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Coulomb gap in graphene nanoribbons
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We investigate the density- and temperature-dependent conductance of graphene nanoribbons with varying
aspect ratio. Transport is dominated by a chain of quantum dots forming spontaneously due to disorder. Depending
on ribbon length, electron density, and temperature, single or multiple quantum dots dominate the conductance.
Between conductance resonances, cotunneling transport at the lowest temperatures turns into activated transport
at higher temperatures. The density-dependent activation energy resembles the Coulomb gap in a quantitative
manner. Individual resonances show signatures of multilevel transport in some regimes, and stochastic Coulomb
blockade in others.
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Monolayer graphene shows impressive material stability,
even if shaped into nanostructures of ∼10 nm in size.1–3 Its
electronic properties are tunable by gate electrodes4,5 such as
conventional semiconductors, while its conductivity competes
with that of metals. Graphene nanoribbons have the potential
to be used in nanoelectronics,2 and graphene nanoconstrictions
are the basic building blocks for quantum devices.3

The transport properties of graphene ribbons and constric-
tions on a SiO2 substrate have been one of the puzzles in
the understanding of graphene nanostructures. Theoretical
predictions of an energy gap in ribbons6–9 have triggered
intense experimental10–20 and theoretical research.8,21–32 It has
become evident experimentally that localized states due to
edge and bulk disorder suppress the conduction and lead to
a transport gap12–14 rather than a true band gap. In addition,
experiments indicate the formation of an interaction driven
Coulomb gap.12–16 A wealth of theoretical ideas ranging from
Anderson localization24–28 to Coulomb blockade22,29 try to
explain the phenomenology.

We show in this Brief Report that electronic transport in
narrow nanoribbons is dominated by a chain of one or multiple
quantum dots forming due to disorder. Not only is the con-
ductance activated between conductance resonances, but the
activation energy at each density corresponds to the Coulomb
gap. At the lowest temperatures, cotunneling is present.
Our experiments indicate that transport through graphene
nanoribbons can be understood based on the mesoscopic
details of the sample in a single-particle picture including
Coulomb blockade. In contrast to recent suggestions,16,18 there
is no indication that additional energy scales or mechanisms
are necessary to describe the observed behavior.

Graphene nanoribbons with widths below 120 nm and
lengths of 100 and 200 nm were fabricated, as described in
Ref. 14, on a SiO2 layer covering the highly doped Si substrate
which serves as a global back gate (BG). Five different devices
[length (nm) × width (nm): 200 × 75, 100 × 45, 100 × 80,
100 × 100, 100 × 120] were characterized in detail within
this study, all showing the same qualitative behavior. The
measurements were carried out in the variable temperature
insert of a 4He cryostat with a base temperature of 1.25 K. The
conductance was measured using standard lock-in techniques
at 13 Hz.

In the following, we limit the detailed presentation of the
results to the representative device displayed in the scanning
force micrograph in Fig. 1(a) with ribbon length L = 200 nm
and width W = 75 nm. Changing the back-gate voltage from
hole transport to electron transport allows us to locate the
charge neutrality point to be ∼−2 V in back-gate voltage [see
Fig. 1(b)]. As in earlier studies,10–20 a region of suppressed
conductance is present around this gate voltage [shaded region
in Fig. 1(b)]. This regime is commonly referred to as the
transport gap and gives an estimate for the amplitude of the
potential inhomogeneity in the ribbon.12–14

The behavior of the conductance in Fig. 1(b) for VBG >

−2 V is qualitatively similar to earlier observations in narrow
disordered channels in Si-inversion layers,33 where the large
conductance fluctuations at low charge-carrier densities were
attributed to structure in the density of states leading to
hopping transport between strongly localized states. They are
smeared out as either the temperature or the charge-carrier
density is increased. Inside the transport gap, the small value
of the conductance G � e2/h indicates that the system is
strongly localized.34 In the investigated device, the size of the
gap is �VBG ≈ 3.5 V, in good agreement with the statistics
from other measurements and the scaling law introduced by
Han et al.,10 which relates the width of the nanoribbon with
the energy of the transport gap. The studies in Refs. 17 and 19
have shown that the transport gap is largely independent of the
ribbon length.

For further characterization of the device, we measured
the conductance inside the transport gap at finite biases
applied between source and drain. The recorded diamonds
of suppressed current are shown in Fig. 1(c). Diamonds of
different sizes can be identified, and they sometimes overlap.
However, in some regimes (e.g., at approximately VBG =
−1.5 V) resonances at zero source-drain bias are observable
which separate adjacent diamonds from each other, indicating
single quantum dot behavior rather than transport through
multiple dots. This phenomenology is usually referred to as a
stochastic Coulomb blockade.35

Coulomb interactions play an important role in graphene
and lead to the formation of a Coulomb gap.16 Following
the approach by Molitor et al.,14 a measure for the spatial
extent of the localized islands in a device can be obtained by
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FIG. 1. (Color online) (a) Scanning force micrograph of the nanoribbon investigated here (L = 200 nm, W = 75 nm). (b) G(VBG) in a
large density range showing the transport gap around VBG = −2 V. The measurement was taken at T = 1.25 K with a source-drain bias of
Vbias = 500 μV. (c) Finite-bias measurement inside the transport gap [same temperature as (b)].

finite-bias spectroscopy. In devices of different widths, the
extracted charging energies Ec of the largest diamond in the
gap are inversely proportional to the width of the nanoribbons
and only very weakly dependent upon the length.17,19 Again,
the device investigated in our work falls well within the
statistics of the data published earlier with Ec = 5–10 meV.

Several microscopic pictures have been introduced
to explain the formation of a transport gap in graphene
nanoribbons. Lattice defects at the edges could cause
Anderson localization26,27 which would suppress transmission
around the charge neutrality point. An alternative picture
suggests the formation of quantum dots along the ribbon due to
potential fluctuations.22 A small confinement gap is required in
the latter case to prevent Klein tunneling between the puddles.
Experimental transport data could so far be interpreted in
both models. Knowledge about transport mechanisms, which
we investigate here in thermal activation studies, may help to
understand where and how localization comes about.

Figure 2(a) displays the back-gate voltage dependent
conductance at various temperatures for the complete
transport gap. To obtain this temperature dependence of
G, the investigated back-gate voltage range was split into
intervals of ∼1 V as indicated in Fig. 2(a) by the vertical
dashed lines. In these sections, G was measured at stepwise
increasing temperatures between 1.25 and 45 K. In all sections,
it was verified that the low-temperature Coulomb peak spectra
were identical before and after the thermal cycle. A number
of approximately 100 Coulomb resonances are visible in
the region of suppressed conductance. For any minimum
between two resonances, the conductance increases for
increasing temperatures. Even at the highest temperatures, the
conductance approaches but does not exceed e2/h, meaning
that the system remains in the strongly localized regime.

If we associate the addition of a single electron to the
system with each conductance resonance, the transport gap

corresponds to a density of states of ≈5 × 1016 m−2 eV−1.
This value is in good agreement with Ref. 36, where the density
of states was determined from the quantum capacitance of a
top-gated large-area device.

Figure 2(b) shows a closeup for Coulomb resonances with
distinctly different behaviors. The amplitude of the left peak
grows with T , and the peak broadens at the same time until
it is finally swamped away by the rising background. The
signature of the right peak is a maximum peak value of G

at the lowest temperature, which drops to a local minimum
at intermediate temperatures and recovers as T is increased
further. Such a behavior is found only for those ≈10% of the
resonances in the investigated back-gate window, which are
particularly sharp at low temperatures.

For a single quantum dot, this observation has been
explained by the interplay between temperature, the single-
particle level spacing �s , and the coupling of the energy
levels to the leads.37 A strongly coupled ground-state transition
exhibits a 1/T dependence for the peak height. In contrast,
transport through a weakly connected ground-state transition
with a strongly coupled excitation is enhanced by activation.
As kBT � �s , both levels contribute to transport.

We now focus on the thermal activation between reso-
nances. In Fig. 2(c) we display the behavior at three representa-
tive back-gate values. In all cases shown here, the conductance
is temperature independent at low T and activation sets in for
T � 3 K. The latter is linear in the logarithmic plot presented
here, which is characteristic for activated transport. Thus, the
data is fitted to the empirical law

G = G0 exp

(
− Ea

2kBT

)
+ Goff, (1)

where G0 is the large temperature conductance, Ea is the
activation energy, and Goff is a constant offset. Equation (1)
is used to fit the T -dependent conductance with those three
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FIG. 2. (Color online) (a) T dependence of G inside the transport gap at Vbias = 100 μV. Different curves are taken at T = 1.25 K to
T = 45 K (lowermost to uppermost line). Inset: Coulomb resonances (gray solid line) reconstructed by a convolution of three Lorentzians with
the derivative of the Fermi distribution (red dotted line). (b) Zoom into two exemplary peaks of (a). The left-hand peak is broadened and grows
with increasing T , and the right-hand peak exhibits an overall decrease of G with temperature. (c) G as a function of 1/T at three positions in
VBG indicated by arrows in (b). Solid lines are fits to the data according to Eq. (1).

parameters. It reproduces the data very well in all conductance
valleys between resonances and even on some peaks.

With this model for transport in our system at hand, we
extract Ea , G0, and Goff as a function of back-gate voltage.
The analysis was performed only at those gate voltages where
G(T ) spanned more than one order of magnitude. The results
are shown in Figs. 3(a) and 3(b). Due to the given criterion for
the analysis, an evaluation at the edge of the transport gap as
well as around VBG = −1.25 V was not possible.

We start by discussing the high-temperature activated
behavior found in the data. The activation energies peak
in the middle between neighboring conductance resonances
[Fig. 3(a)]. On the other hand, pronounced dips in the activation
energies arise which coincide with conductance peaks. In
between a linear dependence on gate voltage is observed,
as is characteristic for Coulomb diamonds. Additionally, the
largest Ea values are 10–20 meV. This energy scale is of the
order of typical charging energies Ec of this device determined
from the finite-bias spectroscopy in Fig. 1(c). As visualized in
Fig. 3(c), a more careful comparison shows that the activation
energy resembles the measured Coulomb diamond boundaries
remarkably well. Due to thermal cycling in between the
diamond and the temperature measurement, some shifts are
visible in the spectra if the two energy scales are plotted on
top of each other over a large gate voltage range. The finding
that the peak values of Ea in the valleys between conductance
resonances are identical to the charging energy Ec extracted
from Coulomb diamonds is a central result of this Brief Report.

We can reconstruct Coulomb diamonds from the activation
energy by mirroring Ea(VBG) at the voltage axis and inserting
lines along the linear slopes in Ea . The insets of Fig. 3(a)
display two qualitatively different regions in back-gate voltage.

In the left-hand graph, adjacent diamonds touch each other in
one point at zero bias. Their size is similar and the flanks
have the same slopes. For this back-gate voltage range, the
same observations are made for the boundaries of Coulomb
blockade diamonds measured in finite-bias spectroscopy. Such
a behavior is characteristic for a single quantum dot where
levels are filled sequently. In the region under discussion,
transport is therefore dominated by only one localized island.
Since the charging happens from the (temperature broadened)
leads that are coupled to the island, the corresponding
maximum Ea and Ec have to be interpreted as the onsite
charging energy of this localized site. Its diameter corresponds
roughly to the ribbon width when estimating the size of the
puddle from Ec by a comparison to data taken on quantum dots.
The temperature dependence of the conductance resonances
between these diamonds exhibits a monotonic increase [see
Fig. 2(a)]. As discussed before, this is expected for multilevel
transport.37

As a second regime, we chose a back-gate voltage in
Fig. 1(c) around which the regions of suppressed current are
connected to each other. The right-hand inset in Fig. 3(a) shows
the corresponding reconstruction of Coulomb diamonds from
Ea where diamonds overlap, and the size as well as the back-
gate dependence of Ea vary strongly in neighboring diamonds.
Taking this behavior as an indication for the participation of
several dots in transport, we now have to attribute Ea and
Ec to both on-site and intersite charging energies. Stochastic
Coulomb blockade describes such a phenomenon, where
transmission through a small number of quantum dots is
considered.

Next we proceed with a discussion of the low-temperature
conductance represented by Goff in Eq. (1). We attribute
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FIG. 3. (Color online) Back-gate dependence of fitting parameters: (a) Ea , (b) Goff (upper dotted line) and G0 (lower dotted line). In (a)
and (b) the black solid curve shows G at base temperature. Insets: Coulomb diamonds reconstructed from Ea for two regimes. (c) Comparison
of a Coulomb diamond [representing Ec(VBG)] and Ea determined for this VBG interval. (d) G0(Ea) for the transport gap. Colored branches
indicate G0/Ea pairs that originate from the same conductance valleys [arrows in (b)].

Goff , which is evident in the curves in Fig. 2(c), to cotun-
neling processes that determine the conductance value before
thermal activation sets in. Cotunneling leads essentially to
Lorentzian tails of conductance resonances. The inset of
Fig. 2(a) shows that indeed we can explain the resonance
line shape taking into account both thermal and coupling
broadening by a convolution of the derivative of the Fermi
distribution with a Lorentzian. We can do a refined analysis
of the low-temperature background by fitting the low T data
between resonances to the expression Glow ∝ β(T 2 + T 2

0 ) (not
shown).38 Figure 3(b) shows that the conductance spectrum
taken at the lowest temperature is indeed reflected by the
extracted cotunneling background. The finding of cotunneling
transport supports the previous statement that only a few

islands are involved in transport since cotunneling becomes
suppressed as the number of localized states increases.

We now discuss the behavior of the prefactor G0 in Eq. (1).
It extrapolates the conductance for kBT � Ea and hence
represents the high-temperature conductance. The order of
magnitude of G0 is between 0.1 and 1 in units of e2/h. Similar
to Ea , it is strongly anticorrelated with the conductance at the
lowest temperature as illustrated in Fig. 3(b). The correlation
between Ea and G0 in conductance valleys is visualized in
Fig. 3(d). Clearly, the G0(Ea) plot consists of discrete branches
with varying curvature and/or slope. Each color-coded branch
corresponds to a peak of Ea in the back-gate spectrum. The
ratio of G0 to Ea decreases as the pair originates from a
back-gate value closer to the center of the transport gap.
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Transport studies in a finite magnetic field have been carried
out in two devices. As seen in earlier experiments,18 we
find that the size of the Coulomb diamonds shrinks as a B

field is applied perpendicular to the graphene plane. This
effect was attributed to time-reversal symmetry breaking in
the regime of strong localization, which causes an increase
of the conductance through the ribbon.39,40 To get more
evidence for the observed positive magnetoconductance, we
have investigated the temperature dependence at B = 7 T. As
for zero field, the extracted maximum Ea is equal to Ec of the
corresponding Coulomb diamond.

Comparing the different ribbons under study, we observe
an increase of �VBG and Ec with decreasing ribbon width as
discussed in other experiments.10–20 The latter fact points to
the formation of ever smaller islands, which block transport
and lead to an increase of Ec, as the ribbon gets narrower.
The magnitude of the introduced energy Ea(VBG) is tied to
Ec(VBG) for all measurements showing that they share the
same physical origin.

Our temperature dependence differs from the one observed
in Refs. 16 and 18 where G ∝ exp(−T0/T )1/2 for low
temperatures. Here, the large number of measured points in the
back gate allowed us to analyze the temperature dependence
for discrete VBG values inside the transport gap. However,
we can fit our data with the same temperature dependence as

in Refs. 16 and 18 if we apply the averaging methods used
there.

The picture of transport we present here does not require
(but does not exclude either) the contribution of phonons inside
the system. Activation may take place in the leads from which
the localized puddles get charged via smearing of the Fermi
function. It is unclear whether phonons in the ribbon get
important for transport at elevated temperatures. The origin
of the correlation between Ea and G0 is still not understood
but may be linked to the role of phonons.

In summary, we have studied thermally activated transport
in graphene nanoribbons of different aspect ratios and com-
pared the determined parameters to transport measurements at
low temperature. We find that the transmission is dominated
mainly by one of the few localized states inside the ribbon
at a specific back-gate configuration. As a consequence,
transport in graphene nanoribbons should be understood as
being mesoscopic and single particlelike, and treated in such
a framework.
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