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We present results from lattice simulations of a monolayer graphene model at nonzero temperature. At
low temperatures for sufficiently strong coupling the model develops an excitonic condensate of particle-hole
pairs corresponding to an insulating phase. The Berezinskii-Kosterlitz-Thouless phase transition temperature
is associated with the value of the coupling where the critical exponent δ governing the response of the order
parameter at criticality to an external source has a value close to 15. The critical coupling on a lattice with temporal
extent Nt = 32 [T = 1/(Ntat ) where at is the temporal lattice spacing] and spatial extent Ns = 64 is very close
to infinite coupling. The value of the transition temperature normalized with the zero-temperature fermion mass
gap �0 is given by TBKT

�0
= 0.055(2). This value provides an upper bound on the transition temperature, because

simulations closer to the continuum limit where the full U(4) symmetry is restored may result in an even lower
value. In addition, we measured the helicity modulus ϒ and the fermion thermal mass �T (T ), the latter providing
evidence for a pseudogap phase with �T > 0 extending to arbitrarily high T . Analysis of the dispersion relation
suggests that the Fermi velocity is not sensitive to thermal effects.
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I. INTRODUCTION

The impact of electron-electron interactions on the physics
of graphene is an important focus of current study (for
recent reviews, see Ref. 1). There are simple arguments as
to why an “independent quasiparticle” picture may not be
adequate for certain properties. First, since the carrier density
of states vanishes in undoped graphene (the zero-energy
condition is only satisfied at two isolated “Dirac points” in
the first Brillouin zone), the effects of screening are much
less in graphene than in a conventional conductor, the main
contribution coming from electron-hole pairs which increase
the effective dielectric constant of the medium in a fashion
entirely analogous to vacuum polarization in QED. This
means that the interaction between charged carriers remains
Coulombic, that is, long-ranged ∝r−1. Second, the relative
importance of quantum corrections, parametrized by the fine
structure constant α, is much greater than in conventional
QED, because αeff = e2

4πεh̄vF
, where vF ≈ c

300 is the Fermi
velocity and ε the dielectric permittivity of the underlying
substrate: Hence, αeff = α c

vF
∼ O(1), and its value depends

on the substrate, taking a maximum value 2.16 for suspended
graphene.

These considerations have motivated the study of an
effective (2 + 1) d relativistic field theory with Nf fermion
flavors for the low-energy electronic excitations (Nf = 2
for monolayer graphene) and an instantaneous Coulomb
interaction between conserved charges, to be reviewed in
Sec. II below.2–4 For sufficiently strong coupling the theory
describes a quantum critical point (QCP) at T = 0 separating
a semimetal phase in which charge carriers remain ungapped,
from an insulating phase in which electron-hole exciton pairs
condense in the ground state, inducing a gap at the Dirac points.
It is conceivable that the properties of the QCP dominate
the effective description of low-energy charge transport in

graphene irrespective of whether the semimetal or insulating
phase is physically realized.

Since the theory is strongly interacting, various nonpertur-
bative approaches have been applied, including Monte Carlo
simulation of an effective lattice field theory postulated to
belong to the same universality class at the QCP. In a series of
papers, Drut and Lähde5 have simulated a graphene field theory
with staggered lattice fermions in which electrostatic degrees
of freedom are formulated on a (3 + 1)-dimensional lattice,
while the electron fields are restricted to a (2 + 1)-dimensional
slice. Their results favor the scenario that suspended graphene
with αeff = 2.16 is an insulator. More recent simulations with
an improved fermion action support this scenario.6 Two of us7

have simulated an entirely 2 + 1-dimensional model, which
is in essence a noncovariant form of the Thirring model,8

and showed that at infinite coupling for Nf < Nf c = 4.8(2)
graphene is an insulator, whereas for Nf > Nf c it is a
semimetal. The results from simulations of the same model
at finite coupling provided evidence that graphene in vacuum
is an insulator,9 in agreement with Refs. 5 and 6. More recently,
the authors of Ref. 10 presented preliminary results from
Monte Carlo simulations of the tight-binding Hamiltonian on
a hexagonal lattice.

At nonzero temperature, universality arguments imply that
the critical properties of a (d + 1)-dimensional theory coincide
with those of a d-dimensional classical spin model with the
same symmetries. The contribution of nonzero Matsubara
modes can be absorbed into nonuniversal aspects of the
transition. Consequently, fermions which satisfy antiperiodic
boundary conditions and do not have zero modes are expected
to decouple from the scalar sector. The validity of the dimen-
sional reduction was confirmed with accuracy in Monte Carlo
simulations of fermionic field theories such as the (2 + 1) d

Gross-Neveu model11 and the (3 + 1) d Nambu−Jona-Lasinio
(NJL) model12 and strong coupling QCD.13
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There has been compelling experimental evidence14 that at
constant low temperature graphene undergoes a Berezinskii-
Kosterlitz-Thouless (BKT) phase transition15 when the in-
tensity of an external magnetic field is varied. The authors
of Ref. 14 showed that the steep increase in the electrical
resistance at the Dirac point as a function of the magnetic
field fitted accurately the essential scaling relation of the
BKT scenario. The BKT transition occurs in two-dimensional
systems with a U(1) symmetry and is driven by the unbinding
of vortices, as reviewed in Sec. III. The transition separates
two phases, neither of which have long-range order: a low-
temperature spin-wave phase where vortices and antivor-
tices form bound states and a high-temperature plasmalike
phase of unbound vortices and antivortices. An analytical
approach based on solutions of self-consistent Schwinger-
Dyson equations16 predicted that the critical temperature is
given by TBKT = πϒ(TBKT)/2 ≈ �0/8, where ϒ(TBKT) is the
helicity modulus or stiffness of the order parameter at the
transition temperature and �0 is the fermion mass gap at
T = 0. However, care is needed since, as shown in Ref. 17
in a model of graphene in which the full global symmetry is
U(4) (expected for QED3 with Nf = 2) instead of U(1), the
creation of “half vortices” is energetically more favorable over
the usual vortices. As a result, the critical temperature is driven
to a lower value T̃BKT = πϒ(TBKT)/8 = TBKT/4.

In this paper we present results from simulations of our
Thirring-like graphene model9 at nonzero temperature. As we
show in Sec. II, on the lattice the remnant of the U(4)/U(2) ⊗
U(2) manifold in which the order parameter of the continuum
theory assumes values in U(1); we therefore do not anticipate
the existence of half vortices in our lattice model away from
the continuum limit.

The temperature in the simulation is given by T = 1/Ntat ,
where Nt is the lattice temporal extent and at the temporal
lattice spacing. In a model with anisotropic interactions
we anticipate that the temporal (at ) and spatial (as) lattice
spacings are not equal for arbitrary interaction coupling; that
is, the anisotropy factor as/at is renormalized by quantum
corrections governed by an action which treats time and space
on a different footing. This has to be taken into account
whenever deriving relations between physical quantities based
on lattice observables; fortunately, for the current study all
quantities can be expressed in units of the temporal lattice
spacing at .

Furthermore, as we show in Sec. IV A the transition tem-
perature in natural units is very low; that is, T/�0 � 1. This
drives the critical coupling at which the BKT phase transition
occurs to a very strong value (close to the strong coupling
limit) even when the temporal lattice size Nt = 32. This value
of Nt is much larger than the values Nt = 6, . . . ,10 usually
used in simulations of nonzero temperature QCD, and makes
the study of the BKT scenario in graphene a computationally
very difficult problem. On the basis of large-Nf arguments,7

we believe that at very strong couplings our Thirring-like
model should become similar to the instantaneous Coulomb
interaction model.4,5

The main goals of this work are: (i) to measure TBKT/�0;
(ii) to obtain a measurement of the helicity modulus ϒ(T )
for T > TBKT and to compare with theoretical expectations;
(iii) to measure the fermion mass gap �T for T > TBKT

and to demonstrate that it remains nonzero even in the
absence of long-range order through exciton condensation—
this situation, which has been discussed theoretically in the
context of the Gross-Neveu model,18 is qualitatively similar to
the pseudogap phase observed in the phase diagram of cuprate
superconductors below optimal doping.

The paper is organized as follows: In Sec. II we present both
the continuum model and the lattice formulation used here,
along with a discussion of its global symmetries and breaking
patterns. In Sec. III we briefly review the classic BKT theory of
the thermal phase transition in planar models with U(1) global
symmetry and discuss modifications if the global symmetry is
expanded. In Sec. IV we present our simulation results, and in
Sec. V we summarize and discuss our conclusions.

II. FORMULATION OF THE MODEL

Our starting point is a model of relativistic Dirac fermions
moving in 2 + 1 dimensions and interacting via an instanta-
neous Coulomb interaction. In Euclidean metric the action
is3,4,16

S1 =
Nf∑
a=1

∫
dx0d

2x(ψ̄aγ0∂0ψa + vF ψ̄a �γ . �∇ψa + iV ψ̄aγ0ψa)

+ 1

2e2

∫
dx0d

3x(∂iV )2, (1)

where e is the electron charge, vF the Fermi velocity, V the
electrostatic potential, and the 4 × 4 Dirac matrices satisfy
{γμ,γν} = 2δμν , μ = 0, . . . ,3 [note γ3 does not appear in (1)].
For monolayer graphene the number of fermion flavors is
Nf = 2.

For sufficiently large coupling e2 the description in terms of
massless relativistic excitations may be disrupted by conden-
sation of bound fermion-hole exciton pairs in the ground state,
signaled by an order parameter 〈ψ̄ψ〉 �= 0, with the result that
a gap appears in the fermion spectrum, corresponding to a
transition from a conductor to an insulator. The spontaneously
broken global symmetry is U(2Nf ) generated by rotations
of the form ψ �→ UV ψ , ψ̄ �→ ψ̄U †γ3γ5V

†γ5γ3, with U

acting on flavor indices a = 1, . . . ,Nf and V a 2 × 2 matrix
generated by the set {1,γ3,γ5,iγ3γ5}, where {γμ,γ5} = 0 ∀ μ.
The order parameter remains invariant under independent
U(Nf ) rotations generated by both 1 and iγ3γ5, resulting in a
breaking pattern,

U(2Nf ) → U(Nf ) ⊗ U(Nf ). (2)

At zero temperature, for Nf < Nf c the model predicts a
finite sequence of QCPs whose properties at the critical cou-
pling e2

c (Nf ) depend on Nf (Ref. 4). The ground state is then
an excitonic condensate for e2 > e2

c . Numerical simulations of
the lattice model described below find Nf c � 5 (Ref. 7). The
QCP is an ultraviolet-stable fixed point of the renormalization
group, implying a divergent correlation length and algebraic
behavior of correlation functions which in principle may be
distinct from that of free-field theory. If the physical value of e2

in graphene were numerically close to the fixed-point value, in
either subcritical or supercritical regimes, then the QCP might
dominate the behavior of low-energy charged excitations, with
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profound impact on the description of transport. Ultimately,
this must be settled by experiment.

The possible relevance of a QCP has motivated the
application of lattice gauge theory simulation techniques to the
study of graphene. In this paper, we study a model discretized
on a 2 + 1-dimensional Euclidean cubic lattice with action
which for Nf = 2 can be written in the staggered fermion
formulation in the form (with bare Fermi velocity vF = 1)7,9

Slatt = 1

2

∑
xμi

χ̄ i
xημx(1 + iδμ0Vx)χi

x+μ̂

− χ̄ i
xημx(1 − iδμ0Vx−0̂)χi

x−μ̂

+m
∑
xi

χ̄ i
xχ

i
x + 1

4g2

∑
x

V 2
x . (3)

Here χ , χ̄ are single-component Grassmann fermion fields
defined on lattice sites, m an artificial mass gap introduced
to regularize IR fluctuations on a finite system volume, and
V a boson field, which mimics the electric potential of
(1) in the limit g2 → ∞, defined on the links emanating
from the sites in the timelike direction. The Kawamoto-Smit
phases ημx = (−1)x0+···+xμ−1 are lattice analogs of the Dirac
γ matrices. Note that Vx couples to a charge density J0x

which is the timelike component of a conserved current
Jμx = iημx

2 [χ̄xχx+μ̂ + χ̄xχx−μ̂]. Since V appears in Gaussian
form it may be integrated out to yield a model of self-
interacting fermions resembling the Thirring model, with a
local interaction term of the form g2J 2

0x . For finite g2 the V field
couples to a light, tightly bound electron-hole meson,8 which
becomes massless in the limit g2 → ∞ (Ref. 7), yielding
identical dynamics to the electric potential of the gauge theory
(1). The simulation results presented in Sec. IV were obtained
not far from this limit.

A distinct model, with an identical (2 + 1) d fermion sector
this time interacting with Abelian lattice gauge fields defined
on a (3 + 1)-dimensional lattice, has been studied by Drut
and Lähde.5 Their formulation is designed to reproduce the
action (1), which describes a long-ranged Coulomb interaction
between charges. Two comments about the relation between
the models are worth making.

(i) The fermionic sectors share the same global sym-
metries. In the weakly coupled long-wavelength limit (3)
describes Nf = 2 four-component Dirac fermions.19

(ii) The continuum theories modeled coincide in the strong
coupling (e2,g2 → ∞) and/or large-Nf limits.

In particular, the estimate Nf c = 4.8(2) obtained using (3)
is expected to hold for both models.5,7

Next we discuss symmetry breaking in the model (3). In
the limit m → 0 there is a global “chiral” symmetry

χx �→ exp(iαεx)χx ; χ̄x �→ exp(iαεx)χ̄x, (4)

where εx ≡ (−1)x0+x1+x2 , the lattice analog of γ5, distinguishes
odd and even sublattices. For N species of lattice fermion
corresponding to Nf = 2N continuum flavors, excitonic con-
densation of the form 〈χ̄χ〉 ≡ V −1∂ lnZ/∂m �= 0 (Z is the
partition function on the Euclidean space-time lattice) induces
a spontaneous symmetry breaking of the form

U(Nf /2) ⊗ U(Nf /2) → U(Nf /2). (5)

Only in the weak-coupling continuum limit must we necessar-
ily expect a restoration of the continuum breaking pattern (2),
implying in particular that 7

4N2
f would-be Goldstone modes

remain massive for nonzero lattice spacing.20 At the QCP,
however, weak coupling cannot be assumed; moreover, the
effective theory need not even be Lorentz invariant. It remains
unclear, therefore, whether the enhanced symmetry of (1) will
be fully restored, and a more systematic study of the discretized
action as advocated in Ref. 6 will ultimately be needed to
resolve this issue.

Finally, we mention an important technical issue concerning
the model (3) which does not apply to the gauge-theory
formulation.5 For the action (3) there is no symmetry guar-
anteeing transversity of the vacuum polarization tensor (i.e.,
�−

μ�μνx �= 0, where �−
μ is the backward difference operator),

resulting in an additive renormalization of the coupling g2:

g2
R = g2

1 − g2/g2
lim

, (6)

where g2
lim(Nf ) < ∞ defines the effective location of the

strong coupling limit. Unitarity is violated for g2 > g2
lim. In

Refs. 7 and 21 g2
lim was identified numerically with g−2

peak
defined by the (m- and volume-independent) location of a peak
in the order parameter 〈χ̄χ〉 found in the broken symmetry
phase.

III. THEORETICAL EXPECTATIONS AT NONZERO
TEMPERATURE

In the excitonic phase which forms at T = 0 for g2 > g2
c , for

Nf = 2 the order parameter 〈χ̄χ〉 ≡ φ = φ0e
iθ spontaneously

breaks a U(1) global symmetry of the action (3). For T >

0 long-range order is forbidden by the Coleman-Mermin-
Wagner theorem;22 rather, we expect at low T a phase where
low-energy phase fluctuations are described by an effective
Hamiltonian

Heff ∝ 1

2
( �∇φ)∗ · ( �∇φ) ≈ ϒ

2
( �∇θ )2, (7)

where in this context the parameter ϒ is called the helicity
modulus, and correlation functions decay algebraically:

lim
m→0

〈φ(0)φ†(r)〉 = φ2
0〈eiθ(0)e−iθ(r)〉 ∝ r−η, (8)

with critical exponent η = T/(2πϒ). As temperature rises
topologically nontrivial excitations become important. A
vortex of charge q has the form (in polar coordinates r,ψ)
θ = qψ , | �∇θ | = q/r , and energy

Eq = πϒq2 ln
Ls

as

, (9)

where Ls is the spatial extent of the universe and as the lattice
spacing. Overall charge neutrality is thus a requirement at low
T if E is to remain finite. Since a vortex can be located at any
one of (Ls/as)2 (dual) lattice sites, the entropy

S = 2 ln
Ls

as

. (10)
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The free energy F = E − T S of a |q| = 1 vortex thus changes
sign at a critical temperature

TBKT = π

2
ϒ. (11)

This is the celebrated BKT transition15 between a low-T
critical phase in which vortices can only exist in tightly bound
dipole pairs, and a gapped phase where unbound vortices
form a “topological plasma” which screens the long-range
inter-vortex interaction.

The relation (11) remains true in a more sophisticated renor-
malization group treatment,23 except that ϒ must be replaced
by its screened value ϒ(TBKT) exactly at the transition. The
critical exponent η describing correlations for T < TBKT thus
obeys

η < ηc = 1
4 . (12)

A related exponent δ describes the response of the order
parameter to a small symmetry-breaking explicit mass gap
m via 〈φ〉 ∝ m

1
δ . It is related to η via the hyperscaling relation

δ = (4 − η)/η, yielding

δ > δc = 15. (13)

This picture may need modification when applied to (1).
Aleiner et al.17 have performed a similar analysis for the
U(2)-valued 〈ψ̄ψ〉 using a Hamiltonian with independent
moduli for U(1)- and SU(2)-valued fluctuations of the order
parameter field. The crucial point is that the SU(2) σ model is
asymptotically free, implying that ϒSU(2) rapidly runs to zero as
high-momentum modes are integrated out, with the result that
the U(1) effective Hamiltonian (7) is adequate for describing
physics at large distances. However, the richer symmetry of
the order parameter permits the existence of a new kind of
topological excitation called a half-vortex with q = ± 1

2 , whose
energy is still given by (9), and which is thus much more
readily formed by thermal fluctuations. The BKT transition
temperature is accordingly modified to

T̃BKT = π

8
ϒ, (14)

with new values ηc = 1
16 and δc = 63.

IV. NUMERICAL RESULTS

In this section we present results from our numerical
investigation of the model discussed in the previous section
at nonzero temperature. More specifically we estimate the
physical critical temperature, detect fermion mass generation
in the high temperature phase and study the behavior of ϒ at
high T . In Euclidean field theory the temperature T is related
to the time-extent Lt of the universe via T = L−1

t = (Ntat )−1

where in the second step a timelike lattice spacing at is
specified. In general, numerical simulations are performed
with Nt fixed, so that T is varied through variation of
at (g2). Since at → 0 at the QCP located at the bulk critical
point g2

c , we deduce that in the semimetal phase the range
0 < T < ∞ maps to the range 0 < g2 < g2

c , whereas in the
insulating phase the same temperature range is mapped to
∞ > g2 > g2

c . In this paper we are concerned with the latter
case; bearing in mind the usual convention of presenting results

16 × 482
16 × 322

m

χ̄
χ

0.0160.0140.0120.010.0080.0060.0040.0020

0.26

0.24

0.22

0.2

0.18

0.16

0.14

0.12

FIG. 1. (Color online) Exciton condensate 〈χ̄χ〉 versus m from
simulations at g−2 = 0.375 on 16 × 322 and 16 × 482 lattices.

in terms on inverse coupling, and also the additive coupling
renormalization described in the previous section, we therefore
are working in the range g−2

lim < g−2 < g−2
c .

A. BKT transition

The first set of simulations was performed with a lattice
temporal extent Nt = 16 and spatial extents Ns = 32,48. For
these lattice volumes g−2

peak ≈ 0.375; recall that the value g−2
lim

corresponding to the infinite coupling limit has previously been
identified with g−2

peak. However, this value of g−2
peak is higher

than the value g−2
peak ≈ 0.30(2) found at T = 07. Although the

existence of g−2
peak defining the effective strong coupling limit is

a ultraviolet (UV) artifact and therefore should not depend on
Nt , when Nt is comparable to the lattice spacing at ; that is, the
UV scale becomes comparable to the IR scale, then it becomes
difficult to disentangle the bulk and thermal transitions. In
Fig. 1 we present results for the exciton condensate 〈χ̄χ〉
versus m for Ns = 32,48 and g−2 = 0.375. It appears that
finite volume effects are negligible down to m = 0.001 25. We
then fitted the data at g−2 = 0.375,0.400 from simulations on
a 16 × 322 lattice to the scaling relation:

〈χ̄χ〉 = Cm1/δ. (15)

At the critical temperature TBKT we expect δ = 15. The results
for the exponent δ and the fit qualities (χ2/dof) are presented in
Table I. The data and the fitted curves are shown in Fig. 2. The
very low fit qualities and the values of δ = 5.5(1) and 5.1(1)
for g−2 = 0.375 and 0.400, respectively, imply that even at
g−2

peak the temperature is higher than TBKT: We can never go
down to TBKT in simulations with Nt = 16.

TABLE I. Results from fits of 〈χ̄χ〉 vs m from simulations on
16 × 322 lattices.

g−2 δ χ 2/dof

0.375 5.5(1) 30
0.400 5.1(1) 31
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0.001 0.01
m

0.1

0.2

<χ
χ>

g
−2=0.375

g
−2=0.400

FIG. 2. (Color online) 〈χ̄χ〉 versus m from a 16 × 322 lattice.

These preliminary simulations teach us that it will require
very large lattices to identify a BKT transition. In order to
approach TBKT we tried Nt = 32 and Ns = 64. The simulations
on such a large lattice at strong couplings required enormous
computational time because the number of iterations of the
conjugate gradient algorithm required for the inversion of
the Dirac matrix kernel of (3) increased dramatically. For
this reason it has not proved possible to identify a transition
via singular behavior of the susceptibility ∂〈χ̄χ〉/∂m or
the specific heat as was done, say, for fermion pairing
leading to long-ranged phase coherence in the (2 + 1) d

Gross-Neveu model,24 with TBKT/�0 ≈ 0.5, using Nt = 4,
Ns = 30, . . . ,150.

Our strategy for locating TBKT is therefore based entirely
on the critical scaling relation (15). The data for 〈χ̄χ〉 versus
m were fitted to (15) for the ranges m = 0.0025, . . . ,0.010
for g−2 = 0.325, m = 0.0025, . . . ,0.0175 for g−2 = 0.350
and m = 0.0025, . . . ,0.015 for g−2 = 0.375. The results are
presented in Table II and Fig. 3 shows the data and the
fitted curves. The value of δ = 15.0(3) found at g−2 = 0.350
implies that the BKT transition occurs at this coupling. It
increases to 19.1(8) at g−2 = 0.325, which corresponds to a
larger lattice spacing at and hence lower T , consistent with
the BKT scenario. Note also that at the lowest temperature
(g−2 = 0.325) the scaling region shrinks as compared to higher
T (g−2 = 0.350), because as m increases the system crosses
over to the T = 0 scaling. The slightly increased χ2/dof
for g−2 = 0.375 provides evidence that for g−2 > 0.350 the
critical scaling based on (15) is not valid because this coupling
lies in the high-temperature phase.

In order to eliminate the lattice spacing and estimate
the physical critical temperature at the BKT transition we

TABLE II. Results from fits of 〈χ̄χ〉 vs m from simulations on
32 × 642 lattices.

g−2 δ χ 2/dof

0.325 19.1(8) 1.7
0.350 15.0(3) 1.5
0.375 13.8(3) 3.9

0.001 0.01 0.1
m

0.25

0.3

<χ
χ>

g
-2

=0.325

g
-2

=0.350

g
-2

=0.375

FIG. 3. (Color online) 〈χ̄χ〉 versus m from a 32 × 642 lattice.

measured the T = 0 fermion mass at g−2 = 0.350. Using point
sources we calculated the zero-momentum fermion time-slice
correlator

Cf (t) =
∑
�x even

〈χ�0,0χ̄�x,t 〉, (16)

where “even” refers to sites with spatial coordinate �x obeying
(−1)x1 = (−1)x2 = 1. This restriction improves the signal-to-
noise ratio and originates in the observation that the action
(3) is invariant only under translations by an even number
of lattice spacings. The simulations were performed on cold
lattices with Nt = 48 and Ns = 24 for m = 0.01,0.02,0.03. In
Fig. 4 we present the data for Cf (t) for m = 0.01. The fermion
correlator data were fitted to

Cf (t) = A[exp(−Mf t) − (−1)t exp(−Mf (Nt − t))]. (17)

This form assumes that the spectral density ρ(s) is saturated
by a pole at s = M2

f in both particle and hole branches,
appropriate for zero doping. In practice, this assumption is
justified by the quality of the fit, evident in Fig. 4. The minus

t

C
f
(t

)

50454035302520151050

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

FIG. 4. (Color online) Fermion correlator for g−2 = 0.35,m =
0.01 on a 48 × 242 lattice.
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m

M
f
(m

)

0.0350.030.0250.020.0150.010.0050

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

0.3

FIG. 5. (Color online) Fermion mass gap Mf (m) versus m from
simulations with g−2 = 0.35,0.375 on a 48 × 242 lattice.

sign between the forward and backward terms is due to our
choice of antiperiodic boundary conditions in the timelike
direction. The values Mf (m) extracted from fits to (17)
were fitted to a linear scaling relation Mf (m) = �0 + a1m,
where �0 is the mass gap. The data and the fitted line is
shown in Fig. 5. The extrapolation to m = 0 at g−2 = 0.35
yields �0at = 0.57(2). The physical estimate for the BKT
temperature is then given by

TBKT

�0
≡ 1

Nt�0
= 0.055(2). (18)

This result is slightly below half of the analytical predic-
tion TBKT/�0 ≈ 1/8 obtained by self-consistent solution of
Schwinger-Dyson equations in Ref. 16. It is only possible to
convert it into physical units indirectly, using the estimate
�0 ≈ 35 meV obtained in Ref. 25 by modeling the T

dependence of electrical conductivity measured in suspended
graphene samples.26 This yields TBKT ≈ 20 K. It should be
stressed that this result has still to be extrapolated to the
continuum limit Nt → ∞, at → 0. Another factor to bear
in mind once lattice discretization artifacts disappear is that
the U(4) global symmetry of the continuum model (1) will
be recovered. In that case, as described in Sec. III the critical
temperature T̃BKT will be smaller than the value (18) by a factor
of four, because half vortices will become energetically favored
and dominate the disruption of long-range phase coherence.17

B. Helicity modulus

Next we present numerical estimates of ϒ(T ): We
briefly review the method, adapted from Ref. 27. The mass
term in (3) is replaced by a spatially varying source of
the form j exp(iθ (�x)εx), where the single-valued phase is
defined by

θ (x1,x2) = 2π

Ns

(n1x1 + n2x2). (19)

16 × 482
16 × 322

j

Υ

0.350.30.250.20.150.10.050

0.07

0.065

0.06

0.055

0.05

0.045

0.04

0.035

0.03

FIG. 6. (Color online) ϒ versus j from simulations with g−2 =
0.45, m = 0.001 25 on 16 × 322 and 16 × 482 lattices.

The helicity modulus parametrizes the response of the axial
current J a

μx = iημx

2 [χ̄x(εχ )x+μ̂ + χ̄x(εχ )x−μ̂], which is con-
served in the limit j → 0:

�J a(j ) = ϒ(j ) �∇θ = 2πϒ

Ls

(n1,n2). (20)

To make contact with the theoretical considerations discussed
above requires the extrapolation j → 0. Note that because �∇ ·
�J a has the same form as the kinetic energy term in the action

(3), the dimensionless variables appearing in (20) are �J aasat

and ϒat , meaning that ϒ naturally scales like a mass gap. In
practice, to minimize discretization artifacts we choose n1 = 1,
n2 = 0. For technical reasons associated with the choice Nf =
2, the results for ϒ presented in this paper were calculated in
the “partially quenched” approximation, in which equilibrated
field configurations were generated using a spatially constant
mass m, the spatially varying source only being introduced for
the measurement of �J a .

Given that ϒ is noisier than 〈χ̄χ〉 we restricted our
simulations to a lattice with Nt = 16 and were therefore only
able to study high temperatures. In Fig. 6 we present ϒ(j )
for m = 0.001 25 and g−2 = 0.45 extracted from simulations
with Ls = 32 and Ls = 48. It is inferred that effects due to
finite Ls are small, in contrast to results from the Gross-Neveu
model at nonzero baryon density with T < TBKT (Ref. 27).
In order to extract the m = 0 value of ϒ for each value of j

we performed linear extrapolations using ϒ(m,j ) = ϒ(m =
0,j ) + a2m. The results for ϒ(m = 0,j ) versus j for different
g−2 < g−2

c corresponding to T > TBKT are shown in Fig. 7.
Unfortunately, we do not have a model permitting a reliable

extrapolation of these data to j → 0. The data show a marked
downward curvature as j → 0 and it is therefore plausible,
bearing in mind the insensitivity to Ls , that ϒ vanishes in this
limit, as expected for T > TBKT (however, the figure, including
the point where curves corresponding to differing temperatures
intersect at j ≈ 0.125, is qualitatively very similar to data
taken with finite Ls and fixed T < TBKT but varying baryon
density in the 2 + 1d Gross-Neveu model27). For j < 0.1
there is a clear T dependence. For reference, Eq. (11) predicts
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FIG. 7. (Color online) Chirally extrapolated ϒ versus j for
different values of g−2 extracted from simulations on a 16 × 322

lattice.

ϒ(TBKT)at = 0.040, of the same order of magnitude as ϒ(j )
around the “knee” seen in the data of Fig. 12 at j ∼ 0.1; even
though a quantitative description is still lacking, therefore,
the signal for ϒ is broadly consistent with the BKT scenario
outlined in Sec. III.

C. Quasiparticle thermal mass and dispersion relation

Next we calculated the fermion thermal mass in the high-
temperature region from simulations on 16 × 322 lattices.
Once again, the fact that the fermion correlator has a smaller
signal-to-noise ratio than the order parameter 〈χ̄χ〉 forces
us to work on smaller volumes. Now, at T > 0 fermions
can acquire a nonzero thermal mass even in the absence of
spontaneous symmetry breaking. For a weakly coupled theory,
this is simply the Debye screening mass mD ∼ gT , but in
a strongly coupled theory where dynamical mass generation
at T = 0 results from spontaneous symmetry breaking, it is
better to draw analogies with the “pseudogap” phase thought
to form in cuprate superconductors at strong coupling or low
carrier density.18 Once again, we write the pairing field as
χ̄χ = φ0e

iθ . For a temperature range TBKT < T < T ∗, the
pseudogap phase arises due to the “local” gap modulus φ0,
neutral under U(1) rotations, remaining nonzero, while the
phase θ fluctuates violently, precluding both a nonzero order
parameter and also the long-ranged phase coherence signaled
by a nonvanishing helicity modulus. In Ref. 18 the temperature
T ∗ in the (2 + 1) d Gross-Neveu model is predicted to coincide
with the estimate �0/2 ln 2 given by mean-field theory, and
the difference T ∗ − TBKT � (Nf ln 2)−1. The existence of the
pseudogap phase at nonzero temperature was demonstrated
in numerical simulations of Gross-Neveu models with U(1)
(Ref. 24) and SU(2) × SU(2) (Ref. 28) chiral symmetries and
analytically in the 4d NJL model.29

In Fig. 8 we show the fermion time-slice correlator CT
f (t)

for g−2 = 0.45,0.50,55 and m = 0.001 25. We fitted the data
for odd time slices only to

CT
f (t) = A

[
exp

( − MT
f t

) + exp
( − (Nt − t)MT

f t
)]

. (21)

β = 0.55
β = 0.50
β = 0.45

t

C
T f
(t

)

1614121086420

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

FIG. 8. (Color online) Fermion correlator with m = 0.001 25 and
g−2 = 0.45,0.50,0.55 on a 16 × 322 lattice. The curves result from
fits to data with t odd.

The small values of CT
f (t) observed on even time slices signals

a manifest chiral symmetry which is broken only explicitly
by the fermion bare mass term. The U(1)ε symmetry (4)
of staggered fermions implies that the only nonvanishing
elements of the propagator are Cf eo and Cf oe, where the e/o

subscripts denote sites with εx = ±1.
In Fig. 9 we present the results for MT

f versus m extrapo-
lated with a linear function MT

f (m) = �T + a3m to the chiral
limit. Figure 10 shows �T versus g−2. As g−2 increases the
lattice spacing decreases and at the bulk critical coupling
g−2

c = 0.609(2) at = as = 09, implying T → ∞. It is clear
from Fig. 10 that �T remains of the same order of magnitude
as �0 for a significant extent of the high-temperature phase
T > TBKT, lending strong support to the pseudogap scenario
with T ∗ > TBKT.

β = 0.607
β = 0.55
β = 0.50
β = 0.45
β = 0.40

m

M
T f
(m

)

0.0120.010.0080.0060.0040.0020

0.6

0.5

0.4

0.3

0.2

0.1

0

FIG. 9. (Color online) Fermion thermal mass MT
f versus m for

various g−2 extracted from simulations on a 16 × 322 lattice.
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0.05

0

FIG. 10. (Color online) Chirally extrapolated thermal mass �T

versus g−2 extracted from simulations on a 16 × 322 lattice.

The fermion energy as a function of momentum is accessed
via analysis of the Euclidean time-slice propagator Cf ( �p,t)
defined by

CT
f ( �p,t) =

∑
�x even

〈χ (�0,0)χ̄ (�x,t)〉e−i �p.�x, (22)

where the components of momentum �p take values 2πn/Ls ,
with n = 0,1, . . . ,Ls/4. The energy E( �p) is then extracted by
a fit of the form

Cf ( �p,t) = B(e−Et + e−E(Lt−t)), (23)

where again only data with t odd were used. We measured E( �p)
for �p = (p1,0) on 16 × 322 in the high-temperature phase. To
proceed we parametrize the dispersion relation using

E(p) = A sinh−1(
√

sin2 p + M2), (24)

where for A = 1 and M = m the exact result for noninteracting
lattice fermions is recovered. Sample fits to (24) at m = 0.005

β = 0.607
β = 0.550
β = 0.500

p

E

1.61.41.210.80.60.40.20

0.7

0.6
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0.4

0.3

0.2

0.1

FIG. 11. (Color online) Quasiparticle dispersion relation E(p) as
measured on a 16 × 322 lattice with m = 0.005.
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0

FIG. 12. (Color online) The fitted parameter A vs m for various
values of g−2.

are shown in Fig. 11. The dispersion flattens out to have
zero slope at the effective Brillouin zone edge at p = π

2 ;
this flattening is a discretization artifact with no physical
significance. For small M we can interpret E(0) ≡ MT

f ≈ AM

as the quasiparticle mass (or gap), and for small p in the limit
M → 0 then dE/dp ≈ A is the renormalized Fermi velocity
vT

FRat/as at nonzero temperature, where we have restored
explicit factors of lattice spacing. Without further information
we are unable to distinguish between renormalization of the
physical Fermi velocity and that of the cutoff anisotropy due
to quantum corrections (this point was not realized in Ref. 9),
but note that the latter must be T independent. Results for
A as a function of m are shown in Fig. 12. Despite some
noise in the data the parameter A, and hence vT

FR , is both
m- and g−2-independent, taking a numerical value ≈0.65,
which is very close to the value A ≈ 0.7 reported in Ref. 9 at
T = 0. This implies that the principal physical effect of the hot
medium is to generate a nonzero thermal mass rather than to
renormalize the Fermi velocity. A similar effect was observed
in nonzero T simulations of the (2 + 1) d Gross-Neveu model
with an SU(2) ⊗ SU(2) chiral symmetry.28

V. SUMMARY AND CONCLUSION

The main result of this exploratory study of thermal effects
in the insulating phase of the graphene effective theory
(1) with Nf = 2, via numerical simulation of its discrete
avatar (3), is the determination of the critical temperature for
vortex unbinding TBKT/�0 ≈ 0.06. This value is considerably
smaller than the ratio found in the Gross-Neveu model
(TBKT/�0 ≈ 0.5),24 underlining the point that different four-
point Fermi interactions yield distinct dynamics in (2 + 1) d

and that perturbative approaches such as the 1/Nf expansion
are unlikely to be accurate for graphene.8 It also implies that
study of the BKT transition in this system is a numerically
challenging problem, requiring large lattice volumes in order
to resolve the large separation of scales. With the resources
at our disposal we have been able to work with Nt = 32,
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which has enabled an estimate of TBKT via the critical scaling
(13) of the order parameter with external mass source and
identification of the exponent δ, but not yet, it must be
stressed, via direct observation of singular behavior in any
thermodynamic observable. That said, it is noteworthy that
our value (18) is not too far removed from predictions made
using Schwinger-Dyson equations.16

Two major caveats must be noted. First, predictions made
using the discrete model (3) can strictly only be applicable
in the continuum limit; we therefore need to explore the limit
g2 ↘ g2

c to control the inevitable discretization artifacts, which
may scale with nontrivial powers of as, at as the QCP is
approached. Unfortunately, in practical terms this requires the
limit Nt → ∞. Second, as noted earlier, it is argued that in the
continuum limit the global symmetry of the effective graphene
Lagrangian enlarges from U(1)⊗U(1) to U(4), implying
the existence of half-vortex topological excitations, which
exhibit an unbinding transition at a still lower temperature
T̃BKT = TBKT/4 (Ref. 17). Since our estimate of the critical
temperature assumes the orthodox BKT scenario, we are
unable to comment further on this possibility. Resolving this
question will probably require a more refined lattice fermion
discretization, as advocated in Ref. 6.

We have also presented results for the helicity modulus
ϒ as a function of the source strength j introduced to
induce a circulating supercurrent in our system. The numerical

challenge has so far restricted our study to the region T >

TBKT, but the magnitude of ϒ(j ) observed is consistent with
the expectations of the conventional BKT scenario. We are
unaware of any effective model enabling a controlled j → 0
extrapolation on finite systems.

Finally, the calculation of the quasiparticle propagator
presented in Sec. IV C reveals the persistence of a gap �T �
�0 for temperatures T > TBKT, despite the fact that the form of
the correlators shown in Fig. 8 is characteristic of propagation
through a chirally symmetric medium. As argued in Ref. 24,
in this phase the fermion flips chirality, permitting propagation
at speeds v < vF , by constantly exchanging massless bosonic
quanta with the medium: This is signaled by the spectral
density function ρ(s) being modified from a simple pole on
the mass shell to a branch cut above the threshold at s = �2

T .
The situation qualitatively resembles the discussion of the
pseudogap phase in cuprates given in Ref. 18. In addition,
the analysis of the fermion dispersion relation for T > TBKT

showed that the main effect of the hot medium is to generate a
nonzero thermal quasiparticle mass rather than to renormalize
the T = 0 physical Fermi velocity.
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