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Ab initio study of proper topological ferroelectricity in layered perovskite La2Ti2O7
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We present a first-principles investigation of ferroelectricity in layered perovskite oxide La2Ti2O7 (LTO). Our
calculations indicate that LTO’s high-temperature (1770 K) ferroelectric transition results from the condensation
of two soft modes that have the same symmetry and are strongly coupled anharmonically. The leading instability
mode essentially consists of rotations of the oxygen octahedra that are the basic building blocks of the perovskite
structure; remarkably, because of its particular lattice topology or connectivity, such O6 rotations give rise to
a spontaneous polarization in LTO. The effects discussed thus constitute an example of how nanostructuring –
provided here by the natural layering of LTO – makes it possible to obtain a significant polar character in
structural distortions that are typically nonpolar. We discuss the implications of our findings as regards the design
of multifunctional materials, noting that the observed proper ferroelectricity driven by O6 rotations provides the
ideal conditions to obtain strong magnetoelectric effects.
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I. INTRODUCTION

Because of their physical appeal and technological im-
portance, ferroelectrics and related materials have been the
object of continued attention for decades.1–3 Bulk oxides
with the ideal perovskite structure – ranging from classic
ferroelectric BaTiO3 (BTO) to strong dielectric Ba1−xSrxTiO3,
or from piezoelectric PbZr1−xTixO3 (PZT) to relaxor
(PbMg1/3Nb2/3O3)1−x-(PbTiO3)x – have been especially well
studied. Indeed, partly thanks to a number of key contribu-
tions from first-principles theory,4 we now understand the
fundamental atomistic origin of the ferroelectric (FE) and
response properties of the most important members of this
family. During the past decade, the focus has increasingly
shifted toward nanostructured materials, especially in the form
of thin films. Work on films has led to a better understanding
of how elastic (i.e., the epitaxial strain exerted by a substrate)
and electric (e.g., the imperfect screening of the depolarizing
field associated with particular metallic electrodes) boundary
conditions affect the FE state.5 Further, it has been shown
that exotic FE properties can be obtained in artificially created
superlattices, e.g., in the recently discussed PbTiO3/SrTiO3

heterostructures.6

The emergence of magnetoelectric (ME) multiferroics7

(i.e., materials with coupled magnetic and FE orders) has
contributed to refuel interest in ferroelectrics, especially in
what regards unconventional mechanisms for ferroelectricity.
If we restrict ourselves to oxides with the ideal ABO3

perovskite structure, ferroelectricity (usually driven by a
B-site transition metal with an nd0 electronic configuration)
and magnetism (which requires localized d or f electrons)
seem to be mutually exclusive, the known exceptions being
very scarce.8,9 So far, the most notable ways around this
problem consist of i) having ferroelectricity driven by the
A-site cation, as in room-temperature multiferroic BiFeO3,10

and ii) moving away from the ideal perovskite structure and
resorting to other mechanisms for ferroelectricity, e.g., in the
improper FE YMnO3

11,12 and the so-called hybrid improper
FE Ca3Mn2O7.13

This is the context of our work on the layered perovskite
oxide La2Ti2O7 (LTO), whose structure is sketched in Fig. 1.

LTO is one of the highest-temperature ferroelectrics known,
with a Curie point (TC) of approximately 1770 K,14 and
is lately being considered for applications as a high-T
piezoelectric.15,16 There are other simple (e.g., LiNbO3 with
TC ≈ 1480 K) and layered (e.g., Sr2Nb2O7 with TC ≈ 1610 K)
perovskites with high Curie temperatures comparable to
LTO’s. Yet, it is worth noting that LTO’s TC seems enormous
when compared with the FE transition temperature of cubic
perovskite titanates that share with it the same building
blocks, i.e., TiO6 octahedral groups: Most significantly, BTO
becomes FE at about 400 K, and the related compound SrTiO3

remains (a quantum) paraelectric (PE) down to 0 K. Thus,
the questions we would like to answer are these: What is
the mechanism for ferroelectricity in LTO? How does it
differ from what occurs in materials as well known as BTO,
so that its Curie temperature is comparatively so high? In
principle, two scenarios are possible. LTO might owe its high
TC to the kind of mechanisms known to operate in the cubic
titanates (in essence, long-range dipole-dipole interactions that
destabilize the nonpolar phase17,18), which might somehow
be enhanced by the peculiar topology or connectivity of
the LTO lattice. Alternatively, LTO might present some
different form of very strong FE instability. Either way, the
study of this compound will provide us with information
that will be useful to better understand ferroelectricity in
layered perovskites and eventually design new ferroelectric
materials.

Let us also note that LTO is a member of the family
of oxides with the general formula LanTinO3n+2,19 whose
structure can be seen as the ideal cubic perovskite periodically
truncated along the [011]c direction of the cubic lattice, n

being the number of perovskite-like planes within one layer
(see Fig. 1). These structures are thus related to the well-
known Ruddlesden–Popper, Aurivillius, and Dion–Jacobson
families of layered perovskites,20 for which the truncation
direction is [001]c and which include very famous members
such as (La,Ba)2CuO4, the parent compound of high-TC

superconductors. The basic features of the electronic structure
of the LanTinO3n+2 compounds are controlled by n: The La
and O atoms can be assumed to be in their most common
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FIG. 1. (Color online) Different views of the layered perovskite
structure of the AnBnO3n+2 compounds for n = 4, where n is the
number of perovskite-like planes within a layer. Only the A atoms (as
balls) and BO6 octahedra are shown. The defined Cartesian axes x,
y, and z (which follow the convention adopted in Ref. 34) are used
throughout the paper.

ionization states – i.e., La3+ and O2− – which implies that
the Ti cations will present a positive charge of 3 + 4/n.
Accordingly, the number of 3d electrons in the Ti atoms
will be 1 − 4/n, which allows us to move quasi-continuously
from the Ti-3d0 configuration of the n = 4 compound (that is
our LTO, the family member with smallest n reported in the
literature) to the Ti-3d1 configuration of the n = ∞ compound
(which has the prototype perovskite structure). The variety
of electronic phenomena observed for intermediate values of
n – including phases of semiconducting, normal metallic,
and low-dimensional metallic character19 – constitutes an
additional motivation to study in detail the structural behavior
of the relatively simple end member LTO.

The paper is organized as follows. In Sec. II we describe the
theoretical approach and first-principles methods used in this
work. We present and discuss our results in Sec. III, which is
split in the following way. In Sec. III A we describe our results
for the structure of the high-temperature PE and FE phases
of LTO. In Sec. III B we show that the PE phase presents a
strong FE instability whose topological nature is discussed in
detail. Our results thus show that ferroelectricity in LTO has
the same origin as in the barium fluorides BaMF4 (where M is
a transition metal), which belong to the same structural family
but with n = 2.21 In Sec. III C we describe the phase transition
between the PE and FE phases and discuss the energetics
of the transformation. In Sec. III D we present our results
for the spontaneous polarization, dielectric, and piezoelectric
properties. Having described LTO’s basic FE properties, which
are contrasted with the behavior of prototype compound BTO,
in Sec. III E we show that LTO also presents some features that
are clearly reminiscent of the usual FE oxides with the ideal
perovskite structure. In Sec. III F we outline the implications
that our results have for the design of novel ME materials.
Finally, in Sec. IV we summarize and present our conclusions.

Whenever possible, we compare our first-principles results
with the (scarce) experimental information available for LTO.

II. METHODOLOGY

A. Theoretical approach to La2Ti2O7

We adopted the usual first-principles approach to the
investigation of structural phase transitions of the displacive
type, which is routinely applied with great success to FE per-
ovskite oxides.22 In essence, one needs to identify a reference
equilibrium phase of high symmetry (HS) – which corresponds
to the high-temperature PE phase of the compound – and study
its stability against all possible structural distortions. More
precisely, we write the energy of the crystal as the following
Taylor series:

E = E0 + 1

2

∑
m,n

Kmnumun + O(u3), (1)

where E0 is the energy of the HS phase. The um variables repre-
sent the structural distortions of the reference configuration; for
the study of a FE transition, one can typically restrict oneself
to the distortions compatible with the reference unit cell, i.e.,
those associated with the � point of the Brillouin zone of the
PE phase. The so-called force-constant matrix K is the central
quantity one needs to compute, as its negative eigenvalues (if
any) correspond to unstable structural distortions – i.e., soft
modes – that may result in a phase transition. Let us use the
term mode stiffness to refer to the eigenvalues of K , which
we denote by κs , with s running from 1 to the dimension
of the force-constant matrix. Note that the magnitude of a
negative κs determines the strength of the structural instability,
and thus the likelihood of observing it experimentally. (In
general, one may find several, possibly competing, instabilities
of a HS phase; it is by no means guaranteed that all of
them will lead to experimentally observable phase transitions.)
Once a soft-mode is identified, one can readily study the
corresponding low-symmetry (LS) phase – by distorting the
crystal according to the soft-mode eigenvector and relaxing
the resulting structure – and the energetics of the instability –
by computing the usual double-well potential connecting the
HS and LS phases.

To apply this program to LTO, we had to tackle one
fundamental difficulty: We could not find any experimental
information on the structure of the high-temperature PE phase
of this compound.23 Note that this is never a problem when
one works with the usual FE perovskites, where the ideal
cubic perovskite structure is the reference phase of choice.
Such a choice is obviously correct in cases like those of
BTO or PbTiO3, where the cubic PE phase is experimentally
accessible for T > TC; more remarkably, this choice is also
the most physically sound one for materials (e.g., BiFeO3)
whose cubic PE phase is not easy to access experimentally,
as the samples tend to melt before reaching the corresponding
transition temperature. In the general case, the problem of
choosing an appropriate HS reference phase for the theoretical
study of displacive phase transitions has long been solved.
The basic idea is to look for pseudo-symmetries (i.e., slightly
broken symmetries) of the known LS structure; we can thus
identify possible HS phases that would transform into the
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known LS structure upon a relatively small distortion. This
is a very powerful strategy that can lead to the discovery of
complex phase-transition sequences (e.g., when more than one
possible HS phase is found) and, in particular, has been used
to identify previously unnoticed FE transitions.24,25

Using widely available crystallographic tools,26 we applied
the pseudo-symmetry analysis to LTO and obtained a very
clear prediction: We found that the FE phase of this compound,
which presents space group Cmc21 and a 22-atom primitive
unit cell, is most likely associated with a PE phase with the
same primitive cell and space group Cmcm (see sketch in
Fig. 2). We thus performed our first-principles study using this
Cmcm phase as our HS reference structure.

A few additional points are in order: (1) The pseudo-
symmetry analysis resulted in relatively large atomic displace-
ments connecting the HS and LS phases, with maximum values
of about 0.4 Å corresponding to the La atoms. Note that
the magnitude of such distortions is expected to reflect the
associated HS-LS transition temperature,27 which is indeed
very high in this case. (2) Experimental studies of the
compounds Sr2Nb2O7 and Ca2Nb2O7,28,29 which share with
LTO the same layered structure and a similar (nd0) electronic
configuration of the transition-metal atoms, show that they
present a high-temperature phase with the Cmcm space group.
(3) The choice of Cmcm as our PE space group results
in specific predictions for the symmetry of the soft modes
that would be associated with a FE transition to the Cmc21

phase. Indeed, the leading instability should transform with
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FIG. 2. (Color online) Structures of the Cmc21 (FE) and Cmcm

(PE) phases of La2Ti2O7 studied in this paper. The small (red),
medium (blue), and big (violet) balls represent O, Ti, and La atoms,
respectively. The shaded polyhedra are top-viewed O6 groups. The
two phases have the same 44-atom conventional cell depicted in the
figure; the 22-atom primitive cell, which is also common to both, is
indicted with dashed lines in the Cmcm case. The defined Cartesian
axes x, y, and z (which follow the convention adopted in Ref. 34)
are used throughout the paper. The symmetry-independent atoms
are labeled as in Table I; note that oxygens O(1) and O(3) of the
Cmcm structure split, respectively, into O(1)/O(2) and O(3)/O(4) in
the Cmc21 structure.

the B1u irreducible representation of mmm, the point group of
the Cmcm phase. As we will see, our first-principles results
confirmed these expectations, thus supporting our choice of
space group for the PE phase.

Finally, in this paper we make a brief reference to a
lower-temperature phase of LTO that presents the P 21 space
group.14,30 Let us note that the Cmc21-to-P 21 transition
involves the doubling of the orthorhombic cell along the x

direction, and thus involves a structural distortion associated
with a q point different from �. Such instabilities were not
considered in the present paper.

B. Details of the calculations

We used the local density approximation (LDA) to density
functional theory (DFT) as implemented in the first-principles
Vienna ab initio simulation package (VASP).31 To repre-
sent the ionic cores we used the projector-augmented wave
scheme,32 solving explicitly for the following electrons: La’s
5p, 5d, and 6s; Ti’s 3p, 3d, and 4s; and O’s 2s and 2p. The
electronic wave functions were represented in a plane-wave
basis truncated at 400 eV. We always worked with the 44-atom
cell of LTO sketched in Fig. 2 (which is the conventional cell
for both Cmcm and Cmc21 phases), and used a 6 × 1 × 5
k-point grid for Brillouin zone integrations. We checked that
these calculation conditions were well - converged by moni-
toring the computed equilibrium structure, bulk modulus, and
phonon frequencies of the Cmcm phase. For the calculation of
the force-constant matrix K and the dielectric and piezoelectric
responses, we employed a simple finite-displacement scheme
and the corresponding linear-response tensor formulas, which
can be found, e.g., in Ref. 33. We only computed the lattice-
mediated part of the static dielectric response, which has been
repeatedly shown to dominate the effect in FE oxides.

Our BTO simulations were analogous to the above de-
scribed ones. We solved explicitly for Ba’s 5s, 5p, and 6s

electrons (treating Ti and O as above), and used a 400 eV
cutoff for the plane-wave basis. We worked with the 5-atom
unit cell of BTO and used a 6 × 6 × 6 k-point grid for Brillouin
zone integrations.

III. RESULTS AND DISCUSSION

A. Structure of the Cmcm and Cmc21 phases

Table I shows our results for the equilibrium structure of
the Cmcm (PE) and Cmc21 (FE) phases of LTO considered in
this paper. For Cmc21 we also report the experimental structure
measured at 1173 K by Ishizawa et al.34 using x-ray diffraction.

While the overall agreement between the experimental and
theoretical FE structures is acceptable, the deviations affecting
some atomic positions and lattice constants are larger than
what is usual for this type of calculations. For example, the
predicted position of the La(1) atom differs notably from
the experimentally determined one; more significantly, the
computed a and c lattice constants deviate from the experi-
mental values by almost 3%. We attribute these discrepancies
to the fact that we are comparing our first-principles results,
which correspond to the limit of 0 K, with structural data
taken at very high temperatures. Given that thermal expansion
and other temperature-driven effects are not included in our
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TABLE I. Computed equilibrium structures of the Cmcm and
Cmc21 phases of LTO discussed in the text. We show in parentheses
the experimental values reported in Ref. 34 for the Cmc21 phase.

Cmcm a = 3.891 Å b = 25.720 Å c = 5.465 Å
α = β = γ = 90◦

Atom Wyc. x y z

La(1) 4c 0 0.2924 1/4
La(2) 4c 0 0.4453 3/4
Ti(1) 4c 1/2 0.3389 3/4
Ti(2) 4c 1/2 0.4437 1/4
O(1) 8f 1/2 0.2881 0.9931
O(3) 8f 1/2 0.3982 0.9869
O(5) 4a 1/2 1/2 1/2
O(6) 4c 0 0.3458 3/4
O(7) 4c 0 0.4525 1/4

Cmc21 a = 3.845 Å b = 25.626 Å c = 5.464 Å
(a = 3.954 Å b = 25.952 Å c = 5.607 Å)

α = β = γ = 90◦

Atom Wyc. x y z

La(1) 4a 0 0.2978 0.1675
(0.2981) (0.1757)

La(2) 4a 0 0.4464 0.7515
(0.4461) (0.7500)

Ti(1) 4a 1/2 0.3369 0.7069
(0.3370) (0.7095)

Ti(2) 4a 1/2 0.4407 0.2422
(0.4404) (0.2452)

O(1) 4a 1/2 0.2803 0.9245
(0.2818) (0.9350)

O(2) 4a 1/2 0.2960 0.4399
(0.2964) (0.4580)

O(3) 4a 1/2 0.3843 0.0415
(0.3891) (0.0390)

O(4) 4a 1/2 0.4072 0.5549
(0.4077) (0.5420)

O(5) 4a 1/2 0.4905 0.9724
(0.4912) (0.9750)

O(6) 4a 0 0.3460 0.7426
(0.3472) (0.7200)

O(7) 4a 0 0.4507 0.2604
(0.4511) (0.2550)

simulations, our results seem compatible with the experimental
information.

B. Ferroelectric instabilities of the Cmcm phase

As described in Sec. II A, we studied the structural stability
of the Cmcm phase against �-point distortions (compatible
with the PE unit cell) by computing the corresponding
force-constant matrix K . From the diagonalization of K we
obtained two negative eigenvalues that correspond to two
structural instabilities. The computed mode stiffnesses are
−0.81 and −0.01 eV/Å2, respectively. Hence, according to
our calculations, LTO’s Cmcm phase presents a structural
instability comparable in strength to the FE soft mode of BTO’s
PE phase (for which we obtained −2.74 eV/Å2), as well as a
marginally unstable mode with nearly zero stiffness.

p
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p
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p
3

p
3

p
5

FIG. 3. (Color online) (a) Sketch of the largest atomic displace-
ments associated with the strongest instability mode (ξ 1) obtained for
the Cmcm phase of LTO. We show the displacements corresponding
to one layer composed of n = 4 perovskite-like planes. The arrows on
the side represent the electric dipoles associated to the displacement
of oxygens in different y-planes (see text). The dipoles are labeled as
the oxygen atoms in Fig. 2. (b) Sketch of a typical anti-ferrodistortive
mode occurring in an ideal (non-layered) perovskite structure.

Both instabilities transform with the B1u irreducible rep-
resentation of the mmm point group of the PE phase; more
precisely, they are infrared active (polar) modes that involve
the development of a polarization along the z direction defined
in Fig. 2. Such B1u modes break the C2y , C2x , I , and σz

point symmetries of the PE phase (where I is the spatial
inversion, C2α stands for a twofold rotation around axis α,
and σα is a mirror plane perpendicular to direction α), leading
to the Cmc21 space group. Hence, the obtained B1u soft
modes are exactly the kind of instabilities that can drive a
FE phase transition between the Cmcm and Cmc21 phases.
Our first-principles results thus support the correctness of our
working hypothesis, i.e., that the studied Cmcm structure is
indeed the HS PE phase of LTO.

We can gain insight into the origin of ferroelectricity in
LTO by inspecting the eigenvector of the strongest instability
mode, denoted by ξ 1 in the following. In essence, ξ 1 involves
a rotation of the O6 oxygen octahedra around the x axis,
as sketched in Fig. 3(a). Hence, the displacements of the
equatorial oxygens amount to most of the eigenvector [11%
of the norm of ξ 1 is associated with O(1) displacements, 51%
with O(3), and 28% with O(5), using the labels defined in
Fig. 2 for the oxygen atoms]; there are also significant La
displacements (9% of the norm), while the Ti atoms and apical
oxygens O(6) and O(7) have a negligible participation in ξ 1.
The character of the second soft mode (ξ 2) is more complex:
It is dominated by the displacements of oxygens O(1) and
O(5) (with 21% and 35% of the norm, respectively) and
involves a significant deformation of the O6 octahedra; it also
presents a large participation of the La atoms (about 24% of the
norm).

These FE instabilities are very different from the ones
that are usual among ABO3 oxides with the ideal perovskite
structure. The inset of Fig. 4(b) shows the representative
case of BTO: The Ti cation moves away from the center of
the O6 octahedron, which is only slightly distorted, giving rise
to a large electric dipole. Further, the FE instability in BTO
and related materials is known to originate from the strong
interactions between such local dipoles.18 In contrast, the
dominant FE instability found in LTO consists of O6 octahedra
rotations, the off-centering of the Ti atoms being negligible. As
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FIG. 4. (Color online) (a) Variation of the energy of LTO as the
Cmcm phase is distorted according to several atomic displacement
patterns, namely, those corresponding to the soft modes ξ 1 and ξ 2, as
well as the distortion �X that connects the Cmcm and Cmc21 phases.
The 44-atom cell of the Cmcm phase is kept fixed in all calculations.
(b) Same as panel (a) for the PE (Pm3̄m) to FE (P 4mm) transition
of BTO. The inset shows the atomic displacements associated with
the single FE soft mode of BTO (Ba atoms at the corners of the cubic
cell; Ti atom at the center of the O6 octahedron). For both LTO and
BTO, the energies are normalized to the volume of the PE phase so
that a comparison between compounds can be made.

quantified in Sec. III D, such a pattern of atomic displacements
does not lead to a large local dipole, which suggests that the
mechanisms responsible for the ferroelectricity in LTO have
to be of a different nature.

Interestingly, structural instabilities involving O6 octahedra
rotations are very common among ABO3 perovskites, and are
usually termed antiferrodistortive (AFD). Indeed, AFD modes
such as the one sketched in Fig. 3(b) are the driving force
for most of the structural phase transitions occurring in these
compounds, the examples including crystals as well-known
as SrTiO3, LnMnO3 and LnNiO3 (where Ln is a lanthanide),
multiferroics BiMO3 (where M is a 3d transition metal), etc.
Accordingly, there is extensive literature devoted to the study
and classification of AFD modes in ABO3 perovskites,35–38 and
it is known that size (e.g., the incompatibility of the ionic radii
of the A and B cations to form a cubic perovskite lattice) and
chemical (as in the Bi-based compounds that display the so-
called stereochemical activity) effects are usually responsible
for the occurrence of AFD distortions.39 Hence, it is not a
surprise to find that layered perovskite structures may present
AFD-like instabilities that allow for a better fulfillment of
steric and/or chemical constraints at a local level. It is not our
goal here to discuss the occurrence and origin of such soft
modes in LTO-like layered perovskites; such a study should
probably involve consideration of a number of representative
crystals (e.g., a few members of the AnBnO3n+2 family) and
falls beyond the scope of this paper. Suffice it to say that

the leading FE instability that we found in LTO is essentially
analogous to the AFD distortions that are ubiquitous among
perovskite oxides.

However, we must note a critical difference between
LTO’s AFD-like mode depicted in Fig. 3(a) and the AFD
modes occurring in ideal perovskite structures [Fig. 3(b)]:
The former causes a spontaneous polarization, while the latter
do not. To better explain this, in Fig. 3(a) we indicate with
arrows the electric dipoles that appear as a consequence
of the displacement of the oxygen atoms following the ξ 1
eigenvector. The oxygens in each y-oriented plane give rise
to a dipole along the z direction. Using the definitions in
Fig. 3(a), the total dipole associated with one layer would
be player = 2 p1 + 2 p3 + p5. Since there is no symmetry
relationship between the displacements of the O(1), O(3), and
O(5) oxygens in the ξ 1 eigenvector, it follows immediately
that the player will be different from zero. Moreover, even
if oxygens of different types were to displace by the same
amount, so that p1 = − p3 = p5 = p, we would still have
player = p �= 0, as the number of oxygen planes in each layer
is odd. Finally, note that LTO’s unstable mode ξ 1 involves an
identical distortion of all layers in the structure, and thus gives
rise to a net macroscopic polarization.

On the other hand, AFD distortions of the ideal (nonlayered)
perovskite structure do not result in a macroscopic polariza-
tion. In Fig. 3(b) we show a pattern of O6 rotations around
the indicated xc axis; the situation is very similar to the one
depicted in Fig. 3(a), except that in this case the network of O6

octahedra is not truncated. Again, we indicate with arrows the
electric dipoles that appear as a consequence of the oxygen
displacements: oxygens within a [011]c-oriented plane give
rise to a dipole p along [011̄]c. It is apparent that the addition
of all such dipoles gives no net polarization in this case, a result
that can be viewed as a consequence of the three-dimensional
nature of the O6 network.

In conclusion, we have found that the strongest structural
instability in LTO’s HS phase is a very common and simple
one: It involves concerted rotations of the O6 octahedra, much
like the AFD modes responsible for the structural phase
transitions in most ABO3 crystals with the ideal perovskite
structure. AFD distortions in the usual perovskites are well
known to be nonpolar, a feature that can be viewed as a
consequence of the symmetry and three-dimensional character
of the lattice. In contrast, because the structure of LTO is
split in layers comprising an even number of perovskite-like
planes, the O6-rotation mode gives rise to a net polarization
in this case. Hence, since the occurrence of a spontaneous
polarization in LTO relies on the layered topology of the lattice,
it seems appropriate to describe this compound as a topological
ferroelectric. Let us stress that LTO’s peculiar lattice topology
does not seem essential for the structural instability to exist,
but it is critical for it to have a polar character.

Interestingly, LTO’s topological ferroelectricity is in
essence identical to what Ederer and Spaldin described as
geometric ferroelectricity in the multiferroic fluorides BaMF4,
where M = Mn, Fe, Co, or Ni.21 (We find it more appropriate
to use the terms “lattice topology” or “lattice connectivity”
to refer to the “geometric constraints” of Ref. 21.) Indeed,
the BaMF4 compounds belong to the same layered-perovskite
family as LTO; more specifically, they have an n = 2 layered
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structure that, as far as we know, does not occur among oxides.
As shown in Ref. 21, the FE transition in these compounds is
characterized by a single soft mode with a strong O6-rotational
character; hence, it bears obvious similarities with what we find
occurs in LTO.

C. Nature of the Cmcm-to-Cmc21 transition

In addition to the already discussed topological nature of
the leading FE instability, the transformation between LTO’s
Cmcm and Cmc21 phases presents a number of interesting
aspects that we discuss in the following. Most importantly, our
results indicate that the transition is driven by the combined
action of the two soft modes discussed in Sec. III B and suggest
that such a cooperation is critical for it to occur at a very high
temperature.

To study a structural phase transition quantitatively, one can
start by comparing the energies of the phases involved. Table II
shows our results for LTO, along with the analogous data for
the Pm3̄m (PE) and P 4mm (FE) phases of BTO. Note that the
energy change per unit volume involved in LTO’s transition is
about one order of magnitude greater than the corresponding
one for BTO. Such an enormous difference is compatible with
the experimentally measured Curie temperatures, which are
1770 and 400 K for LTO and BTO, respectively. Hence, our
first-principles results for the energetics of LTO’s FE transition
seem consistent with experiments.

Table II also contains information about the elastic defor-
mation that accompanies the FE transitions. The properties of
FE oxides with the ideal perovskite structure are known to be
strongly sensitive to cell strains. This is clearly reflected in
the results for BTO: If the compound is forced to keep the
cubic cell of the PE structure, the energy gain involved in the
FE transition is reduced by half (i.e., it drops from −0.110 to
−0.051 meV/Å3). On the other hand, if we impose only the PE
volume (so that the FE cell is allowed to deform and acquire
a c/a �= 1 ratio), the energetics of the transformation is not
strongly affected. In contrast, the analogous elastic constraints
have a relatively small effect in the case of LTO (i.e., the energy
gain drops from −1.097 to −0.938 meV/Å3 when we impose
the PE cell). Such a weak coupling between strain and the FE
distortion is probably reflecting the AFD-like character of the
instability;40 this result also suggests that LTO will display
relatively small piezoelectric effects as compared with regular
FE perovskites.

TABLE II. Energy difference between the FE and PE phases of
La2Ti2O7 and BaTiO3. The FE phases are considered under several
elastic constraints (see text), which we denote as fully relaxed (no
constraint), PE volume, and PE cell. For both LTO and BTO, the
energies are normalized to the volume of the PE phase so that
a comparison between compounds can be made. Results given in
meV/Å3.

Phase LTO BTO

Fully-relaxed −1.097 −0.110
PE volume −1.042 −0.099
PE cell −0.938 −0.051

Let us now consider the atomic displacements that char-
acterize the Cmcm-to-Cmc21 transformation. In most mate-
rials undergoing displacive transitions, the atomic distortion
connecting the HS and LS phases is essentially captured
by the eigenvector of the instability mode that triggers the
transformation. One can easily quantify this by constructing a
distortion vector �X comprising all the atomic displacements
associated with the HS-to-LS transition, and expressing it in
the basis formed by the eigenvectors ξ s of the force-constant
matrix of the HS phase. (For simplicity, we constructed our
distortion vectors �X using the atomic positions of a LS phase
that is forced to have the same unit cell as the HS phase.) For
BTO, this analysis led us to the expected result: The soft
mode of the PE phase captures 98% of the atomic distortion
involved in the Pm3̄m-to-P 4mm transition. However, the
result for LTO was qualitatively different: The strongest
instability mode (ξ 1, with κ1 = −0.81 eV/Å2) captures 81%
of the total distortion, and the second instability mode (ξ 2,
with κ2 = −0.01 eV/Å2) contributes with 15%. (For both
compounds, no other mode contributes more than 1%.) Hence,
our results suggest that the two soft modes ξ 1 and ξ 2 play an
important role in LTO’s FE phase transition.

Such a large contribution of ξ 2 to the structural transforma-
tion seems incompatible with the computed mode stiffnesses;
indeed, the values of κ1 and κ2 would suggest that ξ 2 is
about 80 times weaker than ξ 1 as an instability. To resolve
this apparent contradiction, we computed how LTO’s energy
changes when the Cmcm phase is distorted according to the
individual ξ 1 and ξ 2 modes. As shown in Fig. 4(a), we found
a large energy reduction associated with the ξ 1 distortion,
while the ξ 2 instability is almost negligible. We also computed
the energy variation as the total distortion �X is frozen in.
Remarkably, as compared with the results for ξ 1, the �X curve
in Fig. 4(a) presents a much deeper minimum corresponding to
a much larger distortion amplitude. This is a new indication that
the ξ 1 soft mode cannot explain LTO’s FE transition by itself.
This result contrasts with the situation for BTO [Fig. 4(b)],
where the FE soft mode captures the energetics of the structural
transformation almost exactly.

The results of Fig. 4(a) suggest that there is a strong and
cooperative coupling between the two instability modes of
LTO. To better describe this effect, let us write the energy of
the crystal as the following Taylor series:

E = ECmcm + 1
2κ1u

2
1 + 1

2κ2u
2
2 + 1

4α1u
4
1 + 1

4α2u
4
2

+ γ ′u3
1u2 + γ ′′u2

1u
2
2 + γ ′′′u1u

3
2 + O(u6) , (2)

where ECmcm is the energy of the Cmcm phase, and u1 and u2

are, respectively, the amplitudes (in angstroms) of the ξ 1 and ξ 2
distortions. Note that this expression for the energy is greatly
simplified by symmetry and that the quadratic parameters
coincide with the mode stiffnesses. We have included in
Eq. (2) only the lowest-order couplings between u1 and
u2, which are quantified by the primed γ parameters. By
fitting to the ξ 1 and ξ 2 energy curves of Fig. 4(a), we got
κ1 = −0.79 eV/Å2 and κ2 = 0.00 eV/Å2, in fair agreement
with the values obtained from the diagonalization of K ; we
also got α1 = 0.65 eV/Å4 and α2 = 0.66 eV/Å4. Then, to
fit the �X curve, we considered distortions characterized by
u1/u2 = 0.81/0.15, as it corresponds to the Cmc21 phase.
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Note that, in this case, the fitted quartic coefficient is a
combination of the α and γ parameters of Eq. (2). Given
the large u1/u2 ratio associated with the �X distortion, and in
view of further tests discussed in Sec. III D, it seems reasonable
to assume that γ ′ dominates over γ ′′ and γ ′′′; we thus got γ ′ =
−0.35 eV/Å4. As compared with the computed α coefficients,
this clearly is a very strong anharmonic coupling that favors
the combined ξ 1 + ξ 2 distortion.41

To the best of our knowledge, such a cooperation between
soft modes is rare among perovskite oxides.42 There are many
examples of materials in which several strong instabilities
exist; in most cases, the strongest one leads to a phase transition
that tends to suppress, partially or totally, the other instabilities.
The competition between the FE and AFD soft modes in
compounds like SrTiO3 is a representative and well-studied
case.43 In contrast, we find that the reciprocal enhancement
of the two soft FE modes is critical to explain the structural
transformation in LTO. The ξ 1 mode is clearly the leading
instability, and it would occur even in absence of ξ 2. Yet, as
the results in Fig. 4(a) show, the magnitude and strength of the
transformation are boosted by the interaction between ξ 1 and
ξ 2. Thus, our results seem to suggest that LTO owes its very
high TC to such an interaction; indeed, in view of Fig. 4(a) –
which shows that the minimum of the �X curve is more than
twice deeper than the minimum of the ξ 1 curve – it is hard
to imagine LTO’s TC would remain essentially the same if the
coupling between ξ 1 and ξ 2 was suppressed.44

Studying from first principles the onset and temperature
dependence of the FE distortion(s) of LTO is a challenging
endeavor that remains for future work. Nevertheless, a few
observations can be made based on the present results. In
principle, one could try to approach the problem by introducing
a Landau potential of the form

F − F0 = 1
2A1(T − TC)Q2

1 + 1
4B1Q

4
1 + 1

2A2Q
2
2 + 1

4B2Q
4
2

+C ′Q3
1Q2 + C ′′Q2

1Q
2
2 + C ′′′Q1Q

3
2 , (3)

which is written in terms of two one-dimensional order
parameters, a primary Q1 and a secondary Q2, that have the
same symmetry and are strongly coupled anharmonically.45 In
the following heuristic argument, we will consider only the
Q3

1Q2 crossed term – in accordance with our above conjecture
regarding the couplings in Eq. (2) and because this is the most
relevant crossed term in the vicinity of the phase transition,46

– thus assuming that C ′′ = C ′′′ = 0.
If we were dealing with a simple transition, we would

have a primary order parameter Q1 corresponding to the
unstable eigenmode of the K matrix of the HS phase; the
temperature dependence of the Landau potential would be
restricted to the Q2

1 term, as indicated in Eq. (3), and we would
have positive A1 and B1 coefficients. Further, a secondary order
parameter Q2 would be stable by itself, with positive A2 and B2

coefficients. Hence, the corresponding Landau theory would
predict a phase transition at T = TC, with

Q1 =
[
A1

B1
(TC − T )

]1/2

(4)

below the transition temperature. (The indicated formulas
were derived assuming that we remain close to the transition

temperature.) Then, Q2 would present the following tempera-
ture dependence below TC:

Q2 = − C ′

A2
Q3

1 = − C ′

A2

[
A1

B1
(TC − T )

]3/2

. (5)

In a simple case, the coefficients in Eq. (2) may be a good
approximation to the coefficients in Eq. (3) in the limit of low
temperatures. Thus, by supplementing Eq. (2) deduced from
first principles with a piece of experimental information – i.e.,
the value of the transition temperature TC – we could construct
the corresponding Landau potential and obtain a quantitative
description of the temperature dependence of Q1 and Q2.

The doubts quickly appear when one tries to apply this
model to LTO. It would seem natural to associate Q1 and Q2

with our computed FE soft modes ξ 1 and ξ 2, respectively.
However, that identification implies that the transition tem-
perature for Q1 is independent of Q2; such an approximation
would be an awkward one, given the large influence that ξ 2
has in the energetics of the Cmcm-to-Cmc21 transformation.
Additionally, we would be forced to speculate regarding the
T dependence of the A2 coefficient, as our guess for this
parameter – i.e., the κ2 of Eq. (2) which was found to be
essentially zero – does not comply with the usual requirements
for the quadratic coefficient of a secondary mode. Note that, for
example, if we had a small value of A2 and thus a dominant B2

term, the behavior with temperature of both Q1 and Q2 would
vary: Q1 would have the same functional T dependence but
with a different prefactor, and Q2 would go as (TC − T )1/2

instead of (TC − T )3/2.
Hence, as already mentioned, the results of the present study

do not allow us to resolve the details of LTO’s high-temperature
FE transition. Further, as the above discussion illustrates,
LTO’s case is an especially difficult one, and it is not obvious
how to relate the two soft modes obtained from first-principles
calculations with the two order parameters that, presumably,
should appear in the corresponding Landau theory.

To conclude this section, let us note that complex structural
phase transitions involving a variety of modes have been re-
ported for other layered perovskite oxides, such as SrBi2Ta2O9

(in which a hard secondary mode is critical to stabilize the
FE phase)47 and the already mentioned Ca3Mn2O7 (in which
O6-rotational distortions are involved in the occurrence of
ferroelectricity).13 More work will be needed to establish how
general such multimode transformations are and to determine
whether the behavior of different structural families admits
some sort of unified description.

D. Polarization and response properties

Table III shows the computed spontaneous polarization,
lattice-mediated dielectric tensor, and piezoelectric tensor for
the Cmc21 phase of LTO. For comparison, we also show results
from the literature corresponding to the P 21 phase that is stable
at room temperature.

We obtained a value of 0.29 C/m2 for the spontaneous
polarization, which is comparable to the result of 0.38 C/m2

that we obtained for the tetragonal phase of BTO. The
dielectric response is also very significant, as the obtained
values are comparable to those typical of FE perovskites
(e.g., we got εzz = 23 for the z-polarized tetragonal phase
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TABLE III. Nonzero components of the spontaneous polarization
(P S

z , given in C/m2), lattice-mediated dielectric tensor (εαβ ), and
piezoelectric tensor (dαl , where l labels strain components in Voig
notation, given in pC/N) of the Cmc21 phase of LTO. For the dielectric
tensor, the clamped-cell response is given in parenthesis.33 For the
piezoelectric tensor, the clamped-ion response is given in parenthesis.
We also show experimental14 and theoretical16 values for the P 21

phase of LTO that is stable at room temperature (Troom). Note that
the results in Refs. 14 and 16 have been adapted to our choice of
Cartesian axes.

Cmc21 phase P 21 phase

this work Exp. (Troom)14 Theory16

P S
z 0.29 0.05 0.08

εxx 62 (61) 52 –
εyy 44 (44) 42 –
εzz 65 (54) 62 –
dz1 12 (0) 3 –
dz2 4 (1) 6 –
dz3 −22 (0) 16 –
dx5 −2 (0) – –
dy4 1 (0) – –

of BTO). As regards piezoelectricity, the computed responses
are considerable but not particularly large; for example,
for the low-temperature rhombohedral phase of BTO, the
piezoelectric coefficients reach values of 200 pC/N,33 while
for LTO we got maximum values of about 20 pC/N. LTO’s
relatively small piezoelectric response seems compatible with
the minor role that the cell strains play in determining
the energetics of the Cmcm-to-Cmc21 phase transition, as
mentioned in the discussion of Table II.

The large spontaneous polarization obtained may seem
incompatible with the AFD-like character of the structural
instability (ξ 1) that dominates the Cmcm-to-Cmc21 transition.
To clarify this point, we performed alternative calculations us-
ing linear-response expressions33 based on the Born effective-
charge tensors Z∗

i that quantify the polarization change
associated with the displacement of an individual atom i.

The polarization reported in Table III was obtained in the
standard way: We used the Berry-phase theory of King-Smith
and Vanderbilt48 to compute the variation of P as the Cmc21

structure is deformed into a symmetry-equivalent one with
opposite polar distortion; then, PS is half of the computed
polarization change. PS can also be estimated using the
approximate formula

P S
α ≈ 
−1

∑
iβ

Z∗
i,αβ�Xiβ , (6)

where �X is the vector capturing the distortion that connects
the Cmcm and Cmc21 phases, 
 is the cell volume, i

labels the atoms in the unit cell, and α and β label spatial
directions. Using different choices for the effective-charge
tensors (i.e., those computed for the Cmcm phase, as well
as the corresponding results for the Cmc21 phase subject to
different cell constraints) we obtained values of P S

z in the
0.25–0.32 C/m2 range, which are perfectly compatible with
the result in Table III.

TABLE IV. Computed effective-charge tensors (given in units of
elementary charge) for the Cmcm (PE) and Cmc21 (FE) phases of
La2Ti2O7. To facilitate the comparison between phases, we list the
tensors corresponding to all the symmetry-inequivalent atoms of the
FE phase. Atoms are labeled as in Table I.

Atom Cmcm (PE) Cmc21 (FE)

La(1)

(
4.63 0 0

0 4.17 0

0 0 4.72

) (
4.64 0 0

0 4.09 −0.21

0 −0.69 4.71

)

La(2)

(
4.37 0 0

0 3.76 0

0 0 4.28

) (
4.63 0 0

0 4.13 0.41

0 0.24 4.24

)

Ti(1)

(
6.91 0 0

0 6.70 0

0 0 5.72

) (
6.16 0 0

0 5.60 −0.36

0 0.24 5.31

)

Ti(2)

(
6.33 0 0

0 5.32 0

0 0 7.45

) (
6.11 0 0

0 5.29 0.09

0 −0.15 6.32

)

O(1)

(−2.52 0 0

0 −3.20 0.73

0 0.86 −3.26

) (−2.52 0 0

0 −3.14 0.53

0 0.38 −2.92

)

O(2)

(−2.52 0 0

0 −3.20 −0.73

0 −0.86 −3.26

) (−2.15 0 0

0 −2.35 −0.89

0 −0.90 −3.44

)

O(3)

(−2.08 0 0

0 −3.27 −1.72

0 −1.56 −3.98

) (−1.76 0 0

0 −3.33 −1.36

0 −1.38 −2.95

)

O(4)

(−2.08 0 0

0 −3.27 1.72

0 1.56 −3.98

) (−2.49 0 0

0 −3.19 1.28

0 1.19 −3.64

)

O(5)

(−2.49 0 0

0 −3.15 1.19

0 0.98 −3.64

) (−2.63 0 0

0 −3.11 1.04

0 1.00 −3.36

)

O(6)

(−5.50 0 0

0 −2.15 0

0 0 −1.66

) (−5.04 0 0

0 −2.08 0.24

0 0.14 −1.75

)

O(7)

(−5.10 0 0

0 −1.73 0

0 0 −2.41

) (−4.99 0 0

0 −1.91 −0.03

0 −0.02 −2.20

)

Then, we used the effective-charge tensors of the Cmcm

phase (given in Table IV) to compute the polarization change
associated with the condensation of the ξ 1 and ξ 2 soft modes
that dominate the Cmcm-to-Cmc21 transformation. The polar
character of the modes is quantified in terms of the mode
effective charges:

Z̄s,α =
∑
iβ

Z∗
i,αβξs,iβ . (7)

We obtained Z̄1,z = 1.8e and Z̄2,z = 12.0e, where e is the
elemental charge. These results confirm that the ξ 1 is weakly
polar, in accordance with its AFD-like nature. In contrast, the
second soft mode ξ 2 is found to have a considerably polar
character. It can then be trivially shown that the two soft
modes have a very similar contribution to the total spontaneous
polarization of the Cmc21 phase of LTO, in spite of the fact
that ξ 1 embodies 81% of the PE-to-FE distortion. Hence, the
two-mode character of the FE distortion is critical to explain
the relatively large PS of the Cmc21 phase.
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Unfortunately, we were unable to find experimental results
for the FE and response properties of the Cmc21 phase of
LTO. Table III shows some results for the P 21 phase of the
compound that is stable at room temperature. Interestingly, the
dielectric and piezoelectric responses measured for this phase
seem compatible (at least in magnitude) with our values for
Cmc21. As regards the spontaneous polarization, the value
for the P 21 phase is smaller than ours by a factor of 6;
this experimental result agrees well with the first-principles
calculation of Ref. 16, which employed a DFT scheme similar
to ours.49 Hence, we can tentatively conclude that the Cmc21-
to-P 21 transformation, which is experimentally determined to
occur at 1053 K,34 involves a reduction of LTO’s spontaneous
polarization. While such a reduction in the magnitude of PS

as the temperature decreases is not typical in FE perovskites,
in principle there is no reason to question this possibility.

Finally, let us discuss an intriguing possibility suggested by
the very different magnitudes of the computed mode charges
Z̄1,z and Z̄2,z. Since Z̄s quantifies the coupling between a
polar mode and an applied electric field, we can expect ξ 2 to
be much more reactive to an external bias than ξ 1. One can
thus imagine the following possibility: to apply an electric
field to LTO in its Cmc21 phase and switch only the part
of the spontaneous polarization associated with ξ 2. More
precisely, if (uI

1,u
I
2) represents the FE phase discussed so far,

an electric field might allow us to take the material into a
qualitatively different polarization state (uII

1 ,uII
2 ) ≈ (uI

1, − uI
2).

LTO would thus be a four-state FE, as the (−uI
1, − uI

2)
and (−uII

1 , − uII
2 ) variants would be accessible as well. A

necessary condition for such a partial switching to occur is
that the (uII

1 ,uII
2 ) state be a minimum of the energy. More

precisely, we need the coupling between ξ 1 and ξ 2 to be
dominated by the γ ′′u2

1u
2
2 term of Eq. (2): Note that, for |γ ′′|

much greater than |γ ′| and |γ ′′′|, the four states (±uI
1, ± uI

2)
would have essentially the same energy; in contrast, if γ ′ or
γ ′′′ dominates, the “ξ 2-switched” state would have a much
higher energy and might not be a minimum of E(u1,u2). To
confirm or disprove such a partial switching, we considered
the equilibrium structure of the Cmc21 phase (i.e., the one
reported in Table I) and generated configurations in which the
ξ 2 distortion was inverted and given various magnitudes; we
relaxed such transformed structures and invariably obtained
the original Cmc21 phase as the final result. Hence, while we
did not explore the E(u1,u2) energy landscape in detail, our
results clearly indicate there is no stable ξ 2-switched state.
Equivalently, this implies that the γ ′ and γ ′′′ terms of Eq. (2)
dominate over γ ′′ (which supports the assumption made in
Sec. III C).

E. BaTiO3-like ferroelectric modes in La2Ti2O7

Thus far we have discussed the main features of LTO’s
high-temperature FE transition, showing that this compound
is very different from the FE oxides with the ideal perovskite
structure. In particular, our results seem to suggest that LTO
and BTO have little in common, in spite of the fact that they
share the same building blocks: TiO6 octahedra with Ti4+ in
the 3d0 electronic configuration. In the following we show that
such a conclusion would be a deceptive one.

TABLE V. Computed effective-charge tensors (given in units of
elementary charge) for the Pm3̄m (PE) and P 4mm (FE) phases of
BTO. The tensors are given in the conventional Cartesian axes for
a rectangular lattice. They correspond to the following atoms (PE
phase positions given in relative units): Ba located at (0,0,0), Ti at
(1/2,1/2,1/2), O(1) at (1/2,1/2,0), and O(2) at (0,1/2,1/2). O(1)
and O(2) are symmetry equivalent in the PE phase, but not in the
z-polarized FE phase.

Atom Pm3̄m (PE) P 4mm (FE)

Ba

(
2.72 0 0

0 2.72 0

0 0 2.72

) (
2.71 0 0

0 2.71 0

0 0 2.81

)

Ti

(
7.31 0 0

0 7.31 0

0 0 7.31

) (
7.05 0 0

0 7.05 0

0 0 5.83

)

O(1)

(−2.13 0 0

0 −2.13 0

0 0 −5.77

) (−1.98 0 0

0 −1.98 0

0 0 −4.79

)

O(2)

(−5.77 0 0

0 −2.13 0

0 0 −2.13

) (−5.62 0 0

0 −2.14 0

0 0 −1.96

)

Ferroelectricity in the usual FE perovskite oxides relies
on strong dipole-dipole interactions whose fingerprint is the
anomalously large magnitude of the Born effective charges
of some atomic species.50 A prototypical example of this
behavior is BTO, for which we computed the effective-charge
tensors shown in Table V. Most notably, in the PE phase the
Ti4+ cations display Z∗ values above 7e, almost doubling their
nominal ionization charge. Analogously, the displacement of
the O atoms toward the Ti has a dynamical charge of −5.77e

associated with it, almost tripling the nominal value of −2e.
It is well known that this effect is related to a partial covalent
character of the Ti–O bond, and an increased hybridization of
the O-2p and Ti-3d orbitals as the Ti and O atoms approach.17

Thus, given this chemical origin, the effective charges become
less anomalous once the FE distortion freezes in: According
to the results in Table V, Ti’s charge of 7.31e gets reduced to
5.83e, while O’s charge of −5.77e falls to −4.79e.

As is apparent from Table IV, some Ti and O atoms in LTO
also present anomalously large effective charges that reach
values similar to those obtained for BTO. In the case of the Ti
atoms, the computed Z∗ tensors are rather isotropic, with the
maximum Z∗ values [i.e., 6.91e for Ti(1) and 7.45e for Ti(2)]
corresponding to displacements along the in-layer directions x

and z. In the case of the O atoms, O(6) and O(7) clearly present
the largest values, which exceed −5e as in BTO. Such giant
dynamical charges correspond to displacements along the x

direction, for which LTO presents infinite chains of TiO6 octa-
hedra (see Figs. 1 and 2) such as those in the ideal perovskite
structure. Hence, as regards their polarizability properties, the
results for the Ti and O atoms in LTO are strongly reminiscent
of the behavior that is well known for BTO.

Do such anomalous effective charges lead to FE instabilities
in LTO? In accordance with the above discussion, the answer
to this question is a negative one: The Cmcm phase presents
only two �-point instabilities (i.e., the already discussed ξ 1
and ξ 2) and the Cmc21 is stable against �-point perturbations.
Hence, LTO is in this sense similar to the magnetic perovskite
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CaMnO3,9 and provides a new example of a material in which
the presence of anomalously large Born effective charges does
not lead to a BTO-like FE instability.

Nevertheless, by inspecting the K eigenmodes of the Cmcm

phase, it is easy to find several low-energy FE modes that are
BTO-like, i.e., they involve the displacement of the Ti atoms
away from the center of nearly undistorted O6 octahedra.51,52

For example, we found a marginally stable and strongly polar
mode for which we computed κs = 0.26 eV/Å2 and Z̄s,x =
21.7e (this distortion is x polarized and has B3u symmetry);
this mode gives an enormous contribution to the εxx dielectric
response:53 The obtained value exceeds 600. Interestingly,
these BTO-like modes become stiffer in the Cmc21 phase;
thus, they do not give raise to any anomalously large
contribution to the dielectric response reported in Table III.

In conclusion, our analysis shows that LTO presents obvi-
ous traces of the FE instabilities of BTO. Such a transferability
of instabilities was demonstrated by one of us in an hexagonal
polymorph of BTO.52 In that case, the FE phase transition
was shown to be driven by soft modes that are an almost
perfect match of the usual BTO-like FE instability. In LTO,
such modes are very low in energy, but still stable; further, they
clearly compete with the dominating AFD-like instability, and
become stiffer once the Cmcm-to-Cmc21 transition occurs.
Nevertheless, noting that BTO-like FE distortions tend to
be very sensitive to cell strains, our results suggest the
possibility that such instabilities might be induced in LTO
by suitable strain engineering or chemical substitution (as has
been predicted for the above-mentioned CaMnO3)9 or that they
might occur spontaneously in similar layered perovskites.

F. Implications for work on magnetoelectrics

Finding materials that display large ME effects (i.e.,
a large magnetic reaction to an applied electric field) at
room temperature is a major challenge that remains to be
successfully tackled. The difficulties involved in the design
of good magnetoelectrics have been discussed elsewhere.54

At present, the strategies that seem most promising rely on
finding systems that satisfy the following two conditions:
(1) their atomic structure must react strongly to an applied
electric field (i.e., we are looking for good dielectrics), and (2)
the field-induced distortions must have a large effect on the
magnetic interactions (as emphasized in Refs. 55 and 56).

While there are well-known strategies to comply with the
first condition,54 satisfying the second one is proving much
more difficult. In fact, the existing quantitative studies indicate
that the dielectric response of ME multiferroics like BiFeO3

is dominated by modes that have small magnetostructural
couplings associated with them.57 It is thus interesting to
consider the alternative approach adopted by Benedek and
Fennie:13 These authors noted that modes involving O6

rotations are likely to be strongly coupled with the magnetism
of perovskite oxides, as such AFD-like distortions usually
control the nature and magnitude of the main magnetic
interactions (e.g., the metal–oxygen–metal superexchange and
Dzyaloshinskii–Moriya couplings). Hence, they looked for
materials in which AFD-like distortions are related with (or
lead to) ferroelectricity, as in such cases one could use an
electric field to act on the O6 rotations. Note that the sought

connection between AFD-like distortions and ferroelectricity
is an exotic one, since the O6-rotational modes are strictly
nonpolar in compounds with the ideal perovskite structure (see
Sec. III B). Accordingly, ferroelectricity-related O6-rotational
modes have been found in nonideal perovskites, e.g., in
the PbTiO3/SrTiO3 artificial superlattices6 and the layered
compound Ca3Mn2O7.13 In both cases, ferroelectricity has
a nonproper character, and a combination of various modes
must occur for a spontaneous polarization to appear.

Hence, our findings for LTO, and the analogous ones
for the above- mentioned BaMF4 fluorides,21 are particularly
important in the context of magnetoelectrics. In LTO’s case,
the FE soft mode is AFD-like already; hence it can freeze in
and give rise to a sizable spontaneous polarization by itself,
without the need of any accompanying distortion. Further,
LTO’s O6 rotations couple directly (bilinearly) with an applied
electric field, which might prove advantageous for the purpose
of obtaining large ME effects. (In nonproper ferroelectrics, the
coupling between an applied field and the AFD-like modes
will typically be a higher-order effect.) Indeed, the proper
ferroelectricity driven by O6 rotations that occurs in LTO
seems to be the ideal FE instability from the viewpoint of
ME applications.

One would thus like to obtain LTO-like ferroelectricity
in a magnetic oxide. The most obvious possibility is to
consider the substitution of Ti by Mn in LTO, so as to form
La2Mn2O7, a crystal that we have not found described in
the literature. In La2Mn2O7 we would have manganese in
the Mn4+ ionization state, most likely in the high-spin t3

2ge
0
g

electronic configuration; thus, we can expect this crystal to be
insulating. Further, since the Ti–O chemistry does not seem to
play any relevant role in LTO’s FE instability, we can expect
La2Mn2O7 to present a FE transition analogous to LTO’s.
Hence, this material seems an excellent candidate to satisfy
condition (2) mentioned above and thus to display large ME
effects. Additionally, one would like the FE transition to occur
near room temperature, so as to benefit from the enhancement
of the functional responses near TC [in the spirit of condition
(1) mentioned above]. In this sense, it may be useful to note that
materials like Sr2Ta2O7

58 or Sr2Nb2O7
59 present FE transitions

that seem similar to LTO’s but occur at lower TC’s: 166 and
1615 K, respectively. This suggests that exploring alternative
compositions is a promising route to tune the temperature of
the O6-rotational FE transition.

IV. SUMMARY AND CONCLUSIONS

We used first-principles methods to study the origin of
ferroelectricity in the layered perovskite La2Ti2O7 (LTO), one
of the materials with the highest Curie temperature known
(TC = 1770 K). To do so, we carried out for LTO a research
program that has been repeatedly and successfully applied to
the investigation of displacive phase transitions in ferroelectric
(FE) oxides with the perovskite structure. Our results allowed
us to characterize LTO’s high-temperature FE transition, which
was found to present a number of noteworthy features.

We found that ferroelectricity in LTO is very different
from what occurs in the well-known FE oxides with the ideal
perovskite structure, such as BaTiO3 (BTO) or PbZr1−xTixO3

(PZT). Indeed, the dominant FE instability of this compound
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has little in common with the textbook picture of positive
charges moving against negative charges in an ionic insulator;
instead, it involves concerted rotations of the oxygen octahedra
that form the perovskite framework. Hence, LTO’s high-
temperature structural transition is reminiscent of the behavior
of simple perovskite oxides, but not the FE ones: LTO’s FE
distortion is much like the O6-rotational soft modes that drive
the antiferrodistortive phase transitions of SrTiO3, LaAlO3,
LaMnO3, and many other nonpolar perovskite crystals.

Hence we found that the existence of ferroelectricity in
LTO at record-high temperatures is the result of structural
distortions such as those occurring in many perovskite oxides
that are not ferroelectric. As discussed here, the solution to this
puzzle has to do with LTO’s layered structure: Because the
lattice of oxygen octahedra is truncated in this compound,
the O6 rotations acquire a polar character and give rise to
a macroscopic polarization. We can thus describe LTO as
a topological ferroelectric, since it owes its spontaneous
polarization to the layered topology of its structure. Note
that such a peculiar topology does not seem essential for
LTO’s high-temperature transition to occur, but it is critical
for it to have a FE character. Interestingly, multiferroic
barium fluorides BaMF4 (where M = Mn, Fe, Co, or Ni)
present the same sort of proper ferroelectricity;21 indeed, such
compounds belong to the same family of layered perovskites
– with layers containing two, as opposed to four, perovskite-
like planes – which further highlights the possibility of
inducing FE behavior through the control of the lattice
topology.

We quantified the energetics of LTO’s FE transformation,
the results being consistent with the very high temperature
at which it happens. Most remarkably, we found that the
structural distortion connecting the PE (Cmcm) and FE
(Cmc21) phases presents large contributions from two modes,
namely, the above-mentioned strong instability consisting of
O6 rotations and an isosymmetric weakly unstable mode
that involves deformations of the oxygen octahedra. Further,
we found that the large energy change associated with
the Cmcm-to-Cmc21 transition depends crucially on the
simultaneous occurrence of both modes. We were able to
describe such effects in terms of a very strong and cooperative
anharmonic coupling, and briefly discussed the possibility of
constructing a phenomenological theory of such a two-mode
transition. Interestingly, LTO’s behavior is in strong contrast
to what is most common among perovskite oxides, where
structural instabilities tend to compete and suppress each
other. Further, the investigated transition seems to align with
other complex transformations recently discussed for various
layered-perovskite oxides, such as those occurring in the

Aurivillius compound SrBi2Ta2O9
47 and Ruddlesden–Popper

crystal Ca3Mn2O7.13 Hence, our results support the notion that
such defected structures have a tendency to present multimode
phase transitions.

We calculated the polarization and response properties of
LTO’s FE phase, obtaining results that are consistent with
related experimental information. Interestingly, the computed
electric properties revealed clear similarities between LTO and
prototype FE BTO. For example, we obtained anomalously
large Born effective charges for some Ti and O atoms in LTO, a
feature that is known to be the fingerprint of the FE instabilities
in compounds like BTO and PZT. Further, our results showed
that LTO presents nearly unstable modes that are strongly polar
and involve atomic distortions that essentially match BTO’s FE
instabilities. Such traces of BTO-like behavior in LTO suggest
the intriguing possibility that conventional ferroelectricity
might be induced in this compound upon suitable modifica-
tions (e.g., strain engineering or chemical substitutions) or
that such a behavior might occur spontaneously in similar
materials.

Finally, let us emphasize the implications that our findings
have for the design of new ME multiferroics. In the context
of ME perovskite oxides, it would be ideal to have proper
ferroelectricity driven by O6-rotational modes, so that an
electric field can be used to tune the structural distortions (e.g.,
metal–oxygen–metal angles) that control the main magnetic
interactions (i.e., superexchange and Dzyaloshinskii–Moriya).
That is exactly the kind of ferroelectricity that we have found
in LTO. Here we have briefly discussed how to obtain such an
effect in a magnetic perovskite, proposing La2Mn2O7 as the
most promising candidate material.

In conclusion, our theoretical study of LTO has revealed a
wealth of interesting effects, some of which may have impor-
tant implications for current work on multifunctional oxides.
We thus hope this study will stimulate further investigations
of these layered perovskites and the novel functionalities that
they may offer.
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coupling with ξ 1 (i.e., γ ′ =−0.35 eV/Å4). In that case, the fully
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Hence, the effect of such a nonsoft ξ 2 mode would be a small one,
as the ξ 1-only FE minimum lies at −0.44 meV/Å3. Note also that,
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