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Crystallization of an exciton superfluid
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Indirect excitons—pairs of electrons and holes spatially separated in semiconductor bilayers or quantum
wells—are known to undergo Bose-Einstein condensation and to form a quantum fluid. Here we show that this
superfluid may crystallize upon compression. However, further compression results in quantum melting back to
a superfluid. This unusual behavior is explained by the effective interaction potential between indirect excitons,
which strongly deviates from a dipole potential at small distances due to many-particle and quantum effects.
Based on first-principles path-integral Monte Carlo simulations, we compute the complete phase diagram of
this system and predict the relevant parameters necessary to experimentally observe exciton crystallization in
semiconductor quantum wells.
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I. INTRODUCTION

Quantum coherence of bosonic particles is one of the
most striking macroscopic manifestations of the laws of
quantum mechanics governing the microworld. The discovery
of Bose-Einstein condensation in atomic vapors1 was followed
by the observation of condensation of bosonic quasiparticles
in condensed matter—excitons. Here we mention early claims
(though highly controversial) for three-dimensional (3D)
semiconductors,2 electron bilayers in a quantizing magnetic
field,3,4 exciton polaritons in microcavities,5,6 and so-called
indirect excitons formed from spatially separated electrons
and holes.7–11 Not only was the bosonic gas phase observed,
but also the formation of a quantum Bose liquid—an exciton
superfluid with its peculiar loss of friction—could recently be
verified.4,6 Thus it is tempting to ask whether there exists also
a solid phase of bosons.

The key properties of a crystal are particle localization
and long-range spatial ordering. To achieve spontaneous
crystallization requires finding a Bose system with sufficiently
strong and long-range pair interaction (here we do not consider
particle localization induced by an external field in an optical
lattice or cavity12,13). However, the vast majority of previous
experimental investigations have been performed in the regime
of weak nonideality, where the interaction energy is small
compared to the quantum kinetic energy. Therefore promis-
ing candidates for a bosonic solid are atoms or molecules
with dipole interaction14 or excitons. Here, indirect excitons
offer a number of attractive features: a strong dipole-type
interaction, the suppression of biexciton or trion formation,
the comparatively long radiative lifetime (on the order of
microseconds), and the external controllability of the density
and dipole moment via an electric field perpendicular to the
quantum well plane.10,11,15

In this paper we present clear evidence for the existence
of a crystal of indirect excitons in semiconductor quantum
wells. We compute its full phase diagram and reveal the
parameters for its experimental verification. Our predictions
are based on first-principles path-integral Monte Carlo (PIMC)
simulations. But in contrast to previous quantum Monte Carlo
studies, which predicted crystallization in model systems
such as electron-hole bilayers,8,16 or two-dimensional dipole

systems,17,18 here we use realistic parameters typical for
indirect excitons. In particular, we fully take into account
the finite quantum well width, the composite character of the
excitons, and the different masses of electrons and holes. This
turns out to be of crucial importance for the exciton-exciton
interaction, which strongly departs from a dipole potential
at small distances. As a direct consequence we observe that
the exciton crystal exists only in a finite density interval and
undergoes quantum melting both at high and low density.
Furthermore, when the exciton superfluid crystallizes to form
a solid, quantum coherence is lost abruptly, i.e., there is no
supersolid exciton phase.

This paper is organized as follows. In Sec. II we introduce
the system of indirect excitons and present its reduced
quasi-2D description. In Sec. III the effective exciton-exciton
interaction potential is derived and its accuracy is verified.
In Sec. IV we present our simulation results and the phase
diagram of indirect excitons. Finally, we draw our conclusions
in Sec. V.

II. MODEL

We consider a semiconductor quantum well (QW) of width
L containing Ne = Nh electrons and holes in the conduction
and valence band, respectively, which are created by an optical
pulse.19 Application of an electrostatic field of strength E

perpendicular to the QW plane created, e.g., by a tip electrode
allows us to spatially separate electrons and holes to different
edges of the QW. By varying E this separation can be changed
between 0 and L giving rise to a variable dipole moment d.
At the same time, the field also provides lateral confinement
and a variable particle density, via the quantum confined Stark
effect, for details of the setup, see Sperlich et al.15 Finally, the
system is kept in thermal equilibrium at a finite temperature
T , which does not exceed a few percent of the binding energy
of an electron-hole pair, thus all electrons and holes will be
bound in N = Ne indirect excitons.20

The thermodynamic properties of this system are fully
described by the density operator of Ne electrons and Nh

holes, ρ̂A
Ne,Nh

= A{e−βĤ /Z}, where Z is the partition function,
β = 1/(kBT ), and A denotes full antisymmetrization among
all electronic and hole variables. The full Hamiltonian Ĥ
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contains kinetic energy, the interaction with the external
electric field, and all Coulomb pair interactions between the
2Ne charged particles,

Ĥ = Ĥ‖ + Ĥz + W, (1)

with the single-particle contributions

Ĥ‖ =
N∑

i=1

[
− h̄2∇2

r i

2m
‖
e(h)

]
,

Ĥz =
N∑

i=1

[
− h̄2∇2

zi

2m⊥
e(h)

+ V
QW

e(h) (zi) + Ue(h){Ez}
]

, (2)

and the interaction part

W =
N∑

i<j

V Coul
ij ,

V Coul
ij = eiej

ε
√

r2
ij + z2

ij

. (3)

Here rij denotes interparticle distances in the QW plane, V QW

is the QW confinement, U is the electrostatic potential energy
due to the electric field and ε is the background dielectric
constant, m‖ and m⊥ are the the effective electron (hole)
masses which take into account the anisotropy of the in-plane
(out-of-plane) parabolic dispersions in the QW.

Under the present conditions of strongly bound indirect
excitons with parallel dipole moments resulting in a strong
exciton-exciton repulsion the very complicated evaluation of
the density operator ρ̂A

Ne,Nh
can be substantially simplified.

As was shown in Ref. 21 the system can be mapped onto N

excitons, which can be treated as composite spin polarized
bosons22 where deviations from the Bose statistics (arising
from the original Fermi statistics of electrons and holes) have
been found negligible.9 Thus the density operator is reduced
to a fully symmetric one of N excitons, ρ̂S

N . Furthermore,
all pair interactions can be properly averaged along the QW
width giving rise to an effective (d-dependent) exciton-exciton
interaction VXX. As a result the system 2D Hamiltonian
entering ρ̂S

N becomes

Ĥ eff =
N∑

i=1

[
−h̄2∇2

r i

2mX

]
+

∑
i<j

VXX(rij ; d), (4)

where mX = m
‖
e + m

‖
h is the in-plane effective mass, r i is the

in-plane center-of-mass (c.m.) coordinate of the ith exciton,
and rij = |r i − rj | denotes the c.m. distance between two
excitons.

Below we use atomic units, i.e., lengths will be given
in units of the electron Bohr radius, a∗

B = h̄2ε/(e2m
‖
e), and

energies in units of the electron Hartree, Ha∗ = e2/(εa∗
B). In

particular, for the indirect exctions in ZnSxSe1-x/ZnSe QW
with the doping factor x = 0.3, we use m

‖
e/m0 = 0.15,ε =

8.7, which results in a∗
B = 3.07 nm and the energy unit

Ha∗ = 53.93 meV.

III. EFFECTIVE INTEREXCITON INTERACTION

To verify the approximation (4) and the validity of the
potential Vxx we consider the two-exciton (biexciton) problem.
We define the exciton interaction energy as the energy
difference of a biexciton and two single excitons, EXX(rhh) =
E2X(rhh) − 2EX, which depends parametrically on the distance
between the holes in a biexciton problem, rhh = |R1 − R2|.
The distance rhh remains a well defined quantity also at small
interexciton separations, when a strong overlap of the exciton
wave functions and particle exchange takes place. In this case
the c.m. distance is not physical. The substitution of rij in
Eq. (4) by rhh can be justified as follows.

Similar to the hydrogen problem, the single exciton wave
function can be factorized into the c.m. and the relative part,

�(r,R) = �C(R0) �r(|r − R|), (5)

with

R0 = me

mX
r + mh

mX
R,

(6)
mX = me + mh,

where the vectors r , R, and R0 denote the electron, hole, and
c.m. coordinates, respectively.

The relative part �r can be found by solving a single-particle
problem with the reduced mass μ = memh/(me + mh) in the
potential, Vd = −e2/

√
|r − R| + d2, where the z direction

is taken into account explicitly by the layer separation d,
which is nothing but the exciton dipole moment (divided by
the elementary charge |e|). Therefore we will use the notion
dipole moment for d in the following. For the spatially indirect
exciton we approximate

Vd |r<d = − e2

√
r2 + d2

� −e2

d

(
1 − r2

2d2
+ · · ·

)
, (7)

�H
r (r)

∣∣
r<d

∝ e−r2/2l2
, l2 = h̄

μω
, ω2 = e2

μd3
, (8)

i.e., the leading term of the expansion describes a harmonic
oscillator and the relative part near the exciton origin de-
cays as a Gaussian. Now, using the definition of R0 and
the substitution, (r − R) = γm(R0 − R) with γm = mX/me,
the relative part can be expressed solely in terms of the
hole coordinate (keeping the c.m. coordinate R0 as a fixed
parameter),

�(r,R) = �C(r,R) �r(R,R0), (9)

where the relative part (8) contains a factor γ 2
m in the exponent,

�H
r (r)|r=|R0−R| ∝ e−γ 2

mr2/l2
. For a typical electron-hole mass

ratio in semiconductors, γm ∼ 2 · · · 4, we conclude that the
hole is well localized around the c.m.. This allows us to make
a second step.

We treat the excitons in the Born-Oppenheimer (BO)
approximation and apply the adiabatic transformation for the
spatial part of the full wave function. Spin degrees of freedom
are omitted in the present analysis because they are of minor
importance and their treatment would require substantially
more elaborate simulations. In fact, our model for the exciton
interaction potential has a significantly larger effect on the
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results. Therefore in the derivation of the effective potential we
start with the following two-exciton wave function (coordinate
part):23

�XX = 1

(2!)2

∑
Pe,Ph

(±1)δPe+δPh�e(P̂er1,P̂er2,R1,R2)

×�h(P̂h R1,P̂h R2), (10)

which can be symmetric or antisymmetric depending on the
symmetry of the spin part. The action of the electron and hole
permutation operators, P̂e(h), explore all exchange possibilities
(excluding the electron-hole exchange). Within this ansatz one
can self-consistently solve the Schrödinger equations for the
electrons,

Ĥe�
(n)
e (r1,r2,R1,R2) = E(n)

e (R12)�(n)
e (r1,r2,R1,R2), (11)

and holes [
Ĥh + E(n)

e (R12)
]
�

(m)
h

(
R1,R2,R0

1,R0
2

)
= E

(m)
2X �

(m)
h

(
R1,R2,R0

1,R0
2

)
, (12)

where

Ĥe =
∑
i=1,2

[
T̂ i

e + Veh(r i − R1) + Veh(r i − R2)
]

+Vee(r1 − r2), (13)

Ĥh =
∑
j=1,2

T̂
j

h + Vhh(R12), (14)

T̂e(h) = − h̄2∇2

2me(h)
, (15)

with n,m ∈ { A,S } being defined by the symmetry of the
electron (hole) wave function, and E(n)

e being an additional
mean-field electron potential influenced by the holes in the
biexciton.

If the holes are treated as infinitely heavy,24 the numerical
solution of Eq. (12) is not necessary and the biexciton en-
ergy can be decomposed, E2X = E(n)

e (rhh) + Vhh, with Vhh =
e2/|rhh|. The electron contribution E(n)

e is the solution for a
singlet (triplet) state,[∑

i=1,2

(
−h̄2∇2

ri

2me
+ Veh(r i)

)
+ e2

|r1 − r2|

]
�S/A

e

= [
ES/A

e + 2E(X)
]
�S/A

e , (16)

where

Veh(r i) =
2∑

j=1

− e2√
(r i + Rj )2 + d2

, (17)

with the holes located at R1,2 = ± 1
2 rhh. This equation

has been solved numerically for an experimentally feasible
e-h separation d = 13.3a∗

B.25 A first observation is that the
energy Ee(mh → ∞) is not sensitive to rhh, once rhh � d; see
Fig. 1(a). This is understood from the behavior of the electron
density [see Fig. 1(b)]: in all cases the electron cloud extends
well beyond rhh, which is a result of the shallow interaction
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FIG. 1. (Color online) Exciton interaction potential VXX for a
dipole moment d = 13.3a∗

B. (a) The interaction potential VXX (point-
dashed line) is compared to the exciton interaction energy EXX in
several approximations: average interaction of two excitons 〈EXX〉
evaluated by PIMC simulations using the Hamiltonian, Eq. (4);
the BO model with the infinite hole mass, symmetric (ES

XX), and
antisymmetric (EA

XX) electronic states; the improved BO model,
EXX = Ee + Vhh, with a realistic mass ratio mh/me = 2.46 (ZnSe-
based QW). Also shown are the electronic contribution Ee and the
dipole potential d2/r3. Two vertical lines indicate the boundaries
of the exciton crystal. (b) Radial electron density ne(r) for several
hole separations rhh, relative to the midpoint of two holes located at
R1,2 = ± 1

2 rhh. (c) Electron pair distribution function gee(ree) for the
values rhh in (b).

potential, Veh(r), of an electron with the two holes for rhh < d,
and the strong e-e repulsion that keeps the electrons at an
average distance r̃ ∼ 20a∗

B apart, practically independent on
the hole-hole separation. This behavior is evident from the
pair distribution function g(ree); see Fig. 1(c). Consequently,
for a large exciton dipole moment, we observe no noticeable
difference in the energy of the symmetric and antisymmetric
states, merging into a single curve Ee(mh → ∞); see Fig. 1(a).
With these results we can now analyze EXX(rhh), cf. red
dashed line in Fig. 1(a). At large distances, r � d, EXX

practically coincides with the classical dipole potential, VD =
d2/r3, so we expect the system to behave like 2D polarized
dipoles, at low densities. At smaller distances, r < d, however,
EXX essentially follows a Coulomb potential which arises
mainly from the hole-hole repulsion. Finally, for r � d, the
interaction energy shows an unphysical Coulomb singularity
originating from the assumption of an infinite hole mass. In
real systems, EXX is expected to be softer, approaching a
finite value at zero distance, due to quantum diffraction and
exchange effect, similar to the behavior of the Kelbg potential
in 3D electron-ion plasmas.26–28 Therefore we proceed with
the generalization of the model for a finite hole mass.

In the situation with a large dipole moment, as considered in
Fig. 1(a), the interaction energy is positive at all distances and
hence no bound states (biexcitons) are formed. This originates
from the positive eigenvalues of the Schrödinger equation
for the holes (12). Therefore evaluation of the interaction
energy should not be limited only to the ground-state solution
of Eq. (12), but should include contributions of all states,
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including the continuum.29 This can be done directly via the
two-particle partition function Z2,

Z2(β,rhh) =
∫

d R1d R2 ρ(R1,R2; R1,R2; β)

× δ(|R1 − R2| − rhh), (18)

the density matrix, and the thermodynamic energy estimator

E(rhh) = − ∂

∂β
ln Z2(β,rhh). (19)

Here, Z2 parametrically depends on the distance rhh between
the particles. Applied to the case of two holes in the biexciton
(E ≡ E2X), the density matrix is the solution of the two-body
Bloch equation with the Hamiltonian, Ĥh + E(n)

e (|R1 − R2|),
see Eq. (12), which can be factorized into the c.m. free particle
density matrix and the relative part,

ρ(R1,R2; R′
1,R′

2; β) = ρF (Rc,R′
c; β) ρ(rhh,r ′

hh; β), (20)

where

ρ(rhh,r ′
hh; β) ≡ ρF (rhh,r ′

hh; β) e−U eff (rhh,r ′
hh;β). (21)

Here U eff is the effective pair action,26,28 introduced in a way
that at large distances and (or) high temperatures it reduces to
β[e2/|rhh| + E(n)

e (rhh)]. Substituted in Eqs. (18) and (19) we
obtain

E2X(rhh; β) = kBT +
(

kBT + ∂

∂β
U eff(rhh,rhh; β)

)
, (22)

where the first term accounts for the c.m. kinetic energy (in two
dimensions). For spherically symmetric potentials the effective
action and its temperature derivative can be evaluated with
the matrix-squaring technique.30,31 The resulting interaction
energy, EXX(rhh; β) = E2X(rhh; β) − EX(β), evaluated at the
temperature 1/β = 10−3 Ha∗ is shown in Fig. 1(a) by the red
solid line. Quantum effects arising from the finite hole mass
(e.g., for the ZnSe-based QWs, mh/me � 2.46) strongly affect
the interaction energy EXX for r < 3a∗

B, which consequently
approaches a finite value at zero distance.

For final comparison, we compute the exciton interaction
energy by PIMC simulations using the Hamiltonian (4). We
used two bosonic excitons of mass mX in periodic boundary
conditions. The result, 〈EXX〉, as a function of the average
interexciton distance, 〈r〉 = ∫

d r rg(r) · [
∫

d r g(r)]−1, evalu-
ated via the exciton pair distribution function g(r), is shown in
Fig. 1(a) by the solid squares. This quantity agrees well with
the finite-mass BO solution, EXX, for rhh > 5a∗

B, and confirms
applicability of both models in the density range where we
predict formation of the excitonic crystal. The deviations being
noticeable at smaller distances are outside the density range
used in the present analysis.

IV. SIMULATION RESULTS

Using PIMC simulations with ρ̂s
N and the Hamiltonian (4)

the thermodynamic properties of the N strongly correlated
excitons can be efficiently computed with full account of
all interactions, quantum and spin effects, without further
approximations. Of central importance for the crystallization
is the coupling (nonideality) parameter, i.e., the ratio of
interaction energy to kinetic energy. For a quantum system

with Coulomb (dipole) interaction it is given by the Brueckner
parameter rs (the dipole coupling parameter D),

rs ≡ a

a∗
B

∼ n−1/2, D ≡ MX

m
‖
e

1√
πrs

d2

a∗2
B

∼ n1/2, (23)

where a is the mean interparticle distance and n is the exciton
density. Note the opposite scaling of rs and D with density.

We perform 2D grand-canonical PIMC simulations32 with
periodic boundary conditions and extract the results for the
canonical ensemble with N = 60−500 excitons. To map out
the phase diagram we scan a broad parameter range spanning
three orders of magnitude of density and temperature. We
first obtain the phase diagram for a fixed value of the dipole
moment, corresponding to d = 13.3a∗

B, and after that we
analyze in Sec. V B how the crystal phase boundary changes
when d is varied.

A. Spatial ordering of excitons

To detect crystallization we compute the exciton pair distri-
bution function (PDF), g(r). This function is homogeneous in
an ideal gas, whereas in the fluid and crystal phase it exhibits
increasing modulations, which signal localization and spatial
ordering. Typical examples of g(r) are displayed in the top
rows of Figs. 2 and 4 and show clear evidence of exciton
localization. The existence of the translational long-range
order (LRO) is detected from the asymptotic behavior of the
angle-averaged function g(r) for large r = |r|. In two dimen-
sions a possible freezing scenario is given by the Kosterlitz-
Thouless-Nelson-Halperin-Young (KTNHY) theory (see the
overview33), predicting an exponential (algebraic) decay of the
peak heights of g(r) above (below) the melting temperature.

|g(r)−1|

10−5

10−4

10−3

01 518601 5186

g6(r)

10−3

10−2

10−1

pair distance r/rs

g(�r)

0

1

)b( )c(r /rs (a)

10 3kBT/ Ha∗=1.00
1.05
1.25
1.52

FIG. 2. (Color online) Constant density freezing. Top row: 2D
PDF g(r ij ) (relative to a fixed particle in the center) for na∗2

B = 0.0035
and temperatures kBT/Ha∗ of 1.74 × 10−3 (a), 1.38 × 10−3 (b) and
1.08 × 10−3 (c). Bottom: Radial distribution function |g(r) − 1| (left)
and bond angular order distribution function g6(r) (right) at na∗2

B =
0.0022 for N = 500. Lines are a guide to the eye to visualize an
algebraic decay in this log-log plot.
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Indeed, our simulations find some support for this scenario;
see bottom left part of Fig. 2.

The existence of angular hexagonal LRO follows from the
asymptotic behavior of the bond angular correlation function,
g6(r) = 〈ψ∗

6 (r)ψ6(0)〉, with ψ6(rk) = n−1
l

∑nl

l=1 ei6�kl , where
nl is the number of nearest neighbors of a particle located at
rk , and �kl is their angular distance. We observe a change
from an exponential asymptotic of g6 to a constant, which
is the expected behavior for a liquid-solid transition; see
the bottom-right part of Fig. 2. There are some indications
for the existence of a hexatic phase—coexistence of angular
quasi-LRO (algebraic decay) and missing translational LRO
in a narrow temperature interval; see curves for kBT = 1.05 ×
10−3 Ha∗ and kBT = 1.25 × 10−3 Ha∗.

In addition we performed a Voronoi analysis, which
provides access to local distortions of the hexagonal symmetry
of the lattice. The average fraction of particles (the probability)
with a number of nearest neighbors deviating from 6 is
referred to as the defect fraction, i.e., (1 − P6). The results
of Fig. 3 explore the nature of the melting transition at
constant density. We observe a sharp increase of the number
of defects at the melting point, which is in disagreement
with the KTNHY scenario. A possible alternative to the
KTNHY is a first-order solid-liquid phase transition, with
an exponential decay of g6(r). However, the latter was not
observed in our simulations, possibly due to a limited system
size (N ∼ 500). The constructed Voronoi map for different
particle configurations shows the accumulation of the defects
at the boundaries between few crystallites. A similar picture,
but for a significantly larger classical system (N ∼ 106) has
been recently reported and the transition was proved to be of
first order.34 If that system was equilibrated sufficiently long,
the intermediate hexatic phase completely vanished. With our

0.3

0.325

0.35

0.375

0.4

0.425

0.45

0.6 0.8 1 1.2 1.4 1.6 1.8 2

1
−

P
6

Temperature, [kBT/Ha∗, 10−3]

FIG. 3. Temperature dependence of the defect fraction at density
na∗2

B = 2.2 × 10−3 and particle numbers N = 501−505 (vertically
aligned dots) characterizing the ordered and disordered phases.
The defect fraction (1 − P6) shows a sharp jump at T ∼ 10−3 Ha∗.
This is in disagreement with the KTNHY theory, which predicts a
continuous unbinding of dislocations in the hexatic phase indicated
by a continuous variation of the critical exponent η6(T ) � 1/4 and
the bond angular correlation function g6(r) ∼ r−η6(T ). In contrast, we
observe an abrupt transition from the LR angular order (T < Tc) to a
quasi-long-range angular order with η6(T ) ∼ 2 (T � Tc); see Fig. 2.

data for the limited particle numbers we cannot give a confident
answer whether we observe a discontinuous transition in the
present system.

B. Exciton quantum coherence: Superfluidity

After analyzing emergence of spatial ordering let us turn
to the quantum coherence properties of nonideal indirect
excitons. In a 2D Bose system cooling leads to sudden
emergence of coherence in the liquid phase—the normal
fluid—superfluid transition. The phase boundary is governed
by the Berezinskii-Kosterlitz-Thouless (BKT) scenario35 and
is given by the condition χ = 4/γs for the exciton quantum
degeneracy parameter χ ≡ n�2,

kBTKT(ns) = π

2
ns

m
‖
e

mX
Ha∗, (24)

where ns = γsn is the exciton superfluid density. Therefore a
key quantity is the superfluid fraction γs, where 0 � γs � 1. In
PIMC simulations, it is directly computed from the statistics
of the winding number W :36

γs = mX

Nh̄2β
〈W 2〉 , W =

N∑
i=1

∫ β

0
d t

d r i(t)

d t
. (25)

Typical simulation results for γs are shown in the bottom part
of Fig. 4.

Figure 5 illustrates the computation of the winding number
versus temperature (left) and the finite-size scaling for the
critical temperature TKT of the BKT transition (right). One
observes a systematic shift of TKT(N ) to lower values with
an increase of the system size N . The extrapolation to
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FIG. 4. (Color online) Isothermal freezing and melting of indirect
excitons. (a)–(f) 2D PDF g(r) for kBT1 = 0.001 Ha∗ at densities
na∗2

B of 0.84 × 10−3 (a), 1.3 × 10−3 (b), 1.7 × 10−3 (c), 3.2 × 10−3

(d), 3.6 × 10−3 (e), and 4.0 × 10−3 (f). Bottom panel: Superfluid
fraction γs, Eq. (25), vs density for two temperatures. Symbols are
PIMC results, lines are a guide to the eye. The increase of γs at high
density extends over a small finite range of solid-liquid coexistence,
which is due to the finite particle number in the simulations.
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FIG. 5. (Color online) (a) Temperature dependence of the wind-
ing number 〈W 2〉(T ) for the exciton numbers N = 56 and 170. Den-
sity na∗2

B = 5 × 10−3. The Berezinskii-Kosterlitz-Thouless transition
temperature TKT(N ) is determined by the condition (Refs. 18 and 35)
〈W 2〉(TKT) = 4/π , shown by the horizontal dashed line. (b) System
size dependence of TKT(L) for three densities: na∗2

B = 5 × 10−3,10−2,
and 2 × 10−2. Values of TKT are rescaled to fit into a single plot.

the thermodynamic limit, TKT(L → ∞), with L = √
N/n,

is obtained by fitting the simulation data by the equation
TKT(L) = TKT(∞) + b/ ln2(L). It is a direct consequence
of the Kosterlitz-Thouless renormalization-group analysis,35

which is considered to be exact in the asymptotic regime of
large L. This scaling allows us to make predictions for the
phase-transition line in a macroscopic system.

C. Phase diagram of indirect excitons

We now summarize our findings in the complete phase
diagram of indirect excitons in the density-temperature plane,
which is presented in Fig. 6. The degeneracy line χ = 1
separates the regions of classical (above the line) and quantum

T [Ha∗]

0.0001
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0.01

0.0001 0.001 0.01
density n [(a∗B)−2]

χ = 1

χ = 4

D = 17±1

r s = 9.4±0.3solid
superfluid
normalfluid
Tdip
TKT

e-
h

pl
as

m
a

FIG. 6. (Color online) Phase diagram of 2D indirect excitons with
d = 13.3a∗

B. Circles and squares mark our PIMC results, data for
triangles are from Ref. 18. Vertical dashed lines (D = 17 ± 1 and
rs = 9.4 ± 0.3) indicate the two density induced quantum freezing
(melting) transitions. Filled symbols mark the two triple points. The
normal-fluid–superfluid phase boundary is marked by the full (red)
line with triangles and squares, respectively, and is below the ideal
estimate TKT according to Eq. (24); cf. thick solid line labeled χ = 4.
The line Tdip marks the freezing transition of a classical 2D dipole
system. The e-h plasma phase is beyond the present analysis.

behavior (below). While classical excitons exist only in a
fluid (or gas) phase the quantum region is composed of three
different phases: a normal fluid, a superfluid, and a crystal
phase.20 Correspondingly, there exist two triple points, at the
upper-left (right) edge of the crystal phase. At high temperature
the excitons are in the fluid phase. Cooling leads either into
the superfluid or crystal phase. There is no cooling transition
from the superfluid to the crystal.

At low densities cooling always leads into the superfluid
phase; the transition is accompanied by a sudden increase
of γs from zero to a finite value. The phase boundary is
substantially below the upper limit TKT(ns = n), Eq. (24),
and is in full agreement with our previous analysis for 2D
dipoles,18 indicating that the exciton interaction is close to
a dipole potential. The picture suddenly changes when the
density exceeds na∗2

B ≈ 0.000 78: the superfluid transition
vanishes and, instead, a strong modulation of the PDF is
observed signaling crystallization, cf. top row of Fig. 2. The
critical density corresponds to a dipole coupling parameter
Dc = 17 ± 1, which agrees with studies of pure 2D dipole
systems.17,37 Note that the freezing temperature changes
nonmonotonically exhibiting a maximum value T max around
na∗2

B ≈ 0.002.
The superfluid-solid transition is verified by simulating

compression along several isotherms. At low temperature and
low density, the superfluid fraction γs starts from a high
value until it suddenly drops to zero at the critical density
na∗2

B ≈ 0.000 78, cf. bottom part of Fig. 4. This behavior
persists up to zero temperature; cf. Fig. 6. Vanishing of
quantum coherence upon crystallization is a general feature
in this system and indicates that there is no supersolid phase
of indirect excitons. If the temperature is above the left triple
point the superfluid fraction is exactly zero, and compression
leads to a phase transition from the normal fluid to the crystal
phase, cf. γs for T = 0.001 Ha∗ and the change of the PDF in
Figs. 4(a)–4(c).

D. Reentrant quantum melting

Interestingly, if the density is increased further, the exciton
crystal melts, cf. Figs. 4(e) and 4(f), this time accompanied
by a jump of the superfluid fraction from zero to about 0.9.
This indicates isothermal quantum melting to a (partially)
superfluid exciton liquid. This occurs at a density of nCa∗2

B =
0.0036 ± 0.0003 corresponding to rc

s = 9.4 ± 0.3 and, again,
persists to zero temperature. At temperatures above the
right triple point, kBT � 0.001 Ha∗, melting and onset of
superfluidity are decoupled: first the crystal melts into a normal
fluid, which becomes a superfluid only at a higher density; cf.
Fig. 6.

Thus the most striking feature of the exciton phase diagram
is the existence of two quantum freezing (melting) transitions,
even in the ground state. At low density excitons undergo pres-
sure crystallization, which is characteristic for the behavior of
dipole systems or, more generally, for neutral matter composed
of atoms or molecules. In addition, at higher densities, there is
a second transition: quantum melting by compression. While
such an effect is absent in conventional neutral matter it is
ubiquitous in Coulomb systems, including the Wigner crystal
of the strongly correlated electron gas, ion crystals in the
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FIG. 7. (Color online) Boundaries of the exciton crystal for
different dipole moments d . Lower abscissa: density range given
by Dc = 17 and rc

s = 9.4. Upper abscissa: maximum temperature
estimated from T max

dip . No solid phase exists for d � dc ≈ 9.1a∗
B.

core of white dwarf stars, and nuclear matter in the crust of
neutron stars. The existence of this quantum melting transition
in indirect excitons is due to the peculiar shape of the effective
potential VXX: one readily confirms in Fig. 1 that at the critical
density where the mean exciton-exciton distance equals 9.4a∗

B,
VXX essentially follows the Coulomb repulsion of the holes
(red dashed curve).

V. CONCLUSIONS

We have shown that a bosonic many-particle system
possesses, besides its weakly nonideal Bose condensed gas
and its superfluid liquid phases, also a strongly correlated solid
phase. Indirect excitons in semiconductor quantum wells have
been found a favorable candidate due to their long-range pair
interaction and the possibility to achieve strong nonideality by
controlling the dipole moment with an external electric field.
Based on first-principles PIMC simulations we have computed
the complete phase diagram in the region of the exciton
crystal. (Quasi-)long-range crystalline order and macroscopic
quantum coherence are found to be incompatible in an exciton
crystal—there is no supersolid phase, as long as the crystal is
free of defects.

A. Experimental realization

The results presented above were computed for d =
13.3a∗

B. Using values from Ref. 21 this dipole moment can
be achieved in a ZnSe quantum well of width L ≈ 50 nm or a
GaAs quantum well with L ≈ 148 nm, both at an electric-field
strength of E = 20 kV/cm. The density interval for the exciton
crystal is estimated as 1.3 × 109 − 3.6 × 109 cm−2 for GaAs
and 8.2 × 109 − 3.8 × 1010 cm−2 for ZnSe. An estimate for
the maximum temperature where the crystal can exist is
obtained from the classical dipole melting curve,

kBTdip = c
d2

a∗2
B

(
na∗2

B

)3/2
Ha∗, (26)

where c ≈ 0.09,38 and the critical density nCa∗2
B = 0.0036

is being used. Taking into account that this value is
approximately a factor 2 too high, cf. Fig. 6, we obtain
the estimates kBT max = 0.17 K (GaAs) and kBT max = 0.78 K

(ZnSe). These parameters are well within reach of current
experiments. A particular advantage is that the upper density
limit for exciton crystallization is a factor 16 higher than the
threshold for an electron Wigner crystal (rs ≈ 37). A suitable
diagnostics for the excitonic crystalline phase can be Bragg
scattering.15

B. Dependence of phase diagram on the quantum well width

Let us now analyze the dependence of the phase diagram
on the dipole moment d. In semiconductor quantum wells the
dipole moment can be varied in a broad range by varying the
QW width or/and the electric-field strength. As shown in Fig. 7,
an increase of d reduces the lower density limit of the crystal
phase whereas the upper boundary remains unchanged. Thus
the crystal phase expands with d, the maximum temperature
T max grows quadratically, cf. Eq. (26) and Fig. 7. Finally, there
exists a minimum value dc = 9.1a∗

B where the two limiting
densities converge, and the exciton crystal phase vanishes.

C. Outlook

Let us now briefly discuss effects which have been
neglected by the present model, most importantly, disorder
and thermal relaxation. To reduce the effect of the exciton
localization at surface imperfections we considered the model
of a single wide QW (L > 400 Å). This allows us to completely
neglect the effect of 1 monolayer well width fluctuations on
the exciton binding energy and localization. Some quantitative
analysis can be found in Filinov et al.39 In our case, the in-plane
size of the exciton wave function is comparable to the dipole
moment d = 13.3a∗

B ≈ 400 Å and is therefore of the order
of the characteristic lateral size of the interface fluctuations
∼400 Å (see Gammon et al.40). Hence once the exciton is
on the top of the defect, the corresponding potential gets
significantly smoothed.

In many optical experiments excitons are created in a highly
nonequilibrium state with a possible coherence and coupling to
the laser field. Such conditions, certainly, complicate both the
interpretation of the experiment and the theoretical description,
and have been studied in detail for polaritons. In contrast,
we consider an experimental realization, where the excitons
are created by an optical pulse, which is switched off after
a short duration, or is periodically repeated with a delay of
several microseconds, sufficient for the exciton equilibration.
Fast exciton recombination is prevented by the spatial e-h
separation due to a constantly applied electric field. This
situation is experimentally feasible as was shown by Vörös
et al.41

Finally, the most striking feature of the crystal of indirect
excitons, confirmed by the simulations, is two quantum
melting transitions which persist at zero temperature: at low
densities it melts by expansion whereas at high densities it
melts when being compressed. The origin of this unusual and
rich phase diagram has been traced to the nontrivial form
of the exciton interaction potential. With it the exciton solid
combines features of conventional neutral matter (exhibiting
crystallization by compression42,43) and Coulomb matter
(quantum melting by compression), as found, for instance,
in exotic compact stars.
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J. BÖNING, A. FILINOV, AND M. BONITZ PHYSICAL REVIEW B 84, 075130 (2011)

ACKNOWLEDGMENTS

We thank D. Hochstuhl for performing multiconfiguration
Hartree-Fock calculations for the exciton interaction energy.

Stimulating discussions with Yu. Lozovik and P. Ludwig and
financial support by the Deutsche Forschungsgemeinschaft
(Project No. FI 1252/1and SFB-TR24 Project No. A5) are
gratefully acknowledged.

*filinov@theo-physik.uni-kiel.de
†bonitz@physik.uni-kiel.de
1M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and
E. A. Cornell, Science 269, 198 (1995).

2L. V. Butov, C. W. Lai, A. L. Ivanov, A. C. Gossard, and D. S.
Chemla, Nature (London) 417, 47 (2002).

3A. H. MacDonald and E. H. Rezayi, Phys. Rev. B 42, 3224 (1990).
4L. Tiemann, W. Dietsche, M. Hauser, and K. von Klitzing, New J.
Phys. 10, 045018 (2008).

5J. Kasprzak et al., Nature (London) 443, 409 (2006).
6A. Amo, J. Lefrere, S. Pigeon, C. Adrados, C. Ciuti, I. Carusotto,
R. Houdre, E. Giacobino, and A. Bramati, Nat. Phys. 5, 805 (2009).

7Y. E. Lozovik and O. L. Berman, JETP 84, 1027 (1997).
8A. V. Filinov, M. Bonitz, and Y. E. Lozovik, J. Phys. A 36, 5899
(2003).

9A. Filinov, M. Bonitz, P. Ludwig, and Y. E. Lozovik, Phys. Status
Solidi C 3, 2457 (2006).

10V. B. Timofeev and A. V. Gorbunov, J. Appl. Phys. 101, 081708
(2007).

11P. Ludwig, A. V. Filinov, M. Bonitz, and H. Stolz, Phys. Status
Solidi B 243, 2363 (2006).

12P. Domokos and H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002).
13S. Gopalakrishnan, B. L. Lev, and P. M. Goldbart, Nat. Phys. 5, 845

(2009).
14A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys.

Rev. Lett. 94, 160401 (2005).
15K. Sperlich, P. Ludwig, A. Filinov, M. Bonitz, H. Stolz, D. Hommel,

and A. Gust, Phys. Status Solidi C 6, 551 (2009).
16S. De Palo, F. Rapisarda, and G. Senatore, Phys. Rev. Lett. 88,

206401 (2002).
17G. E. Astrakharchik, J. Boronat, I. L. Kurbakov, and Y. E. Lozovik,

Phys. Rev. Lett. 98, 060405 (2007).
18A. Filinov, N. V. Prokof’ev, and M. Bonitz, Phys. Rev. Lett. 105,

070401 (2010).
19An alternative realization are two coupled n− and p−doped

semiconductor layers.
20At densities exceeding the Mott density nM pressure ionization

transforms the system into an electron-hole plasma. Here additional
phases such as a hole liquid or a hole crystal are possible (Ref. 42).
However, the present analysis is restricted to densities substantially
below the Mott density (Ref. 23).

21A. Filinov, P. Ludwig, M. Bonitz, and Y. E. Lozovik, J. Phys. A 42,
214016 (2009).

22Spatial separation of electrons and holes gives rise to spin
polarization at low temperatures (Ref. 23).

23S. Ben-Taboude Leon and B. Laikhtman, Phys. Rev. B 67, 235315
(2003).

24C. Schindler and R. Zimmermann, Phys. Rev. B 78, 045313
(2008).

25This value of the exciton dipole moment has been predicted
theoretically to be achievable in a 40-nm-wide ZnSe single quantum
well (Refs. 11 and 21).

26G. Kelbg, Ann. Phys. 12, 219 (1963).
27A. Filinov, M. Bonitz, and W. Ebeling, J. Phys. A 36, 5957 (2003).
28A. V. Filinov, V. O. Golubnychiy, M. Bonitz, W. Ebeling, and J. W.

Dufty, Phys. Rev. E 70, 046411 (2004).
29As we consider low temperatures (T � 0.01 Ha∗) for the electrons,

only the ground-state solution is included. This is due to the large
energy gap to the first excited state.

30R. Storer, J. Math. Phys. 9, 964 (1968).
31A. Klemm and R. Storer, Aust. J. Phys. 26, 43 (1973).
32M. Boninsegni, N. V. Prokof’ev, and B. V. Svistunov, Phys. Rev. E

74, 036701 (2006).
33K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).
34P. Hartmann, A. Douglass, J. C. Reyes, L. S. Matthews, T. W. Hyde,
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37H. P. Büchler, E. Demler, M. Lukin, A. Micheli, N. Prokof’ev,

G. Pupillo, and P. Zoller, Phys. Rev. Lett. 98, 060404 (2007).
38R. K. Kalia and P. Vashishta, J. Phys. C 14, L643 (1981).
39A. V. Filinov, C. Riva, F. M. Peeters, Y. E. Lozovik, and M. Bonitz,

Phys. Rev. B 70, 035323 (2004).
40D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and

D. Park, Phys. Rev. Lett. 76, 3005 (1996).
41Z. Vörös, D. W. Snoke, L. Pfeiffer, and K. West, Phys. Rev. Lett.

97, 016803 (2006).
42M. Bonitz, V. S. Filinov, V. E. Fortov, P. R. Levashov, and

H. Fehske, Phys. Rev. Lett. 95, 235006 (2005); J. Phys. A: Math.
Gen. 39, 4421 (2006).

43A. Filinov, M. Bonitz, and Yu. Lozovik, Phys. Rev. Lett. 86, 3851
(2001); Phys. Stat. Sol. (b) 221, 231 (2000).

075130-8

http://dx.doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1038/417047a
http://dx.doi.org/10.1103/PhysRevB.42.3224
http://dx.doi.org/10.1088/1367-2630/10/4/045018
http://dx.doi.org/10.1088/1367-2630/10/4/045018
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1038/nphys1364
http://dx.doi.org/10.1134/1.558220
http://dx.doi.org/10.1088/0305-4470/36/22/310
http://dx.doi.org/10.1088/0305-4470/36/22/310
http://dx.doi.org/10.1002/pssc.200668038
http://dx.doi.org/10.1002/pssc.200668038
http://dx.doi.org/10.1063/1.2722742
http://dx.doi.org/10.1063/1.2722742
http://dx.doi.org/10.1002/pssb.200668098
http://dx.doi.org/10.1002/pssb.200668098
http://dx.doi.org/10.1103/PhysRevLett.89.253003
http://dx.doi.org/10.1038/nphys1403
http://dx.doi.org/10.1038/nphys1403
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1103/PhysRevLett.94.160401
http://dx.doi.org/10.1002/pssc.200880364
http://dx.doi.org/10.1103/PhysRevLett.88.206401
http://dx.doi.org/10.1103/PhysRevLett.88.206401
http://dx.doi.org/10.1103/PhysRevLett.98.060405
http://dx.doi.org/10.1103/PhysRevLett.105.070401
http://dx.doi.org/10.1103/PhysRevLett.105.070401
http://dx.doi.org/10.1088/1751-8113/42/21/214016
http://dx.doi.org/10.1088/1751-8113/42/21/214016
http://dx.doi.org/10.1103/PhysRevB.67.235315
http://dx.doi.org/10.1103/PhysRevB.67.235315
http://dx.doi.org/10.1103/PhysRevB.78.045313
http://dx.doi.org/10.1103/PhysRevB.78.045313
http://dx.doi.org/10.1002/andp.19634670308
http://dx.doi.org/10.1088/0305-4470/36/22/317
http://dx.doi.org/10.1103/PhysRevE.70.046411
http://dx.doi.org/10.1063/1.1664666
http://dx.doi.org/10.1071/PH730043
http://dx.doi.org/10.1103/PhysRevE.74.036701
http://dx.doi.org/10.1103/PhysRevE.74.036701
http://dx.doi.org/10.1103/RevModPhys.60.161
http://dx.doi.org/10.1103/PhysRevLett.105.115004
http://dx.doi.org/10.1103/PhysRevLett.39.1201
http://dx.doi.org/10.1103/RevModPhys.67.279
http://dx.doi.org/10.1103/PhysRevLett.98.060404
http://dx.doi.org/10.1088/0022-3719/14/22/002
http://dx.doi.org/10.1103/PhysRevB.70.035323
http://dx.doi.org/10.1103/PhysRevLett.76.3005
http://dx.doi.org/10.1103/PhysRevLett.97.016803
http://dx.doi.org/10.1103/PhysRevLett.97.016803
http://dx.doi.org/10.1103/PhysRevLett.95.235006
http://dx.doi.org/10.1088/0305-4470/39/17/S17
http://dx.doi.org/10.1088/0305-4470/39/17/S17
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1103/PhysRevLett.86.3851
http://dx.doi.org/10.1002/1521-3951(200009)221:1<231::AID-PSSB231>3.0.CO;2-D

