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Anisotropy of c facets of 4He crystal
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Recently, we have observed the so-called devil’s staircase of high-order facets on the surface of hcp 4He crystals
at 0.2 K. Such high roughening temperatures of high-order facets belonging to the [101N ] family suggest that
there must be an anomaly in the stiffness of vicinal surfaces and of the step on the basal c facet at the corresponding
orientation. We were able to measure the stiffness of the step on the [0001] c facet and the azimuthal stiffness of
vicinal surfaces at small polar angles. We have found a strong anisotropy of the stiffnesses at low temperatures,
as high as 5–10. The anisotropy rapidly decreases as temperature increases and saturates at low temperatures, in
good agreement with the theory of renormalization by thermal fluctuations of the surface. The observed anomaly
in the surface stiffness can explain the presence of high-order facets.
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Helium crystal is a perfect model system to study the
general properties of crystalline matter and surfaces. Due to its
essentially quantum nature, helium is the only substance whose
liquid-solid interface can be cooled down to low temperatures
where the heat and mass diffusion in the bulk phases is
very fast and the interface manifests its intrinsic properties.
Faceting, i.e., the presence of flat faces, is the most exciting
phenomenon taking place on the crystal surface, and according
to the theoretical predictions,1 classical crystals must show an
infinite number of facets at zero temperature, where thermal
fluctuations of the surface are absent. Quantum fluctuations of
the interface do not destroy facets but decrease the free energy
of the elementary step.2–4

In our recent work we have been searching for new facets
on the surfaces of hcp 4He crystals at temperatures down to 10
mK.5 We have used the method of a directional histogram and
detected large, flat faces corresponding to high-order facets
of [101N ] type. Such a devil’s staircase of facets has been
observed earlier only on the surface of liquid crystals,6,7 which
are extremely soft water solutions of surfactant molecules
rather than usual crystals. A devil’s staircase on 4He crystal
surface was not observed before because the free energy
of an elementary step on a high-order facet is small and
facets are very unstable and can be observed only very close
to equilibrium. We were able to prepare crystal surfaces
in quasiequilibrium conditions, with a deviation from the
equilibrium melting pressure as small as 1–10 μbar, and the
sizes of the observed high-order facets were up to 1 mm.

These high-order facets have been seen on 4He crystals
at temperatures much higher than the temperatures of their
roughening transitions predicted by the universal relation

TR = 2

π

√
γ||γ⊥d2, (1)

where d is the lattice period in the direction perpendicular to
the facet. The principal components of the surface stiffness ten-
sor γ̂ , γ|| = α + α′′

θθ and γ⊥ = α + (1/ sin2 θ )α′′
φφ + cot θα′

θ

(α is the surface tension), have been measured to be in the range
0.15–0.2 erg/cm28–10 for orientations that are not very close
to the basic [0001]c facets and [1010]a facets. The universal

relation (1) gives thus 60 mK for the roughening transition
temperature of the [1019] facet, which we have observed at
140 mK in experiment.

The discrepancy between the theory and our observations
could be explained by the anomalously high surface stiffness in
the directions corresponding to the high-order facets of [101N ]
type. Indeed, a crystal lattice induces natural anisotropy in
the stiffness of nondisturbed surfaces, but surface fluctuations
blur it out, which might be the reason that Andreeva and
Keshishev did not observe the azimuthal anisotropy of the
stiffness at 0.4 K.9 Thus there is a question whether the
anisotropy is present at lower temperatures where surface
oscillations are much weaker. Such an anisotropy would
result in the anisotropy of the elementary step on the basal
c facet, so that the equilibrium shape of the facet would be
noncircular.

In this paper we report our recent measurements of the
equilibrium shapes of the basic c facet and of the vicinal
surfaces of hcp 4He crystals in the range 10–400 mK. At
low temperatures we have observed a strong (up to a factor
of 6) anisotropy of the stiffness of a step on the basal c
facet and of the perpendicular component of the surface
stiffness. We show that the observed temperature dependence
of the stiffness agrees well with the fluctuation renormalization
theory.

In our experiments we observed the surface of 4He crystals
with a low-temperature Fabry-Pérot interferometer11 made
of two semitransparent windows thermally anchored to the
mixing chamber. Light passed the experimental cell through
fused silica windows, and the interference pattern was formed
on a cold charge-coupled device (CCD) camera placed inside
the vacuum can. The phase shift of the interfering light is
proportional to the thickness of the crystal, and thus the
true three-dimensional (3D) shape of the crystal could be
reconstructed from the interferogram. In order to observe
crystals very close to equilibrium conditions we have used
a cryogenic valve that allowed us to set liquid helium flow to
or from the cell as low as 10−12 cm3/s.

We have started our search for anisotropy of the step on
the basal c facet by measuring the equilibrium shapes of
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this facet. In the absence of gravity, the equilibrium shape
of a facet obeys the two-dimensional analog of Wulff’s
theorem: R(φ) ∝ β(φ), where R is the distance from the
tangent of the facet contour to the origin. We were able to
grow a very good quality crystal with the c facet tilted by
δ = 2◦ with respect to horizon. Such a small angle makes
the contribution of gravity negligible because the variation of
the gravitational pressure over a facet of a few millimeters
size L is ρLgLδ ∼ 1 μbar, while the Laplace pressure due to
curvature of the step βρL/dL
ρ (β = 4 × 10−10 erg/cm10)
is several tens of microbars. As steps are very mobile, the
edge step is always in local equilibrium so that the Laplace
pressure exactly compensates the overpressure in liquid and
is thus constant over the edge step even if the size of a
facet is far from the equilibrium one. Neglecting gravity and
assuming anisotropy of the step, the equilibrium condition for
the contour of the facet can be written as β̃(φ)C = const where
β̃ ≡ β + β

′′
φφ is the step stiffness and C is the local curvature

of the step.
The most fruitful and direct method to measure the shape

of the facet was to observe the facet at rest. Usually, a
facet grows due to screw dislocations, which terminate on
a facet, providing loops of the steps. If the overpressure
δp = p − peq is high enough so that the critical size of the
terrace Rc = β/(dδp)(ρL/
ρ) is smaller than the distance
between dislocations, the loops reconnect, forming growing
terraces of a new layer. At low overpressures, however, the
curvature of the loops is too small for reconnection, and the
facet is absolutely immobile. In contrast, the rough surface
that surrounds the facet grows without thresholds and thus
can be distinguished unambiguously from the facet. In our
measurements we took two consequent interferograms of
slowly growing or melting crystal [see an example of a
single interferogram in Fig. 1(a)] and calculated the difference
between two images. The area corresponding to the immobile
facet has a very low intensity on the difference image because
the interference fringes did not move during the time between
the two interferograms, while areas corresponding to moving

FIG. 1. Finding the shape of the immobile facet: (a) original
interferogram of slowly growing crystal (575×383 pixels, 4-mm
radius of optical area), (b) difference between two consecutive
interferograms, (c) contrast of the difference image, and (d) 1/4
power of the intensity of the contrast image. See text for details.

rough surfaces contain fringes after subtracting [Fig. 1(b)].
The next step was to calculate the contrast of the difference
image from 10 × 10 pixel area near each pixel. The contrast
of the area representing the facet is very small in comparison
to high-contrast areas near the crystal edges [Fig. 1(c)], and
the facet can hardly be found by an eye directly. To lift up the
intensity of the dark areas we took a small power (1/4 or 1/8)
from the contrast image, which made areas of lowest contrast
evident [Fig. 1(d)]. In the final image it is clearly seen that the
contrast of the facet is as low as the contrast of the solid-free
region where definitely no motion of interference fringes
occurred. Thus the dark region with the very sharp boundary
in the top left part of the image corresponds to an immobile
facet. The observed shapes of the c facet were, indeed, far
from circular and had corners in the directions between two
a facets.

The relation β̃(φ)C = const for the edge step is valid if
the local overpressure is the only force acting on the step.
In fact, one should consider also an interaction between the
“last” edge step and other steps surrounding the facet. A vicinal
surface, i.e., a surface tilted by a small angle with respect to
a facet, consists of atomically flat terraces that have the same
orientation as the facet has and elementary steps that separate
them. The density of steps increases with the tilting angle,
and at angles ∼5◦,12 the steps start to overlap, and the surface
becomes uniformly rough until the orientation of another facet
is reached. This means that the equilibrium shape of the rough
surface surrounding the basal c facet is affected by the presence
of other facets on the crystal surface, and the anisotropy of the
c facet [Fig. 1(d)] could be enhanced by the presence of large
vertical a facets on the crystal edges.

The influence of the shape of the crystal edge on the shape of
the top c facet becomes smaller when the distance s between
the edge of the facet and the edge of the crystal increases.
In order to eliminate this influence we have measured the
shape of the c facet in rather wide range of distances s on
growing and melting crystals of different sizes and shapes.
In contrast to a growing crystal, a crystal that was melted
for some time has the symmetrical rounded shape, as shown
in the bottom inset of Fig. 2. The anisotropy of the top
c facet is, indeed, somewhat smaller than in the case of
growing crystal (left inset of Fig. 2) but is still evident.
To avoid any influence of the free crystal edges we have
measured also crystals that filled completely the bottom of
the cell so that the crystal edge coincided with the cylindrical
cell wall. In this case the shape of the top facet is also
anisotropic (top right inset of Fig. 2), which proves the
anisotropy of the step energy on the basal c facet. The
observed contours of the c facets were fitted with the simplest
possible function of sixfold symmetry R = R0(1 − a cos 6φ).
The dependence of the anisotropy coefficient a on the distance
s between the facet and crystal edges at T = 0.14 K is shown
in Fig. 2.

Indeed, the anisotropy coefficient a depends significantly
on the distance to the crystal edge at small s, where the shape
of the facet rather mimics the shape of the edge than shows its
intrinsic anisotropy. However, when the distance s is relatively
large compared to the facet size R, the anisotropy coefficient
saturates at the level of a = 0.021 ± 0.002. Because of the
sixfold symmetry the measured anisotropy is rather high
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FIG. 2. Anisotropy coefficient a of the contour of the c facet as
a function of relative distance s/R from the facet to the edge of
the crystal. Open squares: growing crystals with large a facets on
the crystal edge (top left inset); the anisotropy of the top c facet is
enhanced. Solid circles: melting crystals with a symmetric circular
free edge (bottom inset) and with an edge touching the cylindrical cell
wall (top right inset); the anisotropy of the top c facet is diminished.
T = 140 mK.

despite the value of a being much smaller than unity.
Indeed, the requirement of convexity R2 + 2R′2

φ − RR′′
φφ > 0

of the contour described by the form R = R0(1 − a cos 6φ)
sets the maximum possible value of about 1/35 for the
anisotropy coefficient a. The stiffness of the step β̃ is inversely
proportional to the local curvature of the contour, which varies
as C = (1/R0)(1 − 35a cos 6φ) (terms of order a2 ignored).
With the measured value of the anisotropy coefficient a the step
stiffness β̃ = β0/(1 − 35a cos 6φ) has very strong anisotropy
β̃max/β̃min = 6.

In order to understand the observed results we have adopted
the standard theory of renormalization by thermal fluctuations
of the surface in the weak-coupling approximation.13 The
simplest Hamiltonian that accounts for the symmetry of the
crystal lattice is

E(z(r)) =
∫ ∫

d2r

[
1

2
γ (∇z)2 − V cos

2πz

d

+ εγ |∇z|3 cos 3φ sin
πz

d

]
. (2)

The first two terms represent the usual sine-Gordon
Hamiltonian: additional surface energy due to gradients and
pinning potential −V cos 2πz

d
induced by the lattice, which acts

to keep the surface at the atomic plane position. The last term
represents the anisotropy with respect to the azimuthal angle φ

of the gradient ∇z. Note that the anisotropy term changes sign
when the surface moves one atomic plane up. The shape and

the free energy of the elementary step are found by the mini-
mization of the Hamiltonian (2), in which the values of pinning
amplitude V , stiffness γ , and anisotropy ε are renormalized
by the short-scale thermal fluctuations. During the renormal-
ization procedure we start from the natural, “bare” values V0,
γ0, and ε0, which correspond to the nonfluctuating surface and
consistently take into account free thermal fluctuations of the
surface in the range from k to k − dk, starting from the highest
possible wave vector k0 = π/d. We have restricted the consid-
eration to the first-order approximation, which is reasonable
in the case of weak coupling (V 
 γ ) at temperatures much
lower than the c facet roughening transition temperature, 1.3 K
(the weakness of the coupling is due to quantum fluctuations of
the surface). In this approximation the surface stiffness is not
renormalized, while the renormalization of the pinning ampli-
tude is dU/dl = U [2 − πT/(γ d2)] and that of the anisotropy
is dε/dl = dU/4dl, where U = V/k2 and l = log k0/k. The
renormalization stops at a certain wave vector k∗ when the
renormalized pinning energy U (k∗) reaches temperature and
thus stabilizes the surface at larger scales. The renormalized
values of the pinning amplitude V (k∗) and of the anisotropy
ε(k∗) are those that the surface shows at all scales > 1/k∗.

The minimization of the Hamiltonian (2) gives the universal
shape of the step, which, with accuracy up to ε2, is

Z(X) = 4 arctan eX − 8ε′ sinh X/ cosh2 X

+ 16ε′2[sinh X/ cosh2 X + 4 sinh X/ cosh4 X],

where the dimensionless coordinate and height are X =
2πx

√
V/γ /d, Z = 2πz/d, and ε′ = cos 3φ

√
V/γ ε. The free

energy of the step has thus threefold symmetry:

β = 4d/π
√

V γ [1 ± 4/3ε cos 3φ
√

V/γ

− (64/15)ε2 cos2 3φV/γ + o(ε2)].

However, in macroscopic measurements it is impossible to
distinguish neighboring steps, and we observe the value equal
to the semisum of their energies, which has sixfold symmetry:

β = (4d/π )
√

V γ [1−(32/15)(V/γ )ε2 cos 6φ+o(ε2)]. (3)

The accuracy of our measurements on the facet contour is
not enough to verify the temperature and angular dependence
of the step stiffness. Fortunately, there are other means to
measure the step stiffness by using the interferometric images
of vicinal surfaces. The surface tilted by a small angle θ with
respect to the basal facet can be viewed as a set of the steps
of the basal facet with density n = θ . The stiffness of such
a surface is determined by the properties of the step. The
parallel component of the stiffness is due to the repulsion
between steps, εs−s = δ/ l2 (l is the distance between steps),
which resists against increasing density of steps,

γ|| = 6δθ/d3. (4)

The perpendicular component of the stiffness is due to the
resistance of individual steps against bending,

γ⊥ = β̃/dθ. (5)

Both components of the surface stiffness have very strong
polar (with respect to θ ) anisotropy, which was measured by
Andreeva and Keshishev9 and Rolley et al.,10 but no azimuthal
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(with respect to angle φ) anisotropy was ever observed.
Actually, Andreeva and Keshishev measured only the parallel
component γ||, which is isotropic with respect to azimuthal
angle φ because the rotation does not change the distance
and interaction between steps. Rolley et al. measured also the
perpendicular component but only in one direction, assuming
that there is no dependence on φ.

We have made measurements on the perpendicular compo-
nent γ⊥ of the stiffness of the vicinal surface as a function of
the azimuthal angle φ at temperatures 12, 140, and 380 mK
by measuring simultaneously both principal components of
the curvature of the surface. The Laplace equation for
surface pressure and the equilibrium condition for chemical
potentials μL = μS connect the local curvature components
and the corresponding components of the stiffness with the
overpressure in liquid γ1C1 + γ2C2 = δp(ρS − ρL)/ρL. For
measurements of curvature we chose an area on interferogram
around a certain point and fitted the interference phase, which
is proportional to the crystal height, with the second-order
polynomial of the spatial coordinates. The curvatures C|| (in
the θ plane) and C⊥ (in the plane perpendicular to the θ plane)
were obtained from the fit together with the local height h of the
surface. The perpendicular component of the surface stiffness
was calculated as γ⊥ = (1/C⊥){−γ||C|| − 
ρg(h − h0)}. The
values of γ|| were taken from measurements by Rolley et al.,10

and the unknown reference height h0 for each interferogram
was chosen so that γ⊥ was symmetric with respect to φ = 0.
All measurements of the stiffness have been done with slowly
melting crystals so that no (or very small) high-order facets
were present on the analyzed surfaces.

The results of the measurements on the perpendicular
component of vicinal surface stiffness is presented in Fig. 3.
The scatter of the original data was rather high, and it was
difficult to establish certain dependence of the stiffness on
angle θ . To reduce the scatter we have averaged stiffnesses
measured for surfaces with the polar angle θ in the range
from 2◦ to 4◦ (average value of θ is 2.9◦). As one can see,
the anisotropy of perpendicular stiffness is rather high at low
temperatures. The ratio of the maximum value to minimum
value is about 5, which agrees well with the measured
anisotropy of the elementary step stiffness β̃ measured from
the facet contour. The temperature dependence of the stiffness
is consistent with the renormalization theory shown by the
solid curves with the values V0 = 2.6 × 10−3 erg/cm2 and
ε0 = 0.75. The stiffness of the elementary step corresponding
to the measured value of the surface stiffness is β̃ = γ⊥dθ

and reaches 2.4 × 10−9 erg/cm at low temperatures and small
φ. The reported earlier10 value β = 4 × 10−10 erg/cm is
comparable to the minimum of the value γ⊥dθ at φ = 20◦–30◦.

We should mention, however, that our analysis of the
experimental data is only valid at low temperatures because
at T � 0.1 K the entropic interaction between steps becomes
stronger than the elastic one, and the parallel component of
the stiffness is no longer isotropic but depends on the step
stiffness.12 Nevertheless, the typical parallel Laplace term,
γ||C||, had, in our measurements, a value of about 1/3 the
hydrostatic term 
ρg(h − h0) at 140 mK and about 1/4 of it
at 380 mK, which means that the possible error coming from
the anisotropy of the parallel stiffness is less than 20%.

FIG. 3. Perpendicular component of the stiffness of the vicinal
(θ = 2◦–4◦) surface of a 4He crystal at temperatures of 12 mK
(upward triangles), 140 mK (squares), and 380 mK (downward
triangles). Solid curves are the fit with γ⊥ = β̃(T )/(dθ ), where
β(T ) is found from Eq. (3) and the renormalization procedure with
V0 = 2.6 × 10−3 erg/cm2 and ε0 = 0.75 (see text).

The observed anomaly in the stiffness of vicinal sur-
faces explains the relatively high roughening tempera-
tures of high-order facets. The distance between atomic
planes of type [IJ I + JN ] can be found as dIJI+JN =
6d/

√
32(I 2 + J 2 + IJ ) + 9N2. The universal relation(1)

contains the product of the surface stiffness components,
Eqs. (5) and (4), which turns out to be the product of the
step stiffness and step-step interaction, γ||γ⊥ = 6δβ̃/d4. If
we use the value of the step-step interaction measured by
Rolley et al. at 0.1 K, δ = 1.4 × 10−23 erg cm, and measured
here step stiffness at φ = 0, β̃ = 2 × 10−9 erg/cm, we find
TR,[101N] = (2/π )

√
6δβ̃(dIJI+JN/d)2 ≈ 8 K/N2, or 100 mK

for the [1019] facet. In fact, we have observed facets with even
larger Miller indices, which probably means that the maximum
of the stiffness is sharper than cos 6φ and the value of the
stiffness at φ = 0 is even larger than in Fig. 3 but was averaged
out because of the large fitting windows. In the view of such a
possibility it is important to measure the azimuthal anisotropy
of the stiffness by more accurate methods, for instance, by
crystallization waves.

To summarize, we have measured the anisotropy of the step
on the basal c facet and of vicinal surfaces of 4He crystals.
Below 200 mK the anisotropy of the stiffnesses is as high
as 5, and the temperature dependence of the stiffness is in a
reasonable agreement with fluctuation renormalization theory.
We show that the observed anomaly can explain the relatively
high roughening temperatures for high-order facets observed
in our recent work.5
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