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Topological entanglement entropy of Z2 spin liquids and lattice Laughlin states
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We study entanglement properties of candidate wave functions for SU(2) symmetric gapped spin liquids and
Laughlin states. These wave functions are obtained by the Gutzwiller projection technique. Using topological
entanglement entropy γ as a tool, we establish topological order in chiral spin liquid and Z2 spin liquid wave
functions, as well as a lattice version of the Laughlin state. Our results agree very well with the field theoretic
result γ = log D where D is the total quantum dimension of the phase. All calculations are done using a Monte
Carlo technique on a 12 × 12 lattice enabling us to extract γ with small finite-size effects. For a chiral spin liquid
wave function, the calculated value is within 4% of the ideal value. We also find good agreement for a lattice
version of the Laughlin ν = 1/3 phase with the expected γ = log

√
3.
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I. INTRODUCTION

Quantum spin liquids(SLs) are states that arise from the
collective behavior of spins but are not characterized by a
Landau order parameter. They are associated with remarkable
phenomena such as fractional quantum numbers,1 transmuta-
tion of statistics (e.g., fermions appearing in a purely bosonic
model),2,3 and enabling otherwise impossible quantum phase
transitions,4 to name a few. SLs may be gapless or gapped.
While current experimental candidates for SLs appear to have
gapless excitations,5 gapped SLs are indicated in numerical
studies on the kagome6 and honeycomb lattice.7 Gapped
SLs are characterized by topological order, i.e., ground-state
degeneracy that depends on the topology of the underlying
space.8

Recently, a novel characterization of gapped SLs has
emerged using quantum entanglement in terms of the topo-
logical entanglement entropy (TEE).9–11 This quantity takes a
fixed value γ in a topologically ordered phase and remarkably
can be calculated just knowing the ground-state wave function.
The entanglement entropy of a two-dimensional disk-shaped
region A in a gapped phase obeys S2 = alA − γ , where a
smooth boundary of length lA is assumed to surround the
region. By carefully subtracting off the leading dependence,
the constant γ can be isolated. It is argued to be a charac-
teristic of the phase, γ = log D, where D is the quantum
dimension of the phase.10,11 For the Abelian states discussed
here, D2 is identical to the ground-state degeneracy on the
torus.

Gapped SLs can be viewed as a state where each spin
forms a singlet with a near neighbor, but the arrangement of
singlets fluctuates quantum mechanically so it is a liquid of
singlets. Theoretical models of this singlet liquid fall roughly
into two categories. In the first, the singlets are represented
as microscopic variables as in quantum-dimer and related
models12–16 and are suggested by large-N calculations.17

Topological order can then be established by a variety of
techniques including exact solution and most recently quantum
entanglement.18–22 In contrast there has been less progress
establishing topological order in the second category, which is
SU(2) symmetric spin systems where valence bonds are emer-
gent degrees of freedom. Anderson1 proposed constructing an
SU(2) symmetric SL wave function by starting with a BCS

state, derived from the mean-field Hamiltonian

H = −
∑
rr ′

{trr ′f †
σ,rfσ,r ′ + �rr ′f

†
↑,rf

†
↓,r ′ } + H.c., (1)

and Gutzwiller-projecting it so that there is exactly one
fermion per site, hence a spin wave function. Variants of
these are known to be good variational ground states for
local spin Hamiltonians (see, e.g., Ref. 23) and are more
viable descriptions of most experimental and SU(2) symmetric
liquids. Approximate analytical treatments of projection,
which include small fluctuations about the above mean-field
state, indicate that at least two kinds of gapped SLs can arise:
chiral SLs24 and Z2 SLs.17,25,26 However, given the drastic
nature of projection, it is unclear whether the actual wave
functions obtained from this procedure are in the same phases.
In this paper we use TEE to establish topological order for
SU(2) symmetric chiral and Z2 SL wave functions. We show
that the recently developed Monte Carlo technique used to
study entanglement properties of gapless SLs27 can be applied
here as well to extract TEE for system sizes large enough
(144 spins) so that it approaches its quantized value. Instead
of using the more standard von Neumann entropy, we focus
on the Renyi entropy, which carries the same contribution
from the TEE for both nonchiral28 and chiral29 states for a
topologically trivial bipartition. The fact that the wave function
is a determinant or product of determinants in these cases
allows for its efficient evaluation. For a model of the chiral
SL, the calculated TEEs are remarkably accurate, within a few
percent of the expected log

√
2 value. To our knowledge, this

is the first clear demonstration of topological order via TEE,
in SU(2) symmetric spin wave functions.

We also study lattice versions of the Laughlin ν = 1/3
state, which are obtained by a similar projective construction,
although these are fermionic, not spin wave functions. Again
we can extract TEE which is within 7% of the expected value to
confirm that these are in the same phase as the Laughlin state,
although they differ significantly in microscopic structure.

We note earlier numerical work extracting TEE include
exact digitalization studies on small systems, looking at
quantum Hall Laughlin states30 and perturbed Kitaev toric
code models.21 Recently, a quantum Monte Carlo study22 used
TEE to detect Z2 topological order. In contrast to the states
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TABLE I. Comparison between calculated TEE and expected
value from field theory (second column) for topological phases. The
asterisk (*) denotes that the calculated value is not divided by the
expected value since the latter vanishes.

State Expected γ γcalculated/γexpected

Unprojected (ν = 1) 0 −0.0008 ± 0.0059*

Chiral SL LA = 3 log
√

2 0.99 ± 0.03
Chiral SL LA = 4 log

√
2 0.99 ± 0.12

Lattice ν = 1/3 log
√

3 1.07 ± 0.05
Lattice ν = 1/4 log

√
4 1.06 ± 0.11

Z2 SL LA = 4 log 2 0.84 ± 0.13

studied here, this was a positive definite wave function, with
U(1) rather than SU(2) spin symmetry. Our wave-function-
only approach is ready made for searching for topological
order when one has a good variational ansatz for a ground
state, irrespective of whether the state is positive definite or
not. Finally, we note that Ref. 31 studied topological order in
“nodal” Z2 SLs by constructing four orthogonal low-energy
states on the torus, and Ref. 32 studied TEE for the Kitaev
model.

The format of the paper and main results are summarized
as follows. In Sec. II the TEE γ is defined, and an algorithm
to calculate it numerically utilizing the Renyi entanglement
entropy S2 is outlined. This is then applied to a series of
topological phases, the results of which are summarized in
Table I.

(1) The first is a Chern insulator, built out of a square lattice
tight binding model at half filling, in which the filled band has
unit Chern number. For a lattice with 2N sites, this is an N-
body Slater determinant �(r1, . . . , rN ). Since this is an integer
quantum Hall state, it is not expected to possess topological
order. Indeed, calculation is consistent with a vanishing TEE;
see Table I, first row.

(2) The chiral SL wave function is obtained from the wave
function of 2N spinful electrons with this tight binding band
structure, by projecting out all double occupancies, and studied
in Sec. III. The chiral SL wave function can be written as a
product of two Slater determinants, i.e., �(r1, r2 . . . , rN ) =
M�2(r1, . . . , rN ), where M is an unimportant Marshall sign
factor. If we view up-spin as a hardcore boson, then this is the
wave function analogous to half-filled Landau level ν = 1/2
of bosons. It is therefore expected to have γ = log

√
2.

Indeed, for a particular choice of parameters with a large
gap, numerical calculation (second and third rows of Table I,
with different linear dimensions LA of the smallest subregions
involved) yields a value very close to this. Detailed finite-size
analysis obtained by varying the correlation length of the chiral
SL is presented in Sec. III, providing further evidence for
convergence to the expected value. We note that this wave
function is SU(2) symmetric and non-positive-definite, since
the ground state is not time-reversal symmetric.

(3) Note that the construction of the chiral SL above is
similar to the Laughlin construction of fractional quantum Hall
states by taking products of the integer quantum Hall states.
Extending the construction above, one can write wave func-
tions for N fermions �1/3(r1, r2, . . . , rN ) = �3(r1, . . . , rN ), a

lattice version of the Laughlin ν = 1/3 state. The entangle-
ment entropy calculation for �1/3 agrees well with what is
expected for the topological order for ν = 1/3 Laughlin state,
indicating it is in the same phase, despite not being constructed
from lowest Landau level states. Note that since they differ
significantly in microscopic detail from the Laughlin state,
wave-function overlap is not an option in establishing that
they are in the same phase. Also, calculating entanglement
spectra33 is currently not feasible for these wave functions;
thus TEE appears to be the ideal characterization. Similarly, the
lattice analog of Laughlin ν = 1/4 state for bosons, obtained
via �1/4(r1, r2, . . . , rN ) = �4(r1, . . . , rN ), is found to have a
TEE close to the expected γ = log

√
4, as discussed in Sec. IV.

(4) Finally, we construct a fully gapped Z2 SL wave
function on the square lattice. For the largest system sizes
we considered, the calculated γ is 84% of the expected log 2
value (last row in Table I). The difference is ascribed to larger
finite-size effects, as discussed in Sec. V.

II. TOPOLOGICAL ENTANGLEMENT ENTROPY AND
VARIATIONAL MONTE CARLO METHOD

A. Renyi entropy and topological entanglement entropy

Given a normalized wave function |�〉 and a partition of
the system into subsystems A and B, one can trace out the
subsystem B to obtain the reduced density matrix on A: ρA =
TrB |�〉〈�|. The Renyi entropies are defined as

Sn = 1

1 − n
log

[
Tr

(
ρn

A

)]
. (2)

Taking the limit n → 1, this recovers the definition of the
usual von Neumann entropy. In this paper we will focus on the
Renyi entropy with index n = 2: S2 = − log[Tr(ρ2

A)], which
is easier to calculate with our variational Monte Carlo (VMC)
method.27

For a gapped phase in 2D with topological order, a
contractible region A with smooth boundary of length lA, the
area law of the Renyi entropy becomes

S2 = alA − γ,

where we have omitted the subleading terms. Although the
coefficient a of the leading boundary law term is nonuniversal,
the subleading constant γ is universal, and this TEE is a
robust property of the phase of matter for which |�〉 is the
ground state. It is given by γ = log D, where D is the total
quantum dimension of the model,10,11 and offers a partial
characterization of the underlying topological order. When
region A has a disk geometry, it has been shown that γ for
different Renyi indices n are identical for both chiral and
non-chiral states.28,29 A simple limit where this is readily
observed9,10 is in a model wave function of a Z2 SL, which
is an equal superposition of loops (Z2 electric field). This is
achieved as a ground state in Kitaev’s toric code model.34

The Schmidt decomposition into wave functions in regions A
and B can be indexed by the configuration of electric field
lines piercing the boundary of the disk. If i = 1,2, . . . ,l are
l bonds going through the boundary between region A and
B, the presence (absence) of electric field lines on bond i

is denoted by qi = 1 (qi = 0). Since the loops are closed, we
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require
∑

i qi = even. It can be shown that the wave function is
simply an equal weight decomposition indexed by all possible
configurations of qi . There are C = 2l−1 of them, the global
constraint of closed loops accounting for the missing factor of
2. Then,

|�〉 = 1√
C

∑
q1+···+ql even

∣∣�A
q1...ql

〉∣∣�B
q1...ql

〉
.

This implies10 there are C equal eigenvalues of the region
A density matrix, each equal to 1/C. The Renyi entropy
from Eq. (2) is Sn = 1

1−n
log C−(n−1) = (l − 1) log 2. Thus

γ = log 2 from the definition above, if we identify l with the
length of the boundary. Note that this follows independently
of the Renyi index n, and is the expected value for a Z2 gauge
theory with quantum dimension D = 2.

Practically, it is not convenient to extract the subleading
constant by fitting the expression above, particularly on the
lattice where edges frequently occur. Instead, one may use a
construction due to Levin and Wen10 or Kitaev and Preskill11

that effectively cancels out the leading term and exposes the
topological contribution. We use the latter, which requires
calculating entanglement entropy for a triad of nonoverlapping
regions A, B, C, and their various unions, and then constructing

−γ = SA + SB + SC − SAB − SAC − SBC + SABC.

Here, any Sn can be used, and we choose to use S2, since it can
be easily calculated. This guarantees that the contributions
of boundaries and corners cancel when the dimensions of
individual regions A, B, and C are much larger than the
correlation length.

B. Variational Monte Carlo method for Renyi entropy

In this section we briefly review the VMC algorithm for
calculating Renyi entropy S2.27,35 Consider the configurations
|α1〉 = |a〉|b〉, |α2〉 = |a′〉|b′〉, |β1〉 = |a′〉|b〉, |β2〉 = |a〉|b′〉,
where |a〉 and |a′〉 have their support only in the subsystem
A while |b〉 and |b′〉 are in subsystem B. Following Ref. 35,
we define an operator SwapA that acts on the tensor product
of two copies of the system and swaps the configurations of
the spins belonging to the A subsystem in the two copies;
i.e., SwapA|α1〉 ⊗ |α2〉 = |β1〉 ⊗ |β2〉. The Renyi entropy S2

for the bipartition A and B can be expressed in terms of the
expectation value of SwapA with respect to the wave function
|�〉 ⊗ |�〉:

SA = − log
[
Tr

(
ρ2

A

)] = − log〈SwapA〉. (3)

〈SwapA〉 may be reexpressed as a Monte Carlo average:

〈SwapA〉 =
∑
α1,α2

ρα1ρα2f (α1,α2), (4)

where the weights ραi
= |〈αi |�〉|2/∑

αi
|〈αi |�〉|2 are normal-

ized and nonnegative while the quantity to be averaged over
the probability distribution ρα1ρα2 is

f (α1,α2) = 〈β1|�〉〈β2|�〉
〈α1|�〉〈α2|�〉 . (5)

Therefore, one can calculate the Renyi entropy using the VMC
method. This technique is particularly suited for projected

wave functions since the projection is rather easy to implement
in a VMC algorithm.36 As shown in Ref. 27 the VMC algorithm
correctly reproduces the exact results for free fermions with
an error of less than a few percent.

We further facilitate our calculation with an algorithm that
we referred to as the sign trick.27 It offers simplification and
reduces computational cost. Basically, we separate 〈SwapA〉
as a product of two factors, which may be independently
calculated within the VMC method:

〈SwapA〉 = 〈SwapA,mod〉〈SwapA,sign〉

=
∑
α1α2

ρα1ρα2 |f (α1,α2)|
[∑

α1α2

ρ̃α1,α2e
iφ(α1,α2)

]
.

The first factor is the Renyi entropy of a sign prob-
lem free wave function |φαi

|. The second term is
the expectation value of the phase factor eiφ(α1,α2) =
φ∗

α1
φ∗

α2
φβ1φβ2/|φ∗

α1
φ∗

α2
φβ1φβ2 | with probability distribution

ρ̃α1,α2 = |φ∗
α1

φ∗
α2

φβ1φβ2 |/
∑

α1α2
|φ∗

α1
φ∗

α2
φβ1φβ2 |. Both factors

can be calculated in a more efficient manner and, most im-
portantly, have much smaller errors than the direct calculation
of 〈SwapA〉.

III. ENTANGLEMENT ENTROPY FOR
A CHIRAL SPIN LIQUID

In this section we calculate the Renyi entropy S2 and TEE
γ for a chiral SL.24

A. Projected wave function for chiral spin liquids

The chiral SL is a spin SU(2) singlet ground state that breaks
time reversal and parity symmetry.24,37 A wave function in this
phase wave function may be obtained using the slave-particle
formalism by Gutzwiller-projecting a d + id BCS state.24

Alternately, it can be obtained by Gutzwiller projection of a
hopping model on the square lattice. This model has fermions
hopping on the square lattice with a π flux through every
plaquette and imaginary hoppings across the square lattice
diagonals:

H =
∑
〈ij〉

tij f
†
i fj + i

∑
〈〈ik〉〉

�ikf
†
i fk. (6)

Here i and j are nearest neighbors and the hopping amplitude
tij is t along the ŷ direction and alternating between t and −t

in the x̂ direction from row to row; and i and k are second
nearest neighbors connected by hoppings along the square
lattice diagonals, with amplitude �ik = i� along the arrows
and �ik = −i� against the arrows; see Fig. 1. The unit cell
contains two sublattices A and B. This model leads to a gapped
state at half filling and the resulting valence band has unit
Chern number. This hopping model is equivalent to a d +
id BCS state by an SU(2) gauge transformation.38 We use
periodic boundary conditions throughout this section.

The unprojected ground state wave function |φ〉 is ob-
tained by filling all the states in the valence band (εk < 0),
i.e., |φ〉 = [�k,sγ

†
sk]|0〉, where γ

†
k,s = ψA(k)

∑
rA

f
†
rA,se

ik·rA +
ψB(k)

∑
rB

f
†
rB ,se

ik·rB is the creation operator for a valence
electron with spin s and momentum k, and ψA(k) (ψB(k)) is
the wave-function on sublattice A (B). The projected wave
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FIG. 1. Illustration of a square lattice hopping model connected
with a d + id superconductor. While the nearest neighbor hopping
is along the square edges with amplitude t (−t for hopping along
dashed lines), the second nearest neighbor hopping is along the square
diagonal (arrows in bold), with amplitude +i� (−i�) when hopping
direction is along (against) the arrow. The two sublattices in the unit
cell are marked as A and B.

function that corresponds to the chiral SL is obtained as
|�〉 = P |φ〉, where P is the Gutzwiller projection operator
that projects the wave-function to the Hilbert space of one
electron per site. This is implemented by restricting |α〉 to the
Hilbert space of spins, i.e., one particle per site. Due to the fact
that this Hamiltonian contains only real bipartite hoppings
and imaginary hoppings between the same sublattices and
preserves the particle-hole symmetry, this wave function
〈α|�〉 can be written as a product of two Slater determinants
Mdet(Mij )2, where M is just an unimportant Marshall sign
factor, and

Mij = {[ψA(ki) + ψB(ki)] + (−1)yj [ψA(ki) − ψB(ki)]}eiki ·rj ,

where rj are the coordinates of the up-spins in configuration
α, and ki are the momentums in the momentum space. The
Renyi entropy S2 of this wave function can be calculated by
the VMC method detailed in the last section.

For an accurate calculation of TEE γ , it is important that the
subleading terms in Eq. (3) be much smaller than the universal
constant γ itself. This finite-size error is suppressed when the
excitation gap is large and the correlation length is shorter than
the system typical length scale. Note that the mean-field gap is
given by 8� for |�| � 0.5t and 2t

√
8 − (t/�)2 for |�| > 0.5t .

To minimize the finite-size effect, we take � = 0.5t unless
otherwise specified, so that the gap is large in both units of t

and 2�, and our calculation estimates a correlation length of
ξ ∼ 0.45.

B. Establishing topological order in chiral SL wave function

In this section we calculate the TEE γ using the Kitaev-
Preskill scheme.11 We study a system with total dimensions
12 × 12 lattice spacings in both directions with periodic
boundary conditions. We separate the system into LA × LA

FIG. 2. (Color online) The separation of the system into sub-
systems A, B, C, and environment; periodic boundary condition is
employed in both x̂ and ŷ directions.

squares A and B and an LA × 2LA rectangle C; see Fig 2. For
this particular geometry, TEE is simply given by

−γ = 2S2,A − 2S2,AC + S2,ABC, (7)

where we have used the fact that S2,A = S2,B , S2,AB = S2,C ,
and S2,AC = S2,BC owing to the reflection and translation sym-
metry of the wave function. This simplifies the measurement
of TEE into the measurement of S2 for only three subsystems
A, AC, and ABC.

We use the unprojected wave function as a benchmark for
extraction of TEE, which is noninteracting and hence exactly
solvable. For an LA = 3 system, the VMC calculation gives
γ = −0.0008 ± 0.0059, in agreement with the absence of
topological order and correspondingly vanishing TEE (Table I,
first row).

The Gutzwiller projected wave function is believed to be
a chiral SL which can be thought of as a Laughlin liquid
at filling ν = 1/2. Using the VMC method, we find γ =
0.343 ± 0.012 for an LA = 3 system and γ = 0.344 ± 0.043
for an LA = 4 system; both are in excellent consistency with
the expectation of γ = log(

√
2) = 0.347 for its ground state’s

twofold degeneracy; see Table I, second and third rows, and
also Fig. 3.

We also want to point out that Gutzwiller projection
qualitatively changes the system ground state’s topological
and quantum behavior from the mean-field result.

On the other hand, by lowering the ratio of 2�/t and
correspondingly the gap size the correlation length increases
and the finite-size effects from subleading terms become more
important. See Fig. 3 for the approach of the extracted TEE
γ to its universal value of γ = log(

√
2) as we lift the gap

size controlled by 2�/t for a system with typical length scale
LA = 3. The finite-size analysis and the above consistency
between LA = 3,4 confirm that the finite-size effect is small
for our chosen sets of parameters for the system sizes we study.
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FIG. 3. (Color online) Illustration of finite-size effect: chiral SL
TEE γ as a function of 2�/t proportional to the relative gap size for
characteristic system length LA = 3. The larger the gap, the closer
the data approach the ideal value. For comparison, TEE γ for chiral
SL at LA = 4 and 2�/t = 1.0 is shown. On the same plot, TEE γ of
a lattice version of ν = 1/3 Laughlin state at LA = 3, 2�/t = 1.0 is
also shown. The dashed lines are the ideal TEE values of γ = log(

√
2)

for the chiral SL and log(
√

3) for the ν = 1/3 Laughlin state.

IV. A LATTICE VERSION OF THE LAUGHLIN STATE

Using the VMC method, we further study the situations
where the wave function is the cube or the fourth power of
the Slater determinant of the Chern insulator. For example,
consider the wave function

�1/3(r1, r2 . . . , rN ) = �3(r1, . . . , rN ), (8)

where � is the Chern insulator Slater determinant defined
above. Clearly, the product is a fermionic wave function,
since exchanging a pair of particles leads to a sign change.
This is similar in spirit to constructing the correspond-
ing Laughlin liquid of m = 3 of fermions, by taking the
cube of the Slater determinant wave function in the lowest
Landau level ψ(z1, . . . , zN ) = ∏

i<j (zi − zj ) exp(−∑
i

|zi |2
4l2

B

).
However, unlike the canonical Laughlin state, composed of
lowest Landau level states, these are rather different lattice
wave functions. An interesting question is whether the lowest
Landau level structure is important in constructing states with
the topological order of the Laughlin state, or whether bands
with identical Chern numbers is sufficient, as suggested by
field theoretic arguments.

To address this we calculate TEE and compare with
expectation for the Laughlin phase. Again we choose LA = 3
in our VMC simulation, and obtain γ = 0.5894 ± 0.0272 for
the m = 3 wave function, in reasonable agreement with the
ideal value γ = log(

√
3) = 0.549 (Table I, fourth row).

We also considered the fourth power of the Chern insulator
Slater determinant:

�1/4(r1, r2 . . . , rN ) = �4(r1, . . . , rN ). (9)

This is a bosonic wave function that is expected to be in the
same phase as ν = 1/4 bosons. Indeed we find with LA = 3
in our VMC simulation γ = 0.732 ± 0.076, consistent with
ideal value that must be realized in the thermodynamic limit
of this phase: γ = log(

√
4) = 0.693 (Table I, fifth row).

These results offered direct support for the TEE formula
γ = log D as well as their validity as topological ground state

wave functions carrying fractional charge and statistics. The
lattice fractional quantum Hall wave functions discussed here
may be relevant to the recent studies of flat-band Hamiltonians
with fractional quantum Hall states.39,40

V. ENTANGLEMENT ENTROPY OF A Z2 SPIN LIQUID

With the projected wave-function ansatz, we may also
construct a topologicalZ2 SL by projecting another mean-field
BCS state, given by the specific BdG Hamiltonian on a square
lattice as the following:8

H = −
∑
〈ij〉

(ψ†
i μijψj + H.c.) +

∑
i

ψ
†
i a

l
0τ

lψi,

where ψi = (f↑,f
†
↓ )T . τ 1,2,3 are Pauli matrices. The second

term is related to chemical potentials; we set a
2,3
0 = 0, with a1

0
fixed by the conditions 〈ψ†τ 1,2,3ψ〉 = 0. Matrices μij connect
nearest and next nearest neighbors:

μi,i+x = μi,i+y = −τ 3,

μi,i+x+y = ητ 1 + λτ 2,

μi,i−x+y = ητ 1 − λτ 2.

This mean-field model is readily solvable, with dispersion

Ek =
√

ε2
k + ∣∣�2

k

∣∣ ,
εk = 2[cos(kx) + cos(ky)],

�k = 2η[cos(kx + ky) + cos(kx − ky)] + a1
0

− 2iλ[cos(kx + ky) − cos(kx − ky)].

We choose η = λ = 1.5 for a large gap and our calculation
estimates that the correlation length is as short as ξ ∼ 1.3
lattice spacings.

The VMC algorithm needs little change,36 except that
instead of the Slater determinants product, the wave function
for spin product configuration |α〉 is given by

φα = 〈α|�〉 = det(aij ).

Here aij = a(ri,↑ − rj,↓) is the Fourier transform of the
superconducting pairing functionfk; ri,↑ and rj,↓ are the
coordinates of the up-spins and down-spins, respectively:

fk = �k

|Ek + εk| .

For numerical simulations we again study 12 × 12 lattice
spacing systems and separate the system into subsystems
including LA × LA squares A and B and LA × 2LA rectangle
C; again see Fig. 2. The TEE γ is given by Eq. (7) as before.
First, we use the unprojected BCS state as a benchmark,
for which we expect a result of γ = 0.003 from an exact
solution (since the unprojected state is a free-particle ground
state, one may use the correlation matrix method41) and
consistent with its absence of topological order. Indeed, we
obtain γ = 0.012 ± 0.062 using the VMC method; the almost
vanishing value of γ is consistent with the expected value,
which also serves as a check on our Monte Carlo calculations.

On the other hand, the projection qualitatively alters the
topological properties of the system, and for simulation
accuracy and efficiency, we employ the “sign trick” from
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Ref. 27. For an LA = 4 system, the VMC calculation gives
γ = 0.584 ± 0.089. This is roughly consistent the Z2 SL
which has D2 = 4 sectors and γ = log(D) = log(2) � 0.693.
The TEE is found to be about 84% of the expected value
(Table I, last row). Other studies on Z2 phases, e.g., the
quantum Monte Carlo on a Bose Hubbard model in Ref. 22,
have also found values that underestimate the topological
entropy (75% of the expected zero temperature value in that
case). The smaller than expected value is probably due to
spinon excitations with a finite gap, causing breaking of Z2

electric field lines over the finite system size LA = 4 we
consider. Indeed, spin correlations decay more slowly for the
Z2 state, as compared to the chiral SL, which also arrives
closer to its expected γ value. Consistent with this fact is the
observation that for a smaller system size LA = 3 where the
finite system size has a larger impact, VMC calculation leads
to a value of γ = 0.446 ± 0.119, which is farther away from
the ideal value.

VI. CONCLUSION

In this paper we studied entanglement properties of can-
didate wave functions for SU(2) symmetric gapped SLs and
Laughlin states, and established their topological order using
the notion of TEE. We studied two classes of SLs: (1) Wave
functions that describe quantum Hall states and are obtained
from the wave function of a Chern insulator by taking multiple
copies of it, and (2) a Z2 SL state that is obtained by
Gutzwiller-projecting a fully gapped BCS superconductor.
These wave functions have long been used as an ansatz for
exploring SLs states and it is reassuring that topologically
ordered states can be good variational ground states for realistic
Hamiltonians. Our method is directly applicable to any wave
function that can be dealt with within the VMC method and
would be especially useful in cases where one is dealing with
a Hamiltonian that has a Monte Carlo sign problem and only
has a variational ansatz for the corresponding ground state.

We also note that since the quantum Hall wave functions that
we study are not constructed from the lowest Landau level
but rather from the band structures that have nonzero Chern
number, our results are also relevant to the recently discovered
quantum Hall physics in flat-band Hamiltonians.39,40

Let us consider a few problems where our method may
find immediate application. First, it would be interesting to
apply our method to Z2 SLs that have gapless nodal spinons.
These SLs are obtained by Gutzwiller-projecting a nodal
BCS state. We note that in this case one would find an
additional contribution to the subleading constant part of the
entanglement entropy that comes from the gapless spinons,
although we believe it might still be possible to separate
the total contribution of the constant term into a topological
constant and a term that comes from the gapless spinons
only. It would also be interesting to study wave functions
that are expected to have non-Abelian quasiparticles such as
SU(2)k quantum Hall wave functions.42 Third, since VMC
techniques can be used for wave functions defined in the
continuum as well, it might be interesting to study TEE of
quantum Hall wave functions (and their descendants such as
time-reversal invariant fractionalized topological insulators43)
defined directly in the continuum.

Finally, we note that one limitation of our method is
that it cannot be used to calculate TEE for SLs where the
gauge fields are coupled to bosonic (rather than fermionic)
spinons. This is because VMC techniques are not very
efficient when dealing with wave functions that are written
as permanents (in contrast to determinants). It would be
interesting to see whether the recent VMC calculation for
an SU(2) symmetric bosonic SL44 can be pushed to bigger
system sizes so as to establish topological order in such wave
functions.
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