1

2
± 1

2

√
1 −

(
ω

2J sin q

2

)2

∀ ω < 2J sin
q

2

= 1

2
± i

2

√(
ω

2J sin q

2

)2

− 1 ∀ ω > 2J sin
q

2
. (40)

Note that our convention is to place the branch cut of the
logarithm on the negative real axis. In this same regime of ω >

2J sin q

2 there are no roots to the argument of the δ function
in the Keldysh component, and we have �K (q,ω) = 0. With
�R(q,ω) purely real, this regime lies outside the particle-hole
continuum. In Sec. III C we will demonstrate the existence of
an undamped collective mode lying just above the particle-hole
continuum for repulsive interactions only.

B. Evaluation for ω < 2 J sin q
2

For ω < 2J sin q

2 the integrand generically contains poles.
We extract the real and imaginary parts in the usual way by
writing∫

dk

2π

f (k)

ω + iδ + εk − εk+q

=
∫

dk

2π
P

(
f (k)

ω + εk − εk+q

)

− iπ

∫
dk

2π
f (k)δ(ω+εk−εk+q)

(41)

≡ Re[�R] + iIm[�R] (42)

where P denotes taking the principal value of the integral. We
obtain

Re[�R(q,ω)] = − cos q

4

2π

√
(2J sin q

2 )2 − ω2

×
⎧⎨
⎩z+ ln

∣∣∣∣∣∣
1 + sin q

4
z+

1 − sin q

4
z+

∣∣∣∣∣∣ − z− ln

∣∣∣∣∣∣
1 + sin q

4
z−

1 − sin q

4
z−

∣∣∣∣∣∣
⎫⎬
⎭

− sin q

4

2π

√
(2J sin q

2 )2 − ω2

×
⎧⎨
⎩z+ ln

∣∣∣∣∣∣
1 + cos q

4
z+

1 − cos q

4
z+

∣∣∣∣∣∣ − z− ln

∣∣∣∣∣∣
1 + cos q

4
z−

1 − cos q

4
z−

∣∣∣∣∣∣
⎫⎬
⎭ ,

(43)

with z± defined in Eq. (40). The results for the imaginary
part Im[�R] = �R−�A

2i
and the Keldysh component subdivide

the particle-hole continuum into two subregions, 0 < ω <

2J sin2 q

2 and 2J sin2 q

2 < ω < 2J sin q

2 .
For 0 < ω < 2J sin2 q

2 one finds

Im[�R(q,ω)] = −1

2
√

(2J sin q

2 )2 − ω2

[ (
cos

q

4
+ sin

q

4

)

× sin

(
1

2
sin−1 ω

2J sin q

2

)]
, (44)

0 π/4 π/2 3π/4 π
0

0.5

1

1.5

2

2.5

q

ω

0 π/4 π/2 3π/4 π
0

1

2

q

ω

FIG. 2. (Color online) Undamped mode (dashed line) above the
extended particle-hole continuum (shaded region). Inset: Equilibrium
continuum and undamped mode.

�K (q,ω) = i

2
√

(2J sin q

2 )2 − ω2

×
{

cos

[
sin−1

(
ω

2J sin q

2

)]
− 2

}
, (45)

whereas in the region 2J sin2 q

2 < ω < 2J sin q

2 , the result is

Im[�R(q,ω)] = −1

2
√

(2J sin q

2 )2 − ω2

×
{

sin
q

4

(
sin

[
1

2
sin−1 ω

2J sin q

2

]

+ cos

[
1

2
sin−1 ω

2J sin q

2

])}
, (46)

�K (q,ω) = i

2
√

(2J sin q

2 )2 − ω2

[
cos

q

2
− 2

]
. (47)

The particle-hole continuum, which is the region in ω,q

space where Im�R 	= 0 is indicated as the shaded region
in Fig. 2 and compared with the equilibrium (no-quench)
result (inset). The two different shadings refer to the discon-
tinuity in the functional forms of Im[�]R,�K across ω =
2J sin2 q

2 . The consequences of these results are discussed
below.

C. Undamped mode for ω > 2 J sin q
2 and V0 > 0

The undamped mode is obtained from the solution of

1 − V0�
R(q,ω) = 0 (48)

with �R(q,ω) given in Eq. (39). For sufficiently small V0, we
need to identify the points where �R diverges. This occurs
for ω = 2J sin(q/2). Thus in the limit of ω → 2J sin q

2 , we

can write z± =
√

1
2 (1 ± iε

4J sin q

2
) with ε =√

ω2 − (2J sin q

2 )2. The
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dominant contribution assuming that q → 0 (so that cos q

4 ≈
1) is given by

�R(q,ω) � − sin q

4

2πi

√
ω2 − (

2J sin q

2

)2

×
⎧⎨
⎩z+ ln

⎡
⎣1 + √

2 + i ε
√

2
4J sin q

2

1 − √
2 + i ε

√
2

4J sin q

2

⎤
⎦

− z− ln

⎡
⎣1 + √

2 − i ε
√

2
4J sin q

2

1 − √
2 − i ε

√
2

4J sin q

2

⎤
⎦
⎫⎬
⎭ . (49)

Due to the branch cut in the logarithm (chosen to be on the
negative real axis), in the limit ε → 0, the above expression
can be further simplified to give

�R(q,ω) � sin q

4√
2
√

ω2 − (2J sin q

2 )2
. (50)

Thus from Eq. (48) we find a single undamped mode provided
V0 is positive with a dispersion

ωq � θ (V0)J |q|
√

1 + V 2
0

32J 2
. (51)

This can be compared to the undamped mode in the equilib-
rium problem,26,27

ωeq
q � J |q|

√
1 + V0

πJ
, (52)

which exists for both attractive and repulsive interactions.
Thus, for repulsive interactions, the obtained sound wave
is qualitatively similar to that in the equilibrium case, but
with a slightly modified velocity of propagation, whereas for
attractive interactions, no undamped modes exist.

D. Enhanced particle-hole continuum and effective temperature

The greatly broadened initial fermion distribution gives one
way to define an effective temperature in this nonequilibrium
state [cf. Eq. (19)]. By analogy with the equilibrium properties
of the particle-hole bubbles, one may define an effective
temperature in terms of the collective degrees of freedom.
Since the system is out of equilibrium, this temperature will
in general depend on ω,q and also on the chosen correlation
function

�R(q,ω) − �A(q,ω)

�K (q,ω)
= tanh

(
ω

2T ′
eff(q,ω)

)
. (53)

For small frequencies, this ratio yields

�R − �A

�K

ω→0−→ ω

2J sin q

2

(
sin

q

4
+ cos

q

4

)
, (54)

so that for ω → 0, we obtain an effective temperature

T ′
eff(q,ω → 0) = J sin q

2

cos q

4 + sin q

4

. (55)

We argue below that T ′
eff(q,ω → 0) is responsible for

smearing out the particle-hole continuum in much the same

way that temperature does in an equilibrium system. To see this
recall that the particle-hole continuum represents the region in
the (q,ω) plane where a collective mode of frequency ω and
wave vector q is unstable to decay into single particle-hole
excitations. The upper and lower continuum boundaries in
equilibrium at zero temperature are given by42,43

ωL(q) = J sin q, (56)

ωU (q) = 2J sin
q

2
. (57)

A simple argument makes these boundaries plausible:
consider the energy of a single particle-hole excitation which
is created by removing a particle of momentum k and creating
a particle of momentum k + q,

ω(k,q) = εk+q − εk = 2J sin
q

2
sin

(
k + q

2

)
. (58)

This excitation energy depends not only on the momentum
of the excitation, but also on the momentum of the original
particle, k. For a half-filled band at zero temperature, the
occupation of fermions is 〈c†kck〉eq = θ (π

2 − |k|). The only
momenta available for hole creation are those with |k| < kF =
π
2 . Because the cosine dispersion has maximal slope at k = π

2 ,
the maximum excitation energy occurs for a given q with
k = π

2 − q

2 . The smallest excitation energy for a given q at
zero temperature occurs at k = π

2 or k = π
2 − q. Thus

ωmax(q) = ω
(π

2
− q

2
,q
)

= 2J sin
q

2
, (59)

ωmin(q) = ω
(π

2
,q
)

= J sin q, (60)

which are just the upper and lower boundaries of the particle-
hole continuum (inset of Fig. 2). Now, consider lowering kF .
Excitations of smaller energy for a given q are now possible,
and in the limit kF → 0, we have ωmin → 2J sin2 q

2 . The result
is the same if one considers the opposite limit of kF → π at
zero temperature.

In the present nonequilibrium situation, we find a particle-
hole continuum (Im[�R(q,ω)] 	= 0) that extends below this
lower bound all the way to ω = 0. A finite temperature
is known to smear out this lower boundary,44 due to the
smoothing out of the zero-temperature step function for
the occupation probability. It is interesting to note that the
expressions for Im[�R(q,ω)] and �K (q,ω) are actually
continuous across the line ω = 2J sin2 q

2 , with discontinuities
appearing in their derivatives. In Fig. 2 we plot the undamped
collective mode dispersion with the particle-hole continuum
represented by the shaded region. The two different shadings
are separated by the line ω = 2J sin2 q

2 . The analogous plot
for the equilibrium situation is shown in the inset.

IV. RPA FOR CURRENT-CARRYING STATE

We now apply the RPA to study the current-carrying
nonequilibrium steady state described in Sec. II B. The
Keldysh component of the fermion Green’s function is

iGK
f (k; t,t ′) = [cos θk(1 − nk − n−k)

− (nk − n−k)] e−iεk (t−t ′), (61)
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while the retarded Green’s function is given in Eq. (23),
and nk = θ (k)θ (k0 − k). Equation (61) implies that the dis-
tribution function for the Jordan-Wigner fermions in the
current-carrying postquench state is not only broad as for the
zero-current case, but is also asymmetric in k, with sharp
discontinuities superimposed on it (see Fig. 1). Thus we
will find that, as for the zero-current case, the particle-hole
continuum here too is broadened (extending everywhere below
the line ωmax = 2J sin q

2 ), while the sharp structure in the
distribution gives rise to some discontinuities in the expression
for Im[�R] and the appearance of additional damped modes.

The particle-hole bubbles are now given by

�R(q,ω) = −1

2

∫
dk

2π

[
cos θk(1 − nk − n−k)

ω + iδ − 2J sin q

2 sin
(
k + q

2

)
− (nk − n−k)

ω + iδ − 2J sin q

2 sin
(
k + q

2

)
− cos θk+q(1 − nk+q − n−k−q)

ω + iδ − 2J sin q

2 sin
(
k + q

2

)
+ (nk+q − n−k−q)

ω + iδ − 2J sin q

2 sin
(
k + q

2

)
]

, (62)

�K (q,ω) = i

2
(2π )

∫
dk

2π
δ(ω + εk − εk+q)

×{[cos θk(1 − nk − n−k) − (nk − n−k)]

× [cos θk+q(1 − nk+q − n−k−q)

− (nk+q − n−k−q)] − 1}. (63)

As before, two regions appear, one where ω > 2J sin q

2 for
which Im[�R] = �K = 0, and the second for ω < 2J sin q

2
where a particle-hole continuum is found to exist. We discuss
these two regions separately.

A. Evaluation for ω > 2 J sin q
2

In this regime, as before, the result is entirely real and we
let δ → 0. We find it convenient to write �R = �(1) + �(2),
where �(1) depends on the Bogoliubov angle, cos θk = | sin k

2 |,
while �(2) contains the rest. As before it is convenient to
summarize the symmetries of the polarization bubbles. We
find �(1)(−q,ω) = �(1)(q,ω); however, due to current flow,
�(2)(−q,ω) = −�(2)(q,ω). Similarly, Re[�(1)](q, − ω) =
Re[�(1)](q,ω), while Re[�(2)](q, − ω) = −Re[�(2)](q,ω). In
the discussion that follows, we take q > 0,ω > 0.

We find

�(1)(q,ω)

= − cos q

4

4πi

√
ω2 − (2J sin q

2 )2

{
F
(

sin

[
k0

2
+ q

4

])

+F
(

sin

[
−k0

2
+ q

4

])}
− sin q

4

4πi

√
ω2 − (2J sin q

2 )2

×
{
F
(

cos

[
k0

2
+ q

4

])
+ F

(
cos

[
−k0

2
+ q

4

])}
,

(64)

where

F(z) = z+ ln

⎡
⎣
(

1 + z
z+

)
(

1 − z
z+

)
⎤
⎦ − z− ln

⎡
⎣
(

1 + z
z−

)
(

1 − z
z−

)
⎤
⎦ . (65)

In the limit k0 → 0, we recover the results of Sec. III. The
remaining terms can be collected as

�(2) = 1

4π

{∫ k0+q/2

k0−q/2
−
∫ q/2

−q/2

}

×dk

{
1

ω − 2J sin q

2 sin k
+ 1

ω + 2J sin q

2 sin k

}
(66)

= − 1

4πi

√
ω2 − (2J sin q

2 )2

×

⎧⎪⎪⎨
⎪⎪⎩ln

⎡
⎢⎢⎣1 + ω tan

(
k0
2 + q

4

)
4J sin q

2 z2+

1 − ω tan
(

k0
2 + q

4

)
4J sin q

2 z2+

⎤
⎥⎥⎦ − ln

⎡
⎢⎢⎣1 + ω tan

(
k0
2 − q

4

)
4J sin q

2 z2+

1 − ω tan
(

k0
2 − q

4

)
4J sin q

2 z2+

⎤
⎥⎥⎦

− ln

⎡
⎢⎢⎣1 + ω tan

(
k0
2 + q

4

)
4J sin q

2 z2−

1 − ω tan
(

k0
2 + q

4

)
4J sin q

2 z2−

⎤
⎥⎥⎦ + ln

⎡
⎢⎢⎣1 + ω tan

(
k0
2 − q

4

)
4J sin q

2 z2−

1 − ω tan
(

k0
2 − q

4

)
4J sin q

2 z2−

⎤
⎥⎥⎦

− 2 ln

⎡
⎣1 + ω tan( q

4 )
4J sin q

2 z2+

1 − ω tan( q

4 )
4J sin q

2 z2+

⎤
⎦ + 2 ln

⎡
⎣1 + ω tan( q

4 )
4J sin q

2 z2−

1 − ω tan( q

4 )
4J sin q

2 z2−

⎤
⎦
⎫⎬
⎭ .

(67)

The consequence of the above expressions for �(1,2) will
be discussed in Sec. IV C.

B. Evaluation for ω < 2 J sin q
2

In this regime, the real part of �R(q,ω) is given by
the principal value of the integral in Eq. (62). Writing
Re[�R(q,ω)] = Re[�(1)] + Re[�(2)], where

Re[�(1)](q,ω)

= − cos q

4

4π

√
(2J sin q

2 )2 − ω2

{
F̃
(

sin

[
k0

2
+ q

4

])

+ F̃
(

sin

[
−k0

2
+ q

4

])}
− sin q

4

4π

√
(2J sin q

2 )2 − ω2

×
{
F̃
(

cos

[
k0

2
+ q

4

])
+ F̃

(
cos

[
−k0

2
+ q

4

])}
,

(68)

where

F̃(z) = z+ ln

∣∣∣∣∣∣
(

1 + z
z+

)
(

1 − z
z+

)
∣∣∣∣∣∣ − z− ln

∣∣∣∣∣∣
(

1 + z
z−

)
(

1 − z
z−

)
∣∣∣∣∣∣ (69)
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and

Re[�(2)](q,ω) = − 1

4π

√
(2J sin q

2 )2 − ω2

×

⎧⎪⎪⎨
⎪⎪⎩ln

∣∣∣∣∣∣∣∣
1 + ω tan

(
k0
2 + q

4

)
4J sin q

2 z2+

1 − ω tan
(

k0
2 + q

4

)
4J sin q

2 z2+

∣∣∣∣∣∣∣∣
− ln

∣∣∣∣∣∣∣∣
1 + ω tan

(
k0
2 − q

4

)
4J sin q

2 z2+

1 − ω tan
(

k0
2 − q

4

)
4J sin q

2 z2+

∣∣∣∣∣∣∣∣
− ln

∣∣∣∣∣∣∣∣
1 + ω tan

(
k0
2 + q

4

)
4J sin q

2 z2−

1 − ω tan
(

k0
2 + q

4

)
4J sin q

2 z2−

∣∣∣∣∣∣∣∣
+ ln

∣∣∣∣∣∣∣∣
1 + ω tan

(
k0
2 − q

4

)
4J sin q

2 z2−

1 − ω tan
(

k0
2 − q

4

)
4J sin q

2 z2−

∣∣∣∣∣∣∣∣
− 2 ln

∣∣∣∣∣∣
1 + ω tan( q

4 )
4J sin q

2 z2+

1 − ω tan( q

4 )
4J sin q

2 z2+

∣∣∣∣∣∣ + 2 ln

∣∣∣∣∣∣
1 + ω tan( q

4 )
4J sin q

2 z2−

1 − ω tan( q

4 )
4J sin q

2 z2−

∣∣∣∣∣∣
⎫⎬
⎭ .

(70)

We do not give expressions for Im[�R],�K as the bound-
aries of the particle-hole continuum are the same as in
Fig. 2, although there are additional discontinuities within
the continuum besides the one along ω = 2J sin2 q

2 . Instead,
in the subsequent sections, by studying the divergences in
Re[�R] we will identify a single undamped mode for repulsive
interactions and k0 < π/2, and several damped modes for both
repulsive and attractive interactions.

C. Undamped mode for ω > 2 J sin q
2 and V0 > 0

In this section we demonstrate that an undamped collective
mode survives provided the current is not too large. As before,
define ε =√

ω2 − (2J sin q

2 )2. In the limit q → 0 and for small k0,
the most divergent terms in �R(q,ω) are

�R(q,ω) � − sin q

4

4π

√(
2J sin q

2

)2 − ω2

{
F
[

cos

(
k0

2

)]

+ F
[

cos

(
−k0

2

)]}
(71)

� sin q

4

2πi
√

2
√

ω2 − (2J sin q

2 )2

×
{

ln

[
1 −

√
2 cos

k0

2
+ i

ε
√

2 cos k0
2

2J sin q

2

]

− ln

[
1 −

√
2 cos

k0

2
− i

ε
√

2 cos k0
2

2J sin q

2

]}
. (72)

The above expression shows that provided k0 < π
2 , which

corresponds to the logarithms having a branch cut, we obtain

�R(q,ω) = sin q

4√
2
√

ω2 − (2J sin q

2 )2
. (73)

Thus by setting 1 − V0�
R = 0, we recover the same disper-

sion as in the absence of current,

ωq � J |q|
√

1 + V 2
0

32J 2
θ (V0)θ (π/2 − k0). (74)

Thus, the undamped mode is unchanged for a current which is
below the threshold value of k0 < π/2. On the other hand, for
currents larger than this value (k0 > π/2) and for q 
 k0, no
undamped modes exist.

D. Damped modes for ω < 2 J sin q
2

In this regime, all modes are damped. We identify
these damped modes by looking for solutions to 1 −
V0Re[�R](q,ωq) = 0. For V0 → 0, all we need to do is
identify where Re[�R] → ±∞. Then positive divergences
correspond to damped modes with repulsive interactions,
while negative divergences correspond to damped modes with
attractive interactions.

Upon examining Eqs. (68) and (70), we find logarithmic
divergences in Re[�R(q,ω)] along the characteristic lines (for
ω,q > 0)

ω1(q) = 2J sin2 q

2
, (75)

ω2(q) = 2J sin
q

2
sin

(
k0 + q

2

)
, (76)

ω±
3 (q) = ±2J sin

q

2
sin

(q

2
− k0

)
. (77)

Note that ω2,3 coincide with the characteristic lines in the
equilibrium problem with an arbitrary Fermi momentum k0.44

In the equilibrium problem, these lines represent boundaries
across which Im[�R] undergoes a jump discontinuity. This is
also the case here, although we will focus our attention on the
behavior of the real part.

One finds Re[�R] → +∞ along the line ω+
3 (q) for

2k0 < q < π and along the line ω2(q) for q < π − 2k0.
These correspond to damped collective modes for repulsive
interactions. Furthermore, Re[�R] → −∞ along the line
ω1(q) for all q ∈ (0,π ), along ω−

3 (q) for q < 2k0, and along
ω2(q) for q > π − 2k0. These negative divergences represent
collective modes created by attractive interactions. We plot
these characteristic lines in Fig. 3 and indicate whether the
mode exists for attractive or repulsive interactions.

Such damped modes are usually considered physically
uninteresting27 compared to any undamped excitations in the
system, as the damping makes these modes experimentally
unobservable. The divergences in �R(q,ω) that give rise to
these damped modes are of a different nature from those giving
rise to the undamped mode. To see this consider the case
of ω � ω1 = 2J sin q

2 (sin q

2 ± ε) for small ε. The dominant
contribution is given by

Re[�R(q,ω)] � −1

8πJ sin q

2

∣∣cos q

2

∣∣
[

2 ln
Aq

ε

]
, (78)

where Aq is a q-dependent factor.
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0 π/4 π/2 3π/4 π
0

0.5

1

1.5

2

q

ω

FIG. 3. Characteristic lines along which Re[�R(q,ω)] diverges,
giving rise to damped modes for repulsive (solid lines) and attractive
(dashed lines) interactions for k0 = π

4 . Only the top line ω = 2J sin q

2
corresponds to an undamped mode existing above the particle-hole
continuum.

Solving 1 = V0Re�R[(q,ωq)] to leading order in ε, one
finds

Re[ωq] � 2J sin
q

2

(
sin

q

2
± Aqe

−(2πJ sin q)/|V0|
)

, (79)

where q > 0 is assumed. In general, for any of the charac-
teristic lines described above, the ansatz ω = ωc ± 2Jε sin q

2
leads to a divergence of the form �R(q,ω) ∼ ± ln 1

ε
. Each

logarithmic divergence corresponds to two damped modes
lying exponentially close to each characteristic line.

One may study the modes near ω ≈ ω2(q) in a way
similar to our analysis for the modes near ω1. For ω ≈
ω2(q) ± 2Jε sin q

2 , one finds

Re[�R(q,ω)] � 1 + sin k0
2

8πJ sin q

2

∣∣cos
(
k0 + q

2

)∣∣ ln
A′

q

ε
, (80)

which gives rise to damped modes for repulsive interactions
(V0 > 0) when q < π − 2k0 with

Re[ωq] � 2J sin
q

2

{
sin

(q

2
+ k0

)

± A′
q exp

[
−8πJ sin q

2

∣∣cos
(
k0 + q

2

)∣∣
V0

(
1 + sin k0

2

)
]}

. (81)

The result for the other characteristic line ω+
3 is similar and

we do not discuss it further.

V. SUMMARY AND CONCLUSIONS

In this paper, we have applied the RPA to study the effect of
weak Ising interactions in a nonequilibrium steady state of the
XXZ spin chain. This nonequilibrium state was created in two
different ways. One was by quenching from the ground state of
the transverse-field Ising model at critical magnetic field to the
XX model. The second was to modify the Hamiltonian before
the quench by adding Dzyaloshinskii-Moriya interactions.
This had the effect of creating a current-carrying state.

The RPA for both the steady states shows the existence
of a single, undamped, collective mode for repulsive
interactions which is qualitatively similar to the sound mode
in equilibrium, but with quantitative changes to the mode
velocity [see Eq. (51)]. However, if the current is larger
than a threshold value, this undamped mode ceases to exist
in the long-wavelength limit [see Eq. (74)]. The primary
effect of the quench is to give rise to a greatly broadened
distribution function [see Fig. 1 and Eq. (35)], which results
in an enhanced particle-hole continuum. The boundaries of
the particle-hole continuum are shown in Fig. 2. Thus for
attractive interactions either no modes are found for the first
steady state, or some damped collective modes are found for
the steady state with current.

These results, and in particular the generation of a finite
friction due to an out-of-equilibrium situation, are rather
generic and do not depend on the details of the nonequilibrium
steady state. Further, the upper boundary of the particle-hole
continuum occurs at ωmax = 2J sin q

2 and is related to the fact
that the system is on a lattice, and therefore the excitations
have a maximum velocity. If instead a quadratic dispersion
for the fermions is adopted, then there is no upper limit to
the velocity of excitations. This, together with the fact that
immediately after a quench the Fermi distribution is very
broad with no well-defined kF , will further enhance the upper
boundary of the particle-hole continuum, damping even the
mode with repulsive interactions.

An important future direction for research is to explore how
these results change when an explicit time dependence of J z

is introduced. In particular it is important to understand how
slowly J z has to be turned on in order to recover the results of
this paper.
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