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Interpretation of small-angle diffraction experiments on opal-like photonic crystals
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Comprehensive structural information on artificial opals involving the deviations from the strongly dominating
face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron
sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point
out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and
that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction
data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.
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Artificial opals are the most important approach to self-
assembled photonic crystals (PhCs). They have frequently
been characterized optically and by electron microscopy,
revealing the strongly dominating dense-packed face-centered
cubic (fcc) structure for some of the fabrication methods1

such as vertical deposition (VD)2,3 or the capillary deposition
method (CDM)4. Other fabrication methods deliver large
contents of random hexagonal packing,5,6 hexagonal dense
packing,7 or even nondense packing;8 but these opal-like
systems seem to be less suited for application as photonic
crystals. Regarding the fcc-dominated systems, one must,
however, admit that the detailed structural understanding
concerning defects, mosaic structure, domains, and their
relations is still not complete. Classical methods for structure
determination fail because of the small scattering angles.
In addition, the mentioned structural properties depend on
the details of the opal fabrication method, and therefore, a
comparison of different investigations is often difficult.

In recent works, Sinitskii and Grigoriev et al. published
a number of very interesting structure investigations using
thermal neutrons and synchrotron radiation on VD-made
samples.9,10 These studies reveal a surprisingly high degree
of order in the scattering pattern, but also deviations from
the ideal picture. Also in former studies, the usefulness of
diffraction studies was shown.5,8

In this Brief Report we will add two points to the current
interpretation of the diffraction data. First, surface scattering
has to be included as a possible source for diffraction peaks.
Our neutron diffraction data for artificial opals fabricated by
CDM indicate that surface scattering is the main reason for
the lowest diffraction order. Second, the allowed 002-type
diffraction peaks cannot be excluded from the discussion by a
small atomic form factor.

Reviewing the published diffraction data and electron
microscopy pictures of opals, one has two inconsistent
impressions. On the one hand, a surprisingly high degree
of order is shown. The lattice is well oriented11 and the
diffraction spots are sharp. Nearly perfect fcc lattices are
visible in scanning electron microscopy (SEM); only very
seldom can one recognize other lattices than fcc. On the
other hand, there are peaks in the diffractograms which
are not allowed, according to Bragg’s law. In particular,

these are the peaks with smaller diffraction angles than the
dominating 22̄0-type peaks at normal incidence (see, e.g.,
Fig. 1).

Our experiments have been carried out at the SANS-2
beamline at the GKSS Geestacht. The neutron wavelength was
0.58 nm and the detector distance was 21.5 m. For the shown
pictures, accumulation times of 1.3 and 10 h, respectively,
were used delivering clear 22̄0-diffraction spots with about
103 counts. Polystyrene (PS) opal films with a thickness of
25 μm were fabricated by the CDM (Refs. 4 and 12) and titania
inverse opals by a procedure as described in Ref. 4 using these
opal templates. CDM-made samples are very reproducible.
Therefore, the pattern shown in Fig. 1(a) is representative for
opals made by this method. The pattern in Fig. 1(b) depends
slightly on fabrication details, which will be regarded in a
separate publication.

A straightforward interpretation of the low-angle peaks
in the diffraction patterns is the assignment to additional
lattices mixed with the dominating, highly oriented fcc lattice.9

However, neither the different lattices nor the transition regions
between the different lattices have been convincingly found
in SEM for VD-made or CDM-made samples. In addition,
it is unclear why the dominating fcc lattice is so perfectly
oriented,11 while containing significant contaminations with
other lattices. These contaminations can be expected to disturb
the main lattice. Because of these inconsistencies it seems to
be justified to also consider alternative explanations for the
additional peaks instead of other lattices.

The number of unit cells in one crystal domain of a
PhC is expected to be much smaller than in atomic crystals.
Therefore, other effects, especially surface scattering, may
gain importance. Finite-size effects which are strongly related
to that have already been mentioned as a possible explanation
for the inconsistencies.10 Also, lattice imperfections typical
for soft matter can generate quasiforbidden peaks,13 however,
very likely requiring a bit higher disorder than observed in
CDM-made opals. Here, we estimate the magnitude of the
surface effect, and for that we follow the standard procedure of
introducing finite-size effects of the lattice.14 A body function
B(r) for the semi-infinite space is chosen as in Ref. 15, but we
treat it in a slightly different fashion. This treatment leads to
a result similar to that in the standard crystal truncation rod
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FIG. 1. (Color) (a) Neutron diffraction pattern for an opal film
made by 264 nm PS spheres and (b) for a TiO2 inverse opal film
fabricated from a template, as in Fig. 1(a). The position of the peaks
delivers lattice constants of 360 and 269 nm, respectively. (c) Scheme
of the setup. The forbidden reflections are indicated by blue circles.

(CTR) model,16 however, in a form which is mathematically
more convenient for our purpose.

The density of the scattering particles is described as

n(r) = n∞(r)B(r) with B(r) = �(�nr), (1)

where � is the Heaviside unit step function. The product
form of this density leads to a folding of the infinite-crystal
scattering amplitude with a CTR function:

F (G) = F∞(G) ∗ BG. (2)

Here G are reciprocal lattice vectors and F∞(G) is the
structure factor of the infinite crystal. Using the Fourier
transform of the Heaviside step function,17 one finds for the
CTR function,

BG = δ(Q1)δ(Q2)

√
π

2

(
1

iπQ3
+ δ(Q3)

)
, (3)

with

Q1 = X̂G; Q2 = ŶG; Q3 = �nG. (4)

Here, X̂, Ŷ , �n represent the unit vectors of the sample
coordinate frame, which must be distinguished from the
fcc-lattice coordinate frame. It is identical with the laboratory
coordinate frame at normal incidence. Equation (4) defines
lateral (Q1,Q2) and normal (Q3) directions for reciprocal
space vectors.

The scattering amplitude of the infinite crystal is normally
described by well-separated peaks in the reciprocal space.
Here, we generalize the ideal delta-peak form14 F∞(G) =∑

H FHδ(G − kH) to F∞(G) = ∑
H FHg(G − kH) with the

Gaussian peak shape g(G) in the reciprocal space. Generally,
g(G) can be peak dependent, but in this work we assume
a universal peak shape for the sake of simplicity. This
generalized shape can have many microscopic explanations,
e.g., crystal disturbances, and contains all peak-broadening

mechanisms in addition to the surface modeled by the body
function B(r). The function g(G) with a standard width σ

also generates rocking curves with finite width. Integration
of the peak intensities in the scattering plane leads to the
infinite-crystal rocking curves having the following shape:

ρ(Q3) =
∫∫

dQ1dQ2 g2(G). (5)

This function has a maximum height of ρmax =
2−1(σ

√
2π )−4 and a full width at half maximum (FWHM)

of �Q3 = 2
√

ln 2σ in the momentum space.
Using Eqs. (2)–(5), for the peak intensities in a small-angle

diffraction experiment at normal incidence (k0||�n, GM⊥�n) one
obtains

IM =
∫∫

peak M
dQ1dQ2

∫
dQ3 δ(Q3)|F (G)|2

= 1

4

∑
H

δH,M|FH|2ρ(
QH

3

) + 1

2

∑
H∈�M

1

σ 22π

|FH|2(
2πQH

3

)2

+ peak mixing terms. (6)

Here we have used the following conventions: (1) The
measured reflections M have to be labeled by the coordinates
in reciprocal space if they are mainly generated by a volume-
allowed peak, otherwise their names are free but should differ
from any H. (2) H is used to label lattice points in the reciprocal
space. (3) �M is the class of reciprocal lattice points with
the same lateral momentum, i.e., �M = {H|QH

1 = QM
1 , QH

2 =
QM

2 , QH
3 	= QM

3 }.
Equation (6) means that the peaks can be visible either

because they fulfill Bragg’s law (volume signal) or because
they belong to a CTR (surface signal). It is interesting that
this form of the CTR theory delivers the ratio of surface
and volume signals directly. Let Mv be a volume-allowed
reflection and Ms a surface reflection generated by the different

contributions IMsn = |FMsn|2/(
√

2π
3
σQMsn

3 )2. Then, the ratio
of their intensities is

IMsn

IMv

=
∣∣∣∣FMsn

FMv

∣∣∣∣
2 ∣∣∣∣ GMv

QMsn
3

∣∣∣∣
2

(�ωMv)2

2π ln 2
. (7)

To get this expression we used ρ(QMv
3 ) = ρ(0) = ρmax

and �Q3 = |GMv |·�ωMv . Thus, the angular width (FWHM)
�ωMv of the volume-allowed reflections in the rocking curves
turns out to be a decisive parameter for the amplitude ratio in
Eq. (7). For the 22̄0-type peaks we have measured 6◦ (0.12 rad)
which is high in comparison to atomic crystals. Therefore,
the peak ratio is not necessarily a small number. The other
parameters entering the measured amplitude ratio are a ratio
of peak amplitudes in reciprocal space and a ratio of k vectors.
Both are mostly in the order of unity, but they can also be
larger. So, the disadvantage of being a surface reflection [factor
(�ωMv)2/4.36] could be compensated.

In the present case we see reflections connected with
nonlattice 1

3 {24̄2} positions in addition to the dominating 22̄0-
type reflections. At these positions, for example, the reciprocal
lattice points {111̄}, {200}, and {220} could generate surface
signals. Let us calculate the ratio of the different signals for
Mv = 22̄0 and Msn = 111̄ as an example. One finds |GMv| =
2
√

2 × 2π/a, QMsn
3 = 1/

√
3 × 2π/a, |F22̄0| = 0.076|F000|,
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FIG. 2. (Color online) Small-angle x-ray diffraction data from
Ref. 9. The position of the R1 peak is shifting. The solid line would
result from surface scattering of the �M class containing (111̄).

and |F111̄| = 0.12|F000| for the ideal opal using a textbook
formula for the involved atomic form factors.18 Then one
finds IMsn/IMv ≈ (1.58 × 2

√
6 × 0.12)2/4.36 = 0.20, which

is surprisingly high.
For atomic-scale crystals, the surface signals are much

weaker than the volume signals. However, as we saw, colloidal
crystals have relatively broad peaks in reciprocal space
likely because of disorder effects. This strongly diminishes
especially the volume signals but the surface signals, not
as much. The difference occurs because the pure Ewald
sphere construction cuts out only a small part of the peak
in reciprocal space, whereas the CTR integrates first over the
whole peak before a part of the surface rod becomes visible.
This may explain why the intensity of the surface peaks can
be comparable with the volume peaks.

Of course, the above consideration does not prove that any
peak is generated by the surface, but it shows that surface ef-
fects have to be considered in the peak assignment. Let us have
a closer look at one of the already mentioned publications9 on
diffraction experiments with photonic crystals. Here, peaks at
volume-forbidden low-angle fcc positions are clearly visible
and have been labeled as R1. They have been assigned to addi-
tional lattices hypothetically contaminating the photonic crys-
tal. This is a possible explanation, but not the only one. Figure 2
shows the position of these peaks in comparison with the posi-
tion predicted by surface scattering, which is a cos−1 behavior.

As we can see, the R1 peaks found in this work do shift
as predicted by the surface scattering theory. Again, this
coincidence is no proof but a good hint that these peaks are
at least partially generated by the surface. The importance of
surface scattering and, in particular, of CTRs has also been

recognized when studying thin inorganic films,19 molecular
crystals,20 and individual quantum wires.21 In these examples
small scattering volumes generate the diffraction pattern. Such
a situation is also realized in artificial opal films. Also, for
nanoclusters22 and quantum dots on surfaces one can expect
related effects.

Another aspect should also be mentioned in this Brief
Report. In the peak assignment, the 002-type peaks have
sometimes9 been excluded because of a very low atomic form
factor. This almost extinction of the peak is by chance. The
form factor for a homogeneous sphere crosses zero for QR
values of 1.4303π (a solution of tan x = x), whereas the 002
peak has a QR of

√
2π . However, this almost coincidence is

only true for an ideal opal. Real opal systems show sintering
effects between the spheres, fluctuating sphere sizes, and radial
dependent porosities of the spheres. These effects change the
lattice constants and destroy the homogeneous-sphere model.

The first effect (sintering) can be estimated by a simplified
model in which an s part of the sphere radius is involved in
the sintering. The overlapping regions of the initial spheres are
simply assumed to be compressed. The width of this region
is then 2sR. Using a power expansion around the extinction
point (QR = 1.4303π ), one finds for the peak intensity I002 ≈
I000 (0.644s − 0.00732)2. Experimental findings demonstrated
realistic sintering values of s ≈ 0.05.23 This means that the
peaks have much more intensity after sintering than in the
nonsintered ideal case (s = 0).

Furthermore, the approximation of the real system by
simplified sintering of homogeneous spheres is likely not
sufficient. The spheres may contain differently structured
surfaces (porous or denser) and their sintering behavior is very
complex. Also, the inversion process used in many works can
induce further modifications.24 Here, models with core-shell
spheres can be regarded as a next step of approximation. Then
the 002 reflection also gains much intensity and can become
comparable with the other reflections.

In summary, the occurrence of volume-forbidden reflec-
tions does not necessarily point to polycrystalline samples.
Moreover, for the opal samples which are normally slightly
distorted, the occurrence of surfaces peaks is very likely. These
peaks can have an intensity which is only five times lower than
the strongest volume peaks.
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