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Recent experimental study revealed the optical conductivity of La1−xCaxMnO3 over a wide range of energy
and the occurrence of spectral weight transfer as the system transforms from a paramagnetic insulating to a
ferromagnetic metallic phase [A. Rusydi et al. Phys. Rev. B 78, 125110 (2008)]. We propose a model and
calculation within the dynamical mean-field theory to explain this phenomenon. We find the role of oxygens in
mediating the hopping of electrons between manganeses as the key that determines the structures of the optical
conductivity. In addition, by parametrizing the hopping integrals through magnetization, our result suggests a
possible scenario that explains the occurrence of spectral weight transfer, in which the ferromagnetic ordering
increases the rate of electron transfer from O2p orbitals to upper Mneg

orbitals while simultaneously decreasing the
rate of electron transfer from O2p orbitals to lower Mneg

orbitals, as temperature is varied across the ferromagnetic
transition. With this scenario, our optical conductivity calculation shows very good quantitative agreement with
the experimental data.
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I. INTRODUCTION

Manganites have been the subject of extensive studies
because they have exhibited a wealth of fascinating phe-
nomena, such as colossal magnetoresistance (CMR); charge,
spin, and orbital orderings; the ability to transition from a
paramagnetic insulator to a ferromagnetic metal; and mul-
tiferroic behavior.1–4 Upon hole doping, the transition from
an antiferromagnetic insulator to a ferromagnetic metal has
been argued to occur through a mixed-phase process,5 whereas
for a fixed hole doping where ferromagnetic order is found,
an insulator to metal transition occurs simultaneously as the
temperature is lowered across the ferromagnetic transition.6

It has been generally assumed and experimentally confirmed
that the magnetic order in these systems is driven by double-
exchange interactions.5,7–11 However, the explanation of the
other phenomena accompanying the ferromagnetic transition
seems to be far from complete, and remains an open subject.

Several theories on the insulator-metal (IM) transition
that accompanies the ferromagnetic transition have been
proposed.12,13 Although the details of the models and sce-
narios of the IM transition proposed by these theories are
quite different, they have similar ideas suggesting that the
Jahn-Teller (JT) distortion along with the electron-phonon
interactions stabilize the insulating phase at high temperatures;
this phase is broken by the ferromagnetic order below its
transition temperatures. These theories, however, have only
addressed the static properties or low-energy phenomena, as
their models implicitly assume that low-energy phenomena
occurring in these materials are insensitive to possible high-
energy excitations. Many such models14–19 typically consider
only effective hoppings between Mn sites while ignoring
the electronic states in oxygen sites. On the other hand,
models that include local interactions and hybridization in

correlated materials might expect pronounced effects at higher
energies that are connected to charge-transfer or Mott-Hubbard
physics.20–23 Thus, the validity of such theories may have to
be tested through experimental studies on the band structures
and the optical properties over a wide range of energy. In
that respect, experimental studies of optical conductivity of
manganites as functions of temperature and doping in a much
wider energy range become crucial.

A recent study of optical conductivity done by Rusydi
et al.24 revealed for the first time strong temperature and
doping dependences in La1−xCaxMnO3 for x = 0.3 and
0.2. The occurrence of spectral weight transfer has been
strikingly found between low (<3 eV), medium (3–12 eV),
and high energies (>12 eV) across the IM transition. In fact,
as the temperature is decreased, the spectral weight transfer
appears more noticeably in the medium- and high-energy
regions than it does in the low-energy region. Observing how
the spectral weight in each region of energy simultaneously
changes as temperature is decreased passing the ferromagnetic
(FM) transition temperature (TFM), one may suspect that
there is an interplay between low-, medium-, and high-energy
charge transfers that may drive many phenomena occurring
in manganites, including the IM transition. This conjecture is
related to the fact that the hopping of an electron from one Mn
site to another can only occur through an O site.

Considering the difference between the on-site energy
of the manganese and that of the oxygen, which could be
about 5–8 eV,25 the Mn-O hoppings occur with high-energy
transfer. We hypothesize that if such high-energy hoppings can
mediate a ferromagnetic order, then other low- or high-energy
phenomena may occur simultaneously. Thus, the mechanism
of IM transition in the dc conductivity may not be completely
separated from what appears as the decrease (increase) of
the spectral weight in the medium- (high-) energy region
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of the optical conductivity, all of which may be driven
by the ferromagnetic ordering. Theories based on effective
low-energy models that only consider Mn sites while ignoring
O sites would not be able to address this.

Motivated by the aforementioned conjecture, we develop a
simple but more general model, in which oxygens are explicitly
incorporated. In this paper, we propose our model and calcu-
lation of the optical conductivity of La1−xCaxMnO3 within
the dynamical mean-field theory to explain the experimental
results of Ref. 24. Our calculated optical conductivity shows
that both oxygens and manganeses play important roles in
forming structures similar to those of the experimental results.
Further, with some additional argument, our calculation
captures qualitatively correctly the temperature dependence
of the optical conductivity as the system transforms from
paramagnetic to ferromagnetic phase.

II. MODEL

As shown in Fig. 1, we model the crystal structure of
La1−xCaxMnO3 such that each unit cell forms a cube with
lattice constant a set equal to 1, and contains only one Mn
and three O sites, thus ignoring the presence of La and Ca
atoms that we believe not to contribute much to the structures
and temperature dependence of the optical conductivity. We
choose 10 basis orbitals to construct our Hilbert space, which
we order as follows: |Mneg upper,↑〉, |Mneg lower,↑〉, |O1p↑〉,
|O2p↑〉, |O3p↑〉, |Mneg upper,↓〉, |Mneg lower,↓〉, |O1p↓〉, |O2p↓〉,
and |O3p↓〉. Note that the distinction between |eg upper〉 and
|eg lower〉 states is associated with the Jahn-Teller splitting.
Using this set of bases, we propose a Hamiltonian:

H = 1

N

∑
k

η
†
k[H0(k)]ηk +

∑
i,σ,σ ′

Unuiσ nliσ ′ +
∑

i

Uunui↑nui↓

+
∑

i

Ulnli↑nli↓ −
∑

i

JH Si .si . (1)

FIG. 1. (Color online) Simplified crystal structure of the model.
The crystal structure is assumed cubic with the unit cell containing
only one Mn and three O atoms. The O atoms are labeled 1, 2, and 3
to distinguish the p orbitals belonging to different O atoms used to
construct our Hamiltonian.

The first term in the Hamiltonian is the kinetic part, whereof
η
†
k is a row vector whose elements are the creation operators

associated with the 10 basis orbitals, and ηk is its Hermitian
conjugate containing the corresponding destruction operators.
Here we consider that each Mn site contributes four eg orbitals
(the upper and lower of each of which is with up and down
spins), and the three O sites contribute six orbitals (three from
each site, each of which is with up and down spins). [H0(k)] is a
10×10 matrix in momentum space whose structure is arranged
in four 5×5 blocks corresponding to their spin directions as

[H0(k)] =
[

H0(k)↑ O

O H0(k)↓

]
, (2)

where O is a zero matrix of size 5×5, and (referring to the
choice of coordinates in Fig. 1)

H0(k)↑(↓) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

EJT 0 t
(1)
Mn-O(1 + e−ikx ) t

(1)
Mn-O(1 + e−iky ) t

(1)
Mn-O(1 + e−ikz )

0 −EJT t
(2)
Mn-O(1 + e−ikx ) t

(2)
Mn-O(1 + e−iky ) t

(2)
Mn-O(1 + e−ikz )

t
(1)
Mn-O(1 + eikx ) t

(2)
Mn-O(1 + eikx ) Ep tO-O(1 + 2eikx + 2e−iky ) tO-O(1 + 2eikx + 2e−ikz )

t
(1)
Mn-O(1 + eiky ) t

(2)
Mn-O(1 + eiky ) tO-O(1 + 2e−ikx + 2eiky ) Ep tO-O(1 + 2eiky + 2e−ikz )

t
(1)
Mn-O(1 + eikz ) t

(2)
Mn-O(1 + eikz ) tO-O(1 + 2e−ikx + 2eikz ) tO-O(1 + 2e−ikx + 2eikz ) Ep

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3)

The diagonal elements of H0(k)↑(↓) represent the local
energies, while the off-diagonal elements represent the hy-
bridizations between orbitals. The first two diagonal elements,
that is, EJT and −EJT, correspond to the Mneg

orbital energies,
which are split due to the presumedly static Jahn-Teller
distortion. Each of the remaining three diagonal elements, that
is, Ep, corresponds to the local energy of the O2p orbital. The

parameter t
(1)
Mn-O (t (2)

Mn-O) corresponds to hopping between the
upper (lower) Mneg

orbital and the nearest O2p orbital, whereas
tO-O corresponds to hopping between the nearest O2p orbitals.

The second term in Eq. (1) represents the Coulomb
repulsions between the upper and lower Mneg

orbitals in
a site. The third and fourth terms represent the intraorbital
Coulomb repulsions. In this work, we take Uu and Ul to be
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infinity, forbidding double occupancy in each of the lower
and upper Mneg

orbitals. Finally, the fifth term represents
the double-exchange magnetic interactions between the local
spins of Mn, S, formed by the strong Hund’s coupling among
three t2g electrons giving S = 3/2, and the itinerant spins of
the upper and lower Mneg

electrons, s. Note that we use a
well-accepted general assumption that the on-site Coulomb
repulsion in each t2g orbital and the Hund’s coupling among
the t2g orbitals are strong enough to keep the occupancy of
the three t2g levels fixed at high spin configuration. Thus the
charge degrees of freedom of the three t2g electrons become
frozen, and the remaining degree of freedom to be considered
is the orientation of the collective spin 3/2.

III. METHOD

To solve our model, we use the dynamical mean-field
theory.26 First, we define the Green function of the system,
which is a 10 × 10 matrix,

[G(k,z)] = {z[I ] − [H0(k)] − [�(z)]}−1, (4)

with z the frequency variable and [I ] the 10 × 10 unit matrix.
Then, we coarse-grain it over the Brillouin zone as

[G(z)] = 1

N

∑
k

[G(k,z)]. (5)

In defining [G(k,z)], all the interaction parts of the Hamil-
tonian (all terms other than the kinetic part) are absorbed into
a momentum-independent self-energy matrix, [�(z)], which
will be solved self-consistently. Note that in this algorithm,
we need to go over the self-consistent loops in both Matsubara
(z = iωn + μ) and real frequency (z = ω + i0+).

On taking Uu and Ul to be infinity, to some approximation,
we forbid the double occupancies in states |Mneg upper,↑〉,
|Mneg lower,↑〉, |Mneg upper,↓〉, and |Mneg lower,↓〉 by throwing
them out of our Hilbert space. To do this, according to the
structure of Hamiltonian matrix in Eqs. (2) and (3), we multiply
the weights of all the diagonal elements with indices 1, 2, 6, and
7, and all the corresponding off-diagonal elements connecting
any pair of them by a half. Thus, after obtaining the matrix
[G(z)] from Eq. (5), the effective [G(z)] (let us call it [G(z)]eff)
can be obtained by multiplying each of the following blocks
of [G(z)] by a half, while keeping the remaining elements
unchanged, that is[

G11 G12

G21 G22

]
⇒ 1

2

[
G11 G12

G21 G22

]
,

[
G16 G17

G26 G27

]
⇒ 1

2

[
G16 G17

G26 G27

]
,

(6)[
G61 G62

G71 G72

]
⇒ 1

2

[
G61 G62

G71 G72

]
,

[
G66 G67

G76 G77

]
⇒ 1

2

[
G66 G67

G76 G77

]
.

The “mean-field” Green function can then be extracted as

[G(z)] = {
[G(z)]−1

eff + [�(z)]
}−1

. (7)

Next, we construct the local self-energy matrix, [�nl
(z)],

corresponding to the second and the fifth terms of the
Hamiltonian. Here nl ∈ {0,1} is the occupation number of
the lower Mneg

orbital. The elements of the 10 × 10 matrix
[�nl

(z)] are all zero except for the blocks,[
�11 �16

�61 �66

]

=
[−JH S cos θ + nlU −JHS sin θ (cos φ + i sin φ)
−JH S sin θ (cos φ − i sin φ) JHS cos θ + nlU

]
,

[
�22 �27

�72 �77

]

=
[ −JH S cos θ −JH S sin θ (cos φ + i sin φ)
−JH S sin θ (cos φ − i sin φ) JH S cos θ

]
,

(8)

where θ and φ are the corresponding angles representing the
direction of S in the spherical coordinate. The local interacting
Green function matrix is then calculated through

[
Gnl

(z)
] = {

[G(z)]−1 − [
�nl

(z)
]}−1

. (9)

For each Mn site with a given nl , the probability of Mn
spin S having a direction with angle θ with respect to the
direction of magnetization (which is defined as the z axis) is
given by

Pnl
(cos θ ) = e−Snl

(cos θ)

Znl

, (10)

where

Znl
=

∫
d(cos θ ) e−Snl

(cos θ) (11)

is the local partition function, and

Snl
(cos θ ) = −

∑
n

ln det
[
Gnl

(iωn)
]
eiωn0+

(12)

is the effective action.
We need to average [Gnl

(z)] over all possible θ and nl

values as

[G(z)]av = (1 − 〈nl〉)
∫

d(cos θ )P0(cos θ )[G0(z)]

+〈nl〉
∫

d(cos θ )P1(cos θ )[G1(z)], (13)

where 〈nl〉 is the average occupation of lower the Mneg
orbital.

The new self-energy matrix is extracted through

[�(z)] = [G(z)]−1 − [G(z)]−1
av . (14)

Finally, we feed this new self-energy matrix back into the
definition of Green function in Eq. (4), and the iteration process
continues until [�(z)] converges.

After the self-consistency is achieved, we can compute the
density of states as

DOS(ω) = − 1

π
ImTr[G(ω + i0+)]. (15)
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We can also compute the optical conductivity tensor as

σαβ(ω) = πe2

h̄ad

∫
dν

(
f (ν,T ) − f (ν + ω,T )

ω

)

× 1

N

∑
k

Tr[vα(k)][A(k,ν)][vβ(k)][A(k,ν + ω)],

(16)

where [vλ(k)] = ∂[H0(k)]/∂kλ is the Cartesian component of
the velocity matrix, [A(k,ν)] = {[G(k,ω + i0+)] − [G(k,ω −
i0+)]}/(2πi) is the spectral function matrix, and f (ν,T ) is
the Fermi distribution function. Note that the dimensional
prefactor πe2/(h̄ad)26 with d = 3 and a = 3.3945 Å25 is
introduced to restore the proper physical unit, since the rest of
the expression was derived by setting e = h̄ = a = 1. In our
model, the system is isotropic, and we are only interested in
the longitudinal components σαα(ω) ≡ σ (ω), which are equal
for all α ∈ {x,y,z}.

IV. RESULTS

Our calculated DOS is shown in Fig. 2. The parameter val-
ues used for this calculation are EJT = 0.5 eV, Ep = −6.5 eV,
t

(1)
Mn-O = 1.2 eV, t

(2)
Mn-O = 0.8 eV, tO-O = 0.6 eV, U = 10 eV,

JH = 1.5 eV, and T ≈ 194 K (corresponding to β ≡ 1/T =
60 eV−1). These parameter values are chosen considering
rough estimates given in other papers12,13,25 and adjusted
so as to give best agreement with the experimental optical
conductivity data in Ref. 24. The DOS is normalized such
that the integrated area is equal to 8, since in each unit cell
there are six orbitals coming from oxygens and effectively two
from manganeses, considering the restriction given by relation
(6). The chemical potential is self-consistently adjusted to
satisfy the electron filling of 6 + (1 − x) = 6.7, mimicking
the situation of La1−xCaxMnO3 for x = 0.3. The structures of
the DOS can be explained as follows. The three peaks labeled
1,2,3 result from the fact that there are three oxygen atoms in
a unit cell, where the degeneracy is broken into three levels
by the hybridization between 2p orbitals of the neighboring
oxygen atoms. The structures labeled 4 through 9 result from

-16 -12 -8 -4 0 4 8 12 16
Energy (eV)

0

0.5

1

1.5

2

D
O

S
 (

eV
-1

)

1

2

3
4 5 7 8 9

μ
Oxygen band

U
eff

U
eff

6

DE DE DE

Jahn-Teller
Jahn-Teller

Manganese band

FIG. 2. (Color online) Calculated density of states (DOS). See
text for the parameter values used in this figure and the detailed
explanation of the structures of the DOS.

the eg orbitals of manganeses. As shown in the figure, there
are three mechanisms that split the Mneg

states into six levels:
static JT distortion, Coulomb repulsion (Ueff) between lower
and upper JT-split eg states, and the double-exchange (DE)
interaction between spins of electrons in the lower and upper
JT-split states and the Mn spins formed by the Hund’s coupling
among the Mn t2g electrons.27

Figure 3 shows our calculated optical conductivity for
T ≈ 194 K (> TFM). The ferromagnetic transition temperature
for this set of parameters is roughly TFM ≈ 160 K (based on
extrapolation of the mean-field trend). The parameter values
for T ≈ 194 K are the same as those used in Fig. 2. In Fig. 3, we
demonstrate how we tune the profile of the optical conductivity
to achieve the best resemblance with the experimental data in
Ref. 24. It is important to note that our model is not meant
to address the dc conductivity, as we already anticipate that
it cannot form an insulating (or nearly insulating) phase at
T > TFM, possibly due to not incorporating electron-phonon
interactions.12,13,28 Rather, our goal is to show how this simple
model can capture qualitatively the general profile of the
optical conductivity from about 1 eV away from the Drude
peak up to 22 eV (the energy limit of the experimental
data).

On calculating the optical conductivity from Eq. (16), we
introduce an imaginary self-energy for the O2p states, −i�,
where τ = 1/� corresponds to the lifetime of the O2p states.
The red curve in Fig. 3 shows the result if we use the
self-consistent chemical potential, μ, in Eq. (16). Here, we
observe that the resulting profile around the medium-energy
region (≈5–11 eV) does not satisfactorily resemble that of the
experimental data in Ref. 24, since some spectral weight seems
to be missing in that region. We argue that the reason for this is
related to the fact that our self-consistent chemical potential,
μ, does not lie inside a pseudogap as it probably would if

0 2 4 6 8 10 12 14 16 18 20 22
Energy (eV)

0

1

2

3

4

5

6

7

8

σ(
10

3 Ω
-1

cm
-1

)

chemical potential = μ,  Γ = 0.1 eV

chemical potential = μ∗, Γ = 0.1 eV

chemical potential = μ∗, Γ = 0.6 eV

-3 -2 -1 0 1 2 3
Energy (eV)

0

0.2

0.4

0.6

0.8

D
O

S
 (

eV
-1

)

μ∗ μ

FIG. 3. (Color online) Calculated optical conductivity. Main
panel: The red and blue curves represent the calculated optical
conductivities for different positions of the chemical potential, μ

and μ∗, respectively, using only a small broadening (� = 0.1 eV).
The black curve represents the result using the chemical potential
at μ∗ with a bigger broadening (� = 0.6 eV). Inset: Region in the
density of states showing how the position of the chemical potential
is shifted. See text for a detailed explanation.

075136-4



THEORY OF HIGH-ENERGY OPTICAL CONDUCTIVITY . . . PHYSICAL REVIEW B 84, 075136 (2011)

we incorporated electron-phonon interactions. In this model,
we only have a pseudogap that results from the DE splitting,
where μ falls slightly to the right outside of this pseudogap. To
remedy the missing spectral weight, we shift the position of the
chemical potential slightly to the left, that is, from μ to μ∗, as
shown in the inset of Fig. 3. Using this new chemical potential,
μ∗, the resulting optical conductivity, shown by the blue curve,
resembles the experimental data better. This suggests that the
true chemical potential may actually lie inside a pseudogap
similar to the situation when it lies at μ∗. (Note that, as long
as we consider the optical conductivity region about 1 eV
away from the Drude peak, choosing μ∗ between 0.1 and
0.9 eV, that is, around the valley, leads to similar results.)
Although the profile of the blue curve is already better than
the red one, it still has more pronounced structures than the
actual experimental data. To further tune the calculated optical
conductivity to better resemble the experimental data, we find
that the overly pronounced structures can be broadened by
enlarging the O2p imaginary self-energy up to � = 0.6 eV.
The result after the broadening, which is shown by the black
curve, looks very similar to the experimental results shown
in Fig. 2(b) of Ref. 24 (replotted in the inset of Fig. 4).
This similarity in both magnitude and profile of the energy
dependence may be a good measure of the validity of our
model.

Now we discuss how the model captures the spectral weight
transfer when temperature is decreased from T > TFM to
T < TFM. First, we divide the energy range into three regions:
I (low: ≈ 1–3 eV), II (medium: ≈3–12 eV), and III (high:
� 12 eV), following the division made for the experimental
data in Ref. 24, except that we exclude the region around the
Drude peak from our discussion, since to obtain the correct
values of conductivity in that region requires a more accurate
description of the renormalized band structure around the

0 4 8 12 16 20
Energy (eV)

0

1

2

3

4

5

6

7

8

9

σ(
10

3 Ω
−1

cm
-1

)

I II III

Experiment of La
0.7

Ca
0.3

MnO
3

Model

194 K
129 K
111 K
 97 K

0 4 8 12 16 20
Energy (eV)

0

1

2

3

4

5

6

σ(
10

3 Ω
-1

cm
-1

)

III III

310 K
225 K
175 K
125 K

T
FM

 ~ 160 K

Γ = 0.6 eV

TFM ~ 260 K

FIG. 4. (Color online) Spectral weight transfer in the optical
conductivity. Main panel: Results of the model. Excluding the region
containing the Drude peak (0–1 eV), the energy range is divided
into three regions: I, II, and III. The black curve represents the
optical conductivity in the paramagnetic phase, while the red, green,
and blue curves correspond successively to lower temperatures in
the ferromagnetic phase.29 The borders between regions I–II and
II–III, denoted by the blue vertical dashed lines, are defined such
that the curves are crossing at these energies. Inset: A replot of the
corresponding experimental data from Ref. 24 for comparison.

chemical potential. If we decrease the temperature from the
paramagnetic to the ferromagnetic phase while keeping all
the parameters constant, we find no significant change in the
optical conductivity, thus the spectral weight transfer does
not occur in this way. If we inspect how Eq. (16) determines
the optical conductivity, we see that the change in optical
conductivity may become more significant if either the spectral
function, [A(k,ν)], or the velocity operator, [vα(k)], changes
significantly while temperature changes. Within our model,
this can only be accommodated if we allow some parameters
to depend on temperature in some manner. By comparing the
structures of optical conductivity and the corresponding DOS
profile, it is clear that the spectral weight in the medium-energy
region comes mostly from transitions from O2p to lower
Mneg

states, while in the high-energy region it comes from
O2p to upper Mneg

states. This fact may suggest that the

hopping parameters t
(1)
Mn-O and t

(2)
Mn-O depend on temperature.

Furthermore, since the spectral weight transfer occurs most
notably across and below TFM, the temperature dependence of
t

(1)
Mn-O and t

(2)
Mn-O may be related to spin correlation.

The actual interplay resulting in such a temperature depen-
dence is believed to be very complicated, since it may involve
orbital effects on the dynamic electron-phonon coupling and
spin correlation. In that regard, our present model, which is
not an ab initio based model, cannot naturally capture these
temperature effects. Thus, to capture the plausible physics
within our present model, we turn to the phenomenological
approach by parametrizing the totally nontrivial temperature
effects on hopping integrals through magnetization. In the
simplest level, we may assume a linear dependence of the
hopping integrals t

(1)
Mn-O and t

(2)
Mn-O on the magnetization. Hence,

we may write

t
(1)
Mn-O(M) = t

(1)
Mn-O(0)

(
1 + c1

M

Ms

)
, (17)

t
(2)
Mn-O(M) = t

(2)
Mn-O(0)

(
1 + c2

M

Ms

)
, (18)

where M/Ms is the ratio of magnetization to the saturated
magnetization, and c1, and c2 are constants.

Using relations (17) and (18), taking t
(1)
Mn-O(0) = 1.2 eV,

t
(2)
Mn-O(0) = 0.8 eV, c1 ≈ 0.23, and c2 ≈ −0.35 at T = 97 K,

for which M/Ms = 0.357, for instance, we obtain that t
(1)
Mn-O

is enhanced to be ≈1.3 eV, while t
(1)
Mn-O is suppressed to be

≈0.7 eV. The results for four different temperatures are shown
in Fig. 4. As shown in the main panel, our calculation shows
that the spectral weight simultaneously decreases (increases)
in the medium (high) -energy region of the optical conductivity
as the system becomes ferromagnetic.30 Our calculation also
produces a less noticeable decrease of the spectral weight in
the low-energy region as observed in the experimental data
(see the inset). In both the main panel and the inset, the black
curve represents the optical conductivity in the paramagnetic
phase, while the red, green, and blue curves correspond
successively to lower temperatures in the ferromagnetic phase.
If we define the positions of the borders between energy
regions I–II and II–III such that all the curves are crossing
at these energies, we conclude that the theoretical values of
these energies are similar to the experimental ones. Note that
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the temperatures that were varied in the theoretical and the
experimental results should not be compared quantitatively,
since the theoretical TFM is about 100 K too small compared
to the experimental one, possibly due to neglecting other
possible exchange interactions in our model. Despite this,
we believe that any improvement of TFM by such additional
terms would not change the physics presented in this paper.
To show the difference in the DOS between paramagnetic and
ferromagnetic phases, we display the spin-dependent DOS for
T ≈ 194 K and T ≈ 97 K in Fig. 5.

To demonstrate further how the spectral weight transfers in
our model compare with the experimental results, we display
the relative spectral weight changes for different regions of
energy in Fig. 6. Comparing results in Figs. 6(a) and 6(b), it is
clear that for every region of energy—I (low), II (medium), and
III (high) (excluding 0–1 eV)—our calculations give exactly
the same trends as those shown by the experimental results.
This suggests that the ingredients incorporated in our model
are adequate to explain the occurrence of spectral weight
transfers in La1−xCaxMnO3 in the energy range up to 22 eV.
In that respect, one may argue, for instance, that the high-spin
state (S = 3/2) of the t2g electrons may become unstable
as the system is optically excited by high-energy photons.
Accordingly, transitions from high- to low-spin states, or
excitations of electrons from the t2g to the eg levels, may occur.
Our present model does not incorporate those possibilities.
However, our calculations prove that the model is capable of
obtaining the spectral weight transfers with good qualitative
agreement with the experimental results, thus suggesting that
such other contributions may be minor or irrelevant.

The inset of Fig. 6(a) shows that for the 0–1 eV region, our
result does not agree with the experiment, since it does not
capture the insulator-metal transition. As mentioned earlier,
we argue that this is due to our model not incorporating
the dynamic Jahn-Teller phonons and their interactions with
electrons, which may be responsible for forming an insulating
gap in the paramagnetic phase. The incorporation of such terms
to improve our present model is under ongoing study.
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FIG. 5. (Color online) Spin-dependent density of states. The
black and red curves lie on top of each other as the spin-up and
spin-down components of the DOS are identical in the PM phase,
while the green and blue curves look quite distinct as the DOS
becomes polarized in the FM phase.
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FIG. 6. (Color online) Relative spectral-weight changes.
�W (T )/W from (a) our calculations and (b) the experimental results
of Ref. 24, for different regions of energy. �W/W is defined as
the spectral-weight difference �W = ∫ ω2

ω1
[σ (ω,T ) − σ (ω,TPM)]dω

normalized to W (TPM) = ∫ ω2
ω1

σ (ω,TPM)dω, where in this case TPM is
194 K in (a) and 310 K in (b). Positions of the theoretical and the
experimental TFM are indicated by vertical red dashed lines in each
panel. The inset in (a) is a comparison between �W (T )/W from
the calculations (black filled diamonds) and from the experiments of
Ref. 24 (black empty diamonds) for the 0–1 eV region. The horizontal
green dashed line in the inset is just to highlight the zero position of
�W/W .

V. CONCLUSION

In conclusion, we have developed a model to explain the
structures and the spectral weight transfer occurring in the
optical conductivity of La1−xCaxMnO3 for x = 0.3. The key
that makes our model work in capturing the structures of
the optical conductivity at medium and high energies is the
inclusion of O2p orbitals into the model.

Further, by parametrizing the hopping integrals through
magnetization, our model captures the spectral weight transfer
as temperature is decreased across the ferromagnetic transition
temperature. Our calculation based on these phenomenological
parameters suggests that the ferromagnetic ordering increases
the hopping parameter connecting the O2p orbitals and the
upper Mneg

orbitals, while simultaneously decreasing the
hopping parameter connecting the O2p orbitals and the lower
Mneg

orbitals. Although we have yet to check whether this
scenario works in a more complete model incorporating the
dynamic electron-phonon coupling, we conjecture that this
may be an important part that contributes to the mechanism of
insulator to metal transition in manganites.

Overall, our results demonstrate the strength of our model,
which one may have to consider as the minimum model before
adding other ingredients to properly explain the insulator-
metal transition or other features in correlated electron systems
such as manganites.

ACKNOWLEDGMENTS

M.A.M. and A.R. thank George Sawatzky and Seiji Yunoki
for their valuable comments and suggestions. This work is

075136-6



THEORY OF HIGH-ENERGY OPTICAL CONDUCTIVITY . . . PHYSICAL REVIEW B 84, 075136 (2011)

supported by NRF-CRP grant “Tailoring Oxide Electronics
by Atomic Control,” No. NRF2008NRF-CRP002-024, NUS
YIA, an NUS cross faculty grant, and FRC. We acknowledge

the CSE-NUS computing center for providing facilities for our
numerical calculations. Work at NTU was supported in part
by a MOE AcRF Tier-1 grant (Grant No. M52070060).

*phyandri@nus.edu.sg
1S. Jin, T. H. Tiefel, M. McCormack, R. A. Fastnacht, R. Ramesh,
and L. H. Chen, Science 264, 413 (1994).

2For a general review on the structure and transport in manganites,
see M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001),
and references therein.

3S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
4E. Saitoh, S. Okamoto, K. T. Takahashi, K. Tobe, K. Yamamoto,
T. Kimura, S. Ishihara, S. Maekawa, and Y. Tokura, Nature
(London) 410, 180 (2001).

5A. Moreo, S. Yunoki, and E. Dagotto, Science 283, 2034 (1999).
6A. Nucara, A. Perucchi, P. Calvani, T. Aselage, and D. Emin, Phys.
Rev. B 68, 174432 (2003).

7P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
8P. G. de Gennes, Phys. Rev. 118, 141 (1960).
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