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Possibility of electron pairing in small metallic nanoparticles
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We investigate the possibility of electron pairing in small metallic nanoparticles at zero temperature. In
these particles both electrons and phonons are mesoscopic, i.e., modified by the nanoparticle’s finite size. The
electrons, the phonons, and their interaction are described within the framework of a simplified model. The
effective electron-electron interaction is derived from the underlying electron-phonon interaction. The effect of
both effective interaction and Coulomb interaction on the electronic spectrum is evaluated. Results are presented
for aluminum, zinc, and potassium nanoparticles containing a few hundred atoms. We find that a large portion
of the aluminum and zinc particles exhibit modifications in their electronic spectrum due to pairing correlations,
while pairing correlations are not present in the potassium particles.
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I. INTRODUCTION

Pairing effects in metallic nanoparticles have been inves-
tigated extensively since the experimental work by Black,
Ralph, and Tinkham'-? in the mid 1990s. Intensive theoretical
studies of pairing interactions in nanometric particles followed
the experimental work.*'# These studies focused mainly on
the influence of size quantization of the electronic levels on
the paired state. The systems considered were relatively large
(radius larger than 3 nm) containing more than 10*-10° valence
electrons, and having irregular shapes, such that the only
symmetry of the problem is time-reversal symmetry. Smaller
irregular grains are expected to be unpaired, since their average
energy-level spacing exceeds the bulk pairing gap, breaking the
Anderson criterion. >

More recently, Kresin and Ovchinnikov investigated
the possibility of pairing in smaller metallic atomic clusters
containing tens of atoms. Such clusters are known to exhibit
a shell structure in their electronic spectrum.'~>? This energy
structure arises from the approximate spherical symmetry of
the effective potential felt by the valence electrons in the
nanoparticle. The near degeneracy of these shells may be
considered as a narrow peak in the electronic density of
states (DOS), which enhances both the energy gap and the
critical temperature compared to the bulk material. Kresin
and Ovchinnikov predicted a large enhancement in both
parameters (7, between 100 and 200 K and an energy gap of
tens of meV) for specific examples of individual aluminum and
gallium clusters containing a few tens of atoms. Similar results
were qualitatively predicted by Friedel in 1992.% The effect
of shell structure in larger spherical nanoparticles, together
with modifications in the effective interaction due to alteration
of the electrons wave functions, as well as a nonuniform gap
parameter, were considered in a recent study.’* A large and
strongly size dependent energy gap and critical temperature
were predicted for these particles. The effect of shell structure
on pairing was also discussed in the context of fermionic atoms
in harmonic atomic traps.>

A high DOS at the highest occupied shell (HOS) of the
atomic cluster (or nanoparticle) is maintained as long as the
particle retains spherical symmetry. However, clusters (and
nanoparticles) with a nonfull HOS undergo a Jahn-Teller
deformation,”” which lifts the degeneracy of the HOS and
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reduces the high DOS. Therefore Kresin and Ovchinnikov!6-'8
considered clusters in which the deformation is minimal (i.e.,
either clusters with completely full electronic shells, or with
an almost full outer shell) and in which the energy difference
between the HOS and the lowest unoccupied shell (LUS) is
small, as the most favorable scenario for the observation of
pairing correlations.

The energy gap and the critical temperature measured in
“large” irregularly shaped nanoparticles of various supercon-
ductor metals are larger than the corresponding values of the
bulk material. Evidence for this increase is found in measure-
ments performed with single aluminum particles.!> Additional
support for this behavior comes from past work done with
several types of superconducting thin films.?->* These films
were composed of superconducting grains embedded on top of
an oxidized substrate, and separated by the dielectric barriers
formed by the oxidized substrate. Evidence for a pairing energy
gap was found in tin grains as small as 2.5 nm.?"-3

The increase in both energy gap and critical tempera-
ture was usually attributed to a larger effective phonon-
mediated electron-electron interaction, due to “soft” surface
phonons of the individual particles.3*3~3 There are also
some indications for enhancement of the electron-phonon
coupling in some molecular devices.>**° However, Kresin
and Ovchinnikov'®'® as well as Friedel>* assumed a constant
phonon-mediated pairing interaction, which was taken to be
equal to the corresponding values in the bulk material.

The increase in the energy gap in larger irregularly shaped
nanoparticles was also explained as being due to finite-size
modifications in the bulk electronic DOS,***' and to modifi-
cations in the bulk electronic wave functions, which induce
alteration in the effective interaction between the electrons.*
However, possible changes in the underlying electron-phonon
interaction, which may be important in smaller nanoparticles,
were ignored in these works. Furthermore, a semiclassical
approximation, together with an assumption of a small ratio
between the mean level spacing and the bulk gap, were
used in these works. In the present work, we consider much
smaller nanoparticles (containing only hundreds of atoms) for
which the semiclassical approximation may not be appropriate,
and the mean level spacing even within the HOS is larger
than the bulk energy gap. Therefore in what follows we propose
a somewhat different approach which, although limited to
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simple geometries, is more appropriate for the description of
pairing in nanoparticles with a few hundreds of atoms.

In this work we present a calculation of the energy gap
in nanoparticles at zero temperature, taking into account
the finite-size effects on both electrons and phonons. The
nanoparticles are assumed to be isolated both electrically
and mechanically from the outer environment. We treat
spherical or nearly spherical particles. For this type of particles
we explicitly evaluate the electron-phonon interaction, the
resulting pairing interaction, and the Coulomb interaction.
Thus we are able to predict deviations from the results obtained
using the average bulk values of these interactions.

Nonzero temperature and the transition between the paired
and the unpaired state as temperature is varied are not
addressed in this paper. We note that the transition is expected
to be “smeared” unlike the one found in an infinite system.
Furthermore, the usual BCS ratio between the energy gap and
critical temperature should not be used in order to calculate
the characteristic temperature of the transition.

Three types of materials are considered as examples—
aluminum, zinc, and potassium. Aluminum is a typical low-
temperature, weak-coupling superconductor with the second
highest critical temperature (in the bulk) of the five super-
conducting metals—Al, Ga, In, Zn, and Cd, that exhibit
electronic shell structure in their atomic clusters and ultrasmall
nanoparticles.'”?* Furthermore, aluminum nanoparticles (al-
beit larger than the ones we are considering) are used in
experiments examining the properties of superconducting
nanoparticles. Although potassium is a nonsuperconducting
metal in the bulk its atomic clusters and nanoparticles exhibit
a pronounced electronic shell structure.!®?’ Therefore the
effect of the shell structure, together with modifications in the
phonon-mediated electron-electron interaction, may enable
the formation of a paired electronic ground state. Finally,
we expect zinc particles to be less susceptible to Janh-Teller
deformations than the other four superconducting metals
mentioned above, due to the larger shear modulus of zinc.

Pairing was proposed as a mechanism that may explain
the apparent odd-even staggering in the ionization potential
spectra (meaning that the ionization potential of a cluster with
an even number of atoms is larger than that of the neighboring
odd clusters) and in the abundance spectra of alkali clusters
containing up to a few tens of atoms.*? Pairing interaction was
also proposed as an explanation for some of the discrepancies
between the calculated ionization spectrum (obtained by using
independent particle models) and the measured spectra of
sodium clusters containing tens of atoms.*>*? However, it
was found that, at least when considering these extremely
small metal clusters (with up to about 100 atoms), the strong
fluctuations in the ionization potential could be explained by
the deformation of open shell clusters*** and by the effect
of spin degeneracy in the deformed clusters*® (where the only
remaining degeneracy is the double degeneracy due to the
spin) without resorting to the effects of pairing interaction.
Therefore we avoid the regime of very small atomic clusters
and concentrate on nanoparticles containing hundreds of
atoms.

The general scheme of our calculation is as follows:

(1) Using a simple and crude model, the single-electron and
single-phonon states and spectra are evaluated.
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(2) The electron-phonon interaction is calculated assuming
a static Thomas-Fermi screened interaction.

(3) The phonon-mediated pairing interaction is evaluated
using either the Frohlich transformation or the similarity
renormalization.

(4) The splitting of the electronic degenerate levels caused
by deviations from spherical symmetry of the particles is
estimated.

(5) As areference, the modification of the electronic spec-
trum due to the pairing interaction is calculated in spherical
particles.

(6) The reduction in the effects of pairing on the low-
energy excitations of the electronic spectrum due to small
deformations is evaluated.

(7) Finally, the reduction of the pairing interaction due to
Coulomb repulsion is also taken into account.

We note that the effective interaction is initially calculated
by applying the Frohlich transformation*’ to the system’s
Hamiltonian. This method is easy to apply and it describes
correctly some of the features of the pairing interaction.
However, it produces unrealistic results when applied to a
system with nondegenerate electrons. It therefore can be used
only for the spherical particles. In order to account for the
effect of deformations, we use the similarity renormalization
method.*® This method is known to give accurate results for the
transition temperature and the energy gap in strong-coupling
bulk material superconductors within the framework of a
Hamiltonian theory.*>->

The pairing Hamiltonian of the deformed particles involves
varying coupling coefficients and nonuniform energy-level
distribution. We are unaware of an exact solution to such
a Hamiltonian. Therefore we use the simple BCS grand-
canonical approximation to investigate this Hamiltonian,
although, in principal, a canonical ensemble approach, such
as fixed-N projection of the BCS state,>’>!? is more
appropriate. Several authors**33-5> have pointed out that finite
level spacing should modify the BCS solution, leading to
a smaller lowest pairing excitation energy compared to the
one obtained by the BCS approximation. This reduction is
found to be approximately equal to the level spacing of the
single-electron spectrum as long as the relevant level spacing
(the level spacing within the HOS in our model) is smaller
than the lowest pairing excitation energy. In our model we
find that the lowest excitation energy is several times larger
than the HOS level spacing, and therefore this finite-level-
spacing correction can be neglected as long as one is merely
interested in a rough estimate of the modifications to the lowest
excitation energy. Therefore for our purposes the simplicity
of the BCS approximation makes it an adequate choice
for calculating the excitation energy (see some additional
comments on this subject in Sec. VI B). Nevertheless, a more
accurate description of the pairing correlations should involve
a canonical ensemble treatment.

The structure of the paper is as follows. In Sec. II we de-
scribe the single-particle states of both electrons and phonons
in spherical particles, as well as the interaction between them.
The derivation of the effective electron-electron interaction
and the resulting approximate model pairing Hamiltonian is
given in Sec. III. The deformation of the spherical particles is
estimated in Sec. IV, while the effect of Coulomb repulsion
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is discussed in Sec. V. The modification of the free-electrons
spectrum is addressed in Sec. VI. Numerical results concerning
both the degenerate and the nondegenerate scenarios are
presented in Sec. VII. Some measurable quantities, which
may be used to identify pairing in such small nanoparticles,
are briefly discussed in Sec. VIII. Our main conclusions are
summarized in Sec. IX.

II. ELECTRONS, PHONONS, AND THE INTERACTION
BETWEEN THEM

A. Single electron states

The delocalized electrons of a nanoparticle are modeled
as free particles within an infinite spherical potential well.
Alternatively, one may use a spherically symmetric harmonic
potential. The former effective potential corresponds to com-
plete screening of the electrostatic potential of the particle’s
positive ionic background, while the latter reflects a complete
lack of screening. As we comment later, it is reasonable
to assume that the screening picture of the bulk material
essentially persists even in nanoparticles that contain hundreds
of atoms. Thus we may expect that the electrostatic interaction
is almost completely screened. Furthermore, the major features
of the shell structure observed in the abundance and ionization
spectra of atomic clusters reflect the filling of major energy
shells that are characterized by an angular quantum number
[ and a radial quantum number n.'%?° This fits well with
the spherical box approximation, although a deformed 3d
oscillator gives an even better fit.'>>° The realistic effective
potential lies somewhere between these two extremes, and
includes deviations from spherical symmetry.'>** Note, how-
ever, that the 3d harmonic potential introduces an artificially
high degeneracy of the energy levels, which would lead to
an enhancement of the pairing effects we are exploring. This
additional degeneracy is lifted even by a small amount of
screening. Thus the infinite well approximation captures better
the physics of the true potential.

The energy levels of electrons in a spherical box are given
by

ln’ (1)

and their corresponding wave functions are

_ ) Binjitkint ) Y1 (0, 8),
Iplmn =0

where / and m are the usual angular momentum quantum
numbers, with/ > 0and —! < m < [. Also, j; are the spherical
Bessel functions, k;, is the nth zero of the function j; divided
by the radius R of the sphere, m* is the effective mass of the
electrons, and Y7, are the spherical harmonics. We assume that
the effective mass of the electrons remains the same as in the
bulk metal.’® The normalization constant B, is given by

r <R,
r > R,

(@)

2
Bi = %[ﬁﬂ(kznl@)ll- 3)

We note that, including spin degeneracy, each energy level
may contain up to 4/ + 2 electrons.
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The electron field operator is given by

\I’(l") = Z 1//lmn (r)clmnov (4’)

Imno

and the second quantized Hamiltonian takes the usual form

§ : T
H, = €nClmne Clmno » (5)

Imno

where o is the spin index.

B. Single phonon states

Acoustic phonons are described as elastic disturbances in
the positive ionic background of the nanoparticles, which
we model by using linear elasticity theory. Since the typical
nanoparticles we are dealing with contain a few hundreds of
atoms, the use of an elastic description could be questioned.
However, the applicability of elasticity theory for nanopar-
ticles is supported by a reasonable description of the low-
frequency acoustic modes for nanometer-size particles.”’ !
Also, phonon related phenomena in nanomechanical systems
are often modeled by using an elastic model for the description
of the vibrational degrees of freedom.®** Therefore although
in principle one may solve the discrete equations of motion
for the few hundred atoms, we prefer the simple elastic model
that enables an analytic expression for the effective interaction
between the electrons.

The small size of particles under consideration leads
inevitably to effective elastic constants that deviate from the
bulk material values. Generally, nanometer-size systems tend
to exhibit smaller elastic coefficients compared to the bulk.
However, ab inito density-functional theory calculations of
the effective modulus of dilation of small silicon, tin, and
lead atomic clusters and the effective Young modulus of
ultrathin Si nanowires®>° indicate that the softening of the
elastic constants is quite restricted. For example, the calculated
reduction of the effective modulus is about a factor of 2 for
silicon clusters containing as few as 15 atoms, and about 25%
for tin and lead particles with the same number of atoms.
The calculated variation in the Young modulus of silicon
wires is even smaller. We also note that experimental studies
have found that the Young modulus of gold nanorods (with
diameters varying between 10 and 20 nm) is either lowered by
20%-30%,57%% or remains essentially unchanged®® compared
to the bulk material. We therefore use both the Lame constants
of the bulk material as well as 25% smaller Lame constants
for comparison.

We solve the linear elasticity equation of motion under
stress-free boundary conditions imposed on the surface of the
sphere. The relevant results of the elastic solution are given in
Appendix A based on the treatment by Eringen.”® The normal
modes of vibration can be divided into two types: spheroidal
modes containing both longitudinal and transverse compo-
nents, which are coupled through the boundary conditions, and
torsional modes consisting solely of transverse components.
Similar to the electronic wave functions and energy levels, the
vibrational modes are characterized by two angular momentum
quantum numbers / and m, and by a radial quantum number 7.
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As will be explained in the following section, we are
interested only in the longitudinal component of the spheroidal
modes. This component can be written as

1
ut = Vg, ©)
p
where ¢ is the solution of the scalar Helmholtz equation
(V2 + phe =0, ©)
which for stress-free boundary conditions takes the form
Bimn = Ain ji(Pin 1) Yim(6,0), ®)

where p;, = wy,/co (c1o 1s the bulk longitudinal sound velocity
of the material). The boundary conditions impose a discrete
spectrum, where the eigenfrequencies are characterized by
the angular quantum number / and by the radial quantum
number n. Furthermore, the ratio between the amplitude A,
of the longitudinal component and the amplitude Cj;, of
the transverse component are uniquely determined by the
boundary conditions” (see Appendix A). We note that a
continuum approach results in an infinite number of normal
modes. In order to account for the atomistic discreteness of the
nanoparticles, we take into account only the lowest 3N, modes
of the entire spectrum, where N, is the number of atoms in the
nanoparticle. We define the Debye energy of a nanoparticle as
the energy of the most energetic phonon mode.

In order to quantize the vibrational modes we write the
spheroidal displacement field as

usph — §

Imn

h sph 4 | sph
—(u*, b o Bimn ), 9
prln (ll Imn~Ilmn + Uy 01 ) ( )

where p is the material density of the cluster and b! (b)
are the phonon creation (annihilation) operators. The second
quantized Hamiltonian is obtained by inserting the quantized
displacement field into the linear elastic Hamiltonian, thus
obtaining

1

T

Hyy =Y hay, (b,mnb,,,,,, + 5) : (10)
Imn

The amplitude of the longitudinal component A, is uniquely

determined by the normalization condition imposed by the

quantization procedure

/ i [Pa?r =1, (11)
1%
and by the ratio A;,/Cy,.

C. Electron-phonon interaction

We assume a screened interaction between the electrons
and the density disturbance in the ionic background, i.e., the
phonons. This interaction is added to the free Hamiltonian
composed of H, and H ;. We take into account only the static
electronic screening when considering the interaction between
the electrons and the phonons.”'”’® This approximation is
reasonable since the maximal frequency of the phonons is
two orders of magnitude smaller than the Fermi energy of the
electrons. In order to keep the calculation as simple as possible
we assume static electronic screening also when considering
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the direct Coulomb interaction between the electrons (see
Sec. V). We apply a unitary transformation to the basic
Hamiltonian (H, + H, + H,_,) in order to account for the
contribution of the phonons (or the phonon screening) to the
effective interaction between the electrons, as in the original
work of Frohlich.*

We utilize the Thomas-Fermi approximation in order to
describe the static screening. This approximation should still
be reasonably valid for particles containing hundreds of atoms,
since the typical bulk Thomas-Fermi screening length is an
order of magnitude smaller than the diameter of such particles.
Therefore the screened electrostatic interaction Hamiltonian
between the electrons and the phonons takes the form

H,_,= f / pe(rD)vre(ry — 12)8p;(r2)d’rid’ry,  (12)
VJV

where
7kTFr oo
vre(r) = = 4mkrr Z i (kter <)k (kTer>)
=0
1
X Y Yin(0161)Y}5, (0202), (13)

m=—I

pe 1s the electronic local density, ép; is the local variation in
the ionic background charge density due to the presence of the
phonons, krg is the Thomas-Fermi wave number, i;(kr) and
k;(kr) are the modified spherical Bessel functions, r. = r; and
r< = rp, when r; > rp, and vice versa.

Considering small deformations, the relative change in an
infinitesimal volume element is given (to first order in the
displacement field) by V.u.”* Therefore, to first order in
u, the effect of the transverse component of the spheroidal
phonons on §p; vanishes. Thus we can take into account only
the longitudinal component of the spheroidal modes when
considering the interaction with the electrons.

The interaction Hamiltonian is therefore given by

He_p = / / e* ZnoW! (r) W (ry)vre(|ry — r2))
vV JV
x V- uP(r)d’r1d’r, (14)

where Z is the number of valence electrons per atom, and n is
the atomic density of the cluster, which is taken to be equal to
its bulk value. Using Egs. (2), (3), (6)—(9), and (11) we obtain

E : N .
He—p = MLMNC]Imlnlaclzmznzabbm;ng +c.c., (15)
LMNo

where L = {11,12,13}, M = {ml,mz,m3}, and N = {nl,nz,n3},
and where the angular momentum quantum numbers satisfy

;>20,i=1,2,3, (16)

—; <m; <1;,i =123, a7
i — bl <3 <+ 1, (18)
[y + I, + I3 = even integer, (19)
ms =m; — ms. (20)
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The coupling coefficient My y is given by

Miyun = Hyyelly, b, lzsmy, —my,my — mp)(—1)™

= CinRinOrcly,lr,l33my, —mo,my —mo)(—1)"2,
2D
SnzeznokTF hwzm A13m
Cin = 3 5 . ;
R 2,06‘10 Jll-‘rl(kllan)le-‘rl(klz”ZR)
(22)

R
Rin =/ driri ji, (kllnlrl)jlz(klgnzrl)|:kl3(kTFrl)
0
r
X/ drar3 ji, (Prnsr2)in, (kpra) + i, (kery)
0

R
X / drar3 ji, (Prnsr2) ki, (kTFi”z)} , (23)

r

21 1)(2! 1
@Lz\/mc(h,lz,h;o,o,o), (24)

Ar 2l + 1)

where c(ly,l,,13;0,0,0) and c(ly,l,l3;my, — my,my — my) are
Clebsch-Gordan coefficients (adopting the notation of Rose”?).
The detailed derivation of My sy is given in Appendix B. We
can summarize the total Hamiltonian as

H=H,+ Hy + H,_, = Hy+ H,_. (25)

III. EFFECTIVE ELECTRON-ELECTRON INTERACTION

A. Frohlich transformation

We apply the unitary Frohlich transformation*’ to the
Hamiltonian (25),

HS = es-\vHeS = HO =+ He*P + [H(),S]
+ %[(Heprr[Ho,S]),SJ
+ L[ He—p.s1+ O(M345)., (26)

where s is an anti-Hermitian operator defined by

— E T
s = OLMN (CllmlnlaClzmzn20b13m3n3
LMNo

T T
+ clzmznz(rcllmlnlﬁbl3m3n3)' (27)
The coefficients oy sy are given by

Miun
61171] - Elznz + hwl3n3

(28)

QXLMN =

and are chosen so as to eliminate the electron-phonon interac-
tion up to second order in My . Specifically, the particular
choice of o ensures that H,_, 4+ [Hp,s] =0, and thus the
lowest nonvanishing term in the transformed Hamiltonian is
[H,_,.s].

The interaction term contains a sum of operator products,
most of which still involve the phonon operators. However,
it also contains a purely electronic term, which represents
the effective electron-electron interaction resulting from the
original electron-phonon interaction (up to second order in
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M yn). Calculating explicitly this interaction term we obtain
the following effective electron-electron interaction:

2. 2

!
oo’ il B3

H, .=

7
mymym,
o
ninann,
;o

ninan3 nnyn3

Liblzmymom;—my hw13”3

l;l;lgml—mz+m’2m’2m|—mz
2 7 2
(e, =€) = (rny)

T
XC, ’
Lym,nyo

Cllmlnlaclzmznzacliml—m2+m;n’la’ ’ (29)
where the primed indexes stem from the operator s. The
summation over nj is restricted only by the finite number of
modes in each branch of the phonon spectrum (defined by the a
specific value of /3), due to the finite number of normal modes
supported by the nanoparticle. We note that the numerator in
Eq. (29) is not always positive, unlike the numerator appearing
in the similar result obtained for translationally invariant
system.”®

Following Cooper’s argument,”’ the electrons in the paired
state are paired in a manner that “uses” the attractive part
of H,_, in the “most efficient way.” First, we note that
the difference between adjacent electronic energy levels is
typically larger than the maximal typical phonon energy by an
order of magnitude or more. Therefore we can expect to obtain
a maximal attractive interaction between electrons belonging
to the same energy level. Thus we neglect interlevel phonon-
mediated interaction. Next, we assume, as in the ordinary BCS
theory, that the electrons are paired in a singlet state implying
o' = —o . Finally, due to the properties of the Clebsch-Gordan
coefficients appearing in Eq. (24), we find that, in order to
ensure the negativity of the intralevel interaction, we must
assume that the Cooper pairs are composed of electrons with
opposite z component of angular momentum. This restriction
means that

my —my+my, =m, (30)
my = —m, (31)
mp = —m. (32)

Equations (30)—(32) ensure that the numerator appearing in Eq.
(29) is always positive for time-reversed pairs of electrons of
the form {m 1, —m |}. Since interlevel interaction is ignored,
all fully occupied levels, or levels with one electron or one hole,
are considered to be inert and the phonon-mediated interaction
acts only within the HOS. This approximation holds as long
as the temperature of the nanoparticle is much smaller than
the level spacing around the Fermi level. Since this level
spacing is typically of the order of 0.1 eV for the particles
we are considering, the approximation is reasonable up to a
temperature of a few hundred Kelvins. Therefore we are left
with the effective Hamiltonian

Hnrmg 2 ) ,
H,_, = ZZZ—%[C(UJ&WL —m'm—m)P
n3l3

o mm' l3n3

X (_l)m—m C;Lm/naCl]‘_m’n_aclfmnfaclmnav (33)
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where [ and n characterize the highest occupied electronic
level.

The structure of the effective Hamiltonian in Eq. (33) may
have been anticipated in advance, since the coupling between
time-reversed pairs is a common characteristic of the pairing
phenomenon.'>’® Our numerical calculations for the three
materials under consideration show that the coefficients oy y
in Eq. (28) are always much smaller than 1, when one considers
the interaction within a degenerate HOS. Therefore neglecting
higher-order terms in Eq. (26) is justified.

B. Similarity renormalization

In this section we introduce an alternative derivation of the
interaction Hamiltonian. The above calculations work well
for exactly degenerated HOS. However, in the next section
we want to study the effects of the splitting of the initially
degenerate electron energy levels due to static deformations
of the spherical particles. We expect the splitting to reduce
the effective electron-electron interaction compared to the
spherical system. The effects of splitting cannot be accounted
for correctly in the framework of the Frohlich transformation.
Using Eq. (29) and introducing the energy splitting due to
deformations, one obtains an artificial enhancement (and even
divergence) of the effective interaction, when the energy
splitting €;,,, — €5, is of order hwy,,. Note that even if
no actual divergences are encountered, the second-order
expansion (26) is invalid if the denominators in Eq. (28) are
smaller than the values of M yn.

Another deficiency of the Frohlich interaction (29) lies
in the fact that it includes terms that represent coupling of
electronic states by a virtual phonon whose energy is smaller
than the energy separating the electronic states. In the usual
BCS treatment these (repulsive) terms are avoided, since the
interaction is assumed to be constant in k space, with an
artificial cutoff at the Debye energy of the material.' Last,
using a Frohlich-type interaction within the BCS formalism
results in a large overestimate of the size of the energy gap and
critical temperature of bulk superconductors.”’

An alternative derivation of the effective interaction relies
on the application of the similarity renormalization method
to the initial Hamiltonian (25). Although its application
is more complex, it avoids the appearance of vanishing
energy denominators. Furthermore, the resulting interaction
is reduced between electrons with different energies, and it
is automatically cut off at the right energy scale. Also, the
obtained effective interaction is always attractive. As shown
by Mielke,** this approach yields the correct critical temper-
ature and energy gap for strong-coupling bulk superconductors
within the framework of the BCS model.

The derivation of the effective interaction is given in
Appendix C, where we follow the treatment by Mielke.*’
We obtain the following effective electron-electron interaction
between electrons belonging to the same energy shell,

2
mm’l;n3A|

-2|M

— E'lyny | + hwlsnz

). (34)

X @(ha)13n3 - |8m13"3 — &' Iyns
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where © is the Heaviside function and &,,,,, are the single-
electron energies in the HOS of the spherical or deformed
nanoparticles. The Heaviside function in Eq. (34) ensures that
a phonon can mediate interaction between two electron states
only if its energy is larger than the energy separation between
the two states. We note that Egs. (34) and (33) coincide if the
deformations are neglected.

Corrections to the wave functions of both electrons and
phonons due to deviation from spherical symmetry are
neglected in Eq. (34). This is justified because it affects the
numerator in Eq. (34) only to second order in the perturbation.
The effect of deformation on the phonon spectrum is minor,
as deformations are small compared to particles’ radii (see
Sec. VII).

Our result differs from Mielke’s interaction in the cutoff
function appearing in G,,,/ (34). The source of the difference
between our cutoff function and Mielke’s cutoff function
is explained in Appendix C. However, our interaction and
Mielke’s coincide for the physical scenario considered by
Mielke. This scenario consists of an effective interaction
mediated by nondispersive Einstein phonons, whose frequency
is much larger than the electron energies. Our result is similar
to the one obtained by Hiibsch and Becker®® using a different
perturbative renormalization scheme.

Finally, we note that the electron energies are renor-
malized by the electron-phonon interaction, and that the
effective interaction should depend on the renormalized
electron energies.*>%” The renormalization is especially
important in describing properties of strong-coupling bulk
superconductors.*>>%7 This is another deficiency of the
Frohlich interaction, which depends on the nonrenormalized
energies. By contrast, the energies appearing in Eq. (34)
are in fact the renormalized energies. However, renormal-
ization of the single-electron energies is not important in
our model since the electron-phonon interaction cannot lift
the degeneracy of the electron shells in the spherical par-
ticles. The contribution of renormalization to the splitting
of the HOS in the deformed particles is small, since it is
of the order of o]"(M?/hw), where /"% < 1 parametrizes
the deviation from spherical symmetry [the definition of o;"%
is given in Eq. (42) in the following section]. Therefore we
neglect the effect of renormalization on the electron energies
and instead use the nonrenormalized electron energies. In
Appendix C we show that the renormalization of the phonon
energies due to the electron-phonon interaction can also be
neglected.

The energy shift due to renormalization does depend
on the shell quantum numbers [ and n and the electron
filling. Therefore in a more detailed treatment that takes
into account intershell effects (like the one carried out
by Kresin and Ovchinnikov!®'®), renormalization effects
should be considered, especially when dealing with nearly
degenerate HOS and LUS. In Appendix C we give the
expression (C23) for renormalization of electron energies
due to electron-phonon interaction within the HOS, which
is responsible for most of the HOS shift. The expressions for
the renormalization of electron energies and phonon energies
are similar to the ones obtained for the bulk system by
Mielke.*’
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IV. DEVIATION FROM SPHERICAL SYMMETRY

Deviation from spherical shape leads to a splitting of
the degenerate electron levels and to a decrease in the total
energy in the free electrons of the nanoparticle. On the other
hand, deviation from a spherically symmetric shape leads to
an increase in the elastic energy of the nanoparticles. The
magnitude of the deviation is determined by the balance
between the increase in the elastic energy and the decrease
in the electronic energy. A similar type of calculation was
used by Kresin and Ovchinnikov™ in order to estimate shape
oscillations of aluminum atomic cluster (with 14 atoms), in
which an electron from the full HOS is raised to the LUS.

The general expression for the elastic energy density is’*

o = AV - u)? + Z[] (dui +d”">}2 (35)
=MV I l—+)| -
) — 12 \dx;  dxi

where A, u are the Lame coefficients, and u is the displacement
field. For simplicity, we assume that the local density in
the nanoparticles remains the same as in the bulk material
regardless of the shape of the particles. Therefore we need to
consider a distortion of the spherical shape for which

V-u=0. (36)

Choosing such a displacement field eliminates the first term
in Eq. (35). We also assume an axially symmetric distortion
of the surface of the spherical particles. This distortion can be
parametrized as follows:

R— R [1 + Zale(cos 9)] , (37)
1

where P;(cos 0) are the Legendre polynomials. A displacement
field that produces such a distortion while not changing the
local density is given by>°

u=y %

1

21

o, V[r! Pi(cos0)]. (38)

We are interested only in a rough estimate of the magnitude
of the deformation. Therefore we do not consider the general
displacement field (38). Instead we only examine separately
each value of / in Eq. (38) and determine which multipolarity
enables the largest decrease in the total energy compared to
the spherical particles.

For a certain multipolarity [, the first-order correction to
the energy of a given electronic state (characterized by the
quantum numbers L, M, and N) igd0

8&h v = —2€Lna (LM N|P(cos 0)|LMN)
= —2¢,yoyc(l,L,L;0,0,0)c(l,L,L;0,M,M). (39)
Only even values of 0 < [ < 2L yield a nonzero (SelL wn-Fora
full shell the sum ) _,, 8¢,y vanishes, and therefore we need

to consider only nonfull HOS.
For a given [ the additional elastic energy is

SE., = / d’rel,, = ol Rp, (40)
Vv

ela —

where ¢; is an /-dependent constant that lies between 2 for
| = 2 and 4 for large /. We assume the deformation to be small
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and thus integrate the radial functions between zero and the
original radius of the sphere. Consistently, we find the resulting
deformation to be small, with a maximal aspect ratio of 1.13
and an average aspect ratio of about 1.05,

AE; = ZaelLMN+8Eéla, 41)
M

where the summation in Eq. (41) is over all the occupied states
in the HOS. The states are filled from |M| = 0 and upward
until the highest relevant value of |M|.

We obtain the largest decrease in the energy of the
nanoparticles A E"™* and the corresponding amplitude o™,
by differentiating AE; with respect to «; and equating the
derivative to zero. The resulting expression for the amplitude
is

max ELN
= —(,L,L;0,0,0 E [,L,L;0,M,M).
“ cloyrR3,uC( ) — c( )

(42)

The maximal value of " is obtained for half filling of the
HOS.

The largest |AE™| is obtained for [ =2 (quadrupole
deformation). |AE%] is larger by a factor of 2-10 than
the second largest |[AE"™| (for the relevant values of L),
and larger than the sum of all other [AEJ?_,, | with their
corresponding optimal o"**.

We ignore the effect of surface tension, which tends to
decrease the deviation from the spherical shape. This effect
is probably important because a large fraction of the atoms
in the nanoparticles we study reside on the surface of the
particles. Taking into account only the bulk elastic energy and
ignoring the increase in surface tension, we overestimate the
size of the deformation and of the energy splitting. We also
note that the deviation from spherical symmetry obtained here
is not much larger than the effect of surface roughness due to
the discrete atoms. However, surface roughness corresponds to
alargel deformation, which results in a small energy correction
(SEIL uy compared to the quadrupole correction.

V. EFFECT OF COULOMB REPULSION

We use the same type of screened Thomas-Fermi potential
to describe the repulsive Coulomb interaction between the
electrons. The Coulomb part of the Hamiltonian can be written
generally as

Hco = E
LMNoo'

where L = {l1,l,03,l4}, M ={m,my,m3,ms}, N =
{ni,ny,n3,n4}. The Coulomb interaction matrix element
is denoted by M,y

M) o] (43)

,
MN l4m4n4(fclzmznzg’Cllmlnla Clamsnio»

1
My = Eez /V fv Y OOV o, () VTE(ITY — T2))

X Ytmum (C)Wtsmans (12)d°11d° 2. (44)

We focus on the Coulomb matrix elements that are relevant
for the interaction between time-reversed electron pairs within
the same energy shell. We insert the expressions of the
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electronic wave functions (2) and of the screened Thomas-
Fermi interaction (13) into the Coulomb matrix element (44),
and obtain

87T€ kTF /
M? = dririjikiary)
Inmm R6]1+](klnR) Z Z LJi
x [ky (ktrr1) / drar} j(kiara)iy (krera)
0
R
+ iy (krpr) / dmr%jﬁ(kmrz)kf<kTm>]

x / Y (@)Y (@)Y 4y (21)

S RCAGCSRRCRIE S

The angular integrals yield

/ dQY} YinY
20 +1

xc,,L:m, —m', — M), (46)
/ ALY Vi Yi
21+ 1

VAT QL + 1)

-M), 47)

= (=1"(=D)¥ c(l.1.1':0.0.0)

=™ e(l.1,L';0,0,0)

X c(l,l,L’;m, — m’,

where c(l,l,L/; 0,0,0) = O unless L’ is an even integer, which
means that (—1)© = 1. Using Eqs. (46) and (47), one obtains
the Coulomb part of the Hamiltonian,

1 21
Ho=Nu)_ D, D RuOuw
o m,m'=—IL'=0
s [e( L sm, —m o — mOP(=1)"

T i

X € oo Clem' ng C1—mn—o Clmno » (43)

where
2
8me kTF

Nln = 1 . (49)
RO} (kinR)

R
RlnL/ = / drlrlzjlz(kl"rl)
0
ri
X |:/€L'(kTFr1) f drar} jR(kinra)iy (krera)
0
R
+ iy (krpry) / drzr%jﬁ(kmrm(km)}, (50)

21 +1)?
O = =
dr (2L + 1)
We cannot eliminate the Coulomb interaction between

electrons within a degenerate or nearly degenerate HOS by
adding an additional anti-Hermitian generator to the Frohlich

2(,1,L"0,0,0). (51)
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generator (27), since such a generator contains vanishing or
very small energy denominators. However, if we transform the
Hamiltonian (25) (where we replace H,_, with H,_, + H,)
using the Frohlich generator (27), we obtain the expansion

es"‘Hes = Hy+ H,, + %[Hefp,s] + [Heo, ST+ -+
(52)

The leading correction to the electron-electron interaction
due to Coulomb interaction is just H.. The commutator
[H.o,S] does not renormalize the electron-electron interaction.
Therefore the next correction is of higher order in the
commutator expansion, [[H,,,S],S], i.e., of order M2Me.
We neglect these higher-order terms and take into account
only the lowest-order correction H,. A similar result is
obtained if the similarity renormalization is applied to an
initial Hamiltonian containing the Coulomb term and the
generator of the transformation is constructed to eliminate
only the electron-phonon interaction (for more details, see
Appendix C). Thus in all cases considered we simply add the
screened Coulomb term to the phonon-mediated interaction.
The effect of Coulomb interaction on pairing correlations in
the bulk is significantly reduced due to renormalization of the
average Coulomb interaction constant.®! The renormalization
in the bulk stems from the large difference in the energy
scale in which the phonon-mediated interaction acts (up to
the Debye energy) and the one in which the screened Coulomb
interaction acts (up to the plasma energy of the material, which
is approximately the Fermi energy), and as well as from the
fact that one can reasonably well approximate the Coulomb
interaction, over the entire energy range, by a single average
constant. However, in our system, only relatively narrow
energy shells contribute to the renormalization of the Coulomb
interaction. Furthermore, the intershell Coulomb interaction
matrix elements are much smaller than the intrashell matrix
elements. Therefore they should not contribute much to the
renormalization of the intrashell Coulomb interaction. We
therefore claim that the relevant energy scale for the action of
the Coulomb interaction in our system is the width of the split
HOS and not the Fermi energy of the particles. Accordingly,
we can take into account only the Coulomb interaction within
the HOS, and the renormalization of the average Coulomb
interaction is expected to be smaller than the renormalization
in the bulk. A similar situation occurs in superconducting
Ce0, where the Coulomb pseudopotential constant is not much
smaller than the nonrenormalized average Coulomb interac-
tion constant.’> By using the detailed Coulomb interaction
matrix elements and not an average interaction, we avoid the
necessity of estimating the renormalization within the HOS.

VI. MODIFICATION OF THE ELECTRONIC SPECTRUM
DUE TO PAIRING

We use two types of approximations to study the manner
in which the highest occupied electronic level is split due
to the pairing interaction at zero temperature. In the first
approximation, which is applicable only to a degenerate HOS,
we average the effective electron-electron interaction over the
entire HOS, and obtain a single electron-electron coupling
constant. This model (often referred to as the “seniority
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model”) has the advantage that it is analytically solvable for
a fixed number of electrons in the HOS.”®%3 The second
approximation consists of using the BCS grand-canonical
approximation, in which we fix the average number of
electrons to be equal to the true number of electrons in the
HOS. In this approximation we can relax the requirement of a
single coupling coefficient and of a degenerate HOS.

We note that the seniority model was recently used®* to
evaluate several properties (such as temperature-dependent
specific heat and magnetic susceptibility) of spherical nanopar-
ticles, in which a constant pairing interaction extrapolated from
the bulk material was assumed to act within a completely
degenerate HOS. The effects of a uniform magnetic field were
also considered.

A. Seniority model

We replace the coupling coefficients of the Hamiltonian
(33) with a single average coupling constant,

B |
G=- (2l+1)2 ZZ

m' lanz n3]3

rmn3
Hlll;

x [C<1,1,13;m, —mm —m)P. (53)
The pairing Hamiltonian (33) is replaced by

H_.= GZC,TM !
—~

o > comiCmt (54)

The energy levels of the Hamiltonian (54) are given by

G
E(S,N) = Z(N—S)(ZQ—N—S—i—Z), (55)
and their degeneracy is given by
1, S=0,
D(S) = { 22, S=1, (56)
20! 20!
@a-sist T passosor S 22

where N is the total number of electrons in the HOS, 2 is
equal to 2/ 4 1, and S is the “seniority number,” which counts
the number of unpaired electrons in the HOS. In other words,
S is equal to twice (twice plus 1) the number of broken Cooper
pairs in the HOS if N is even (odd). When the number of
electrons in the HOS lies between 2 and 2/ + 1, the seniority
number has the following values:

0,2,...,N Neven,
S = 57
1,3,...,N N odd.

The expression (55) for E(S, N) can be used even if the number
of electrons exceeds €2, but then N should be taken as the
number of holes in the HOS.%?

The energy difference between two adjacent levels with
seniority numbers S and S + 2 is equal to

E(S +2,N) — E(S,N) = —G(Q — ). (58)

Thus the energy levels become denser when considering higher
values of § (i.e., higher energy levels). We consider the energy
difference between the ground state (S =0 or S = 1) and
the first excited state (S = 2 or S = 3) as the “energy gap.”
The energy gap is equal to —G 2 if the number of electrons
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in the HOS is even, and to —G(2 — 1) if the number of
electrons is odd. Note that, unlike bulk material, the size of the
gap varies linearly and not exponentially with the magnitude
of the coupling constant. This result remains approximately
valid even when deformations are taken into account.

B. BCS model

The analytical results of the seniority model cannot be used
for a nondegenerate HOS. Therefore we employ the BCS
approximation in order to analyze the pairing Hamiltonian
in the nondegenerate HOS. The applicability of the BCS
approach was discussed in Sec. I. Here we add some comments
about this subject.

The BCS approach was found to be reasonably successful
in describing the ground state and low-excited states for
systems containing tens of interacting fermions, such as the
nucleus.>#-# In particular, Braun and von Delft’ conclude
(based on literature dealing with pairing in the nucleus) that
the BCS approximation is adequate in order to describe, at least
qualitatively, pairing correlations in ultrasmall nanoparticles.
Indeed, considering the lowest excitation energy of pairing
Hamiltonians in the context of nuclear pairing, the deviation
between the BCS results and the ones obtained by more
sophisticated treatments or the exact solution was found to
be up to twofold,?*8 while the typical differences, both in the
context of nuclear pairing®>#” and electron pairing in metallic
nanoparticles,®” are usually smaller. We may conclude that
following these comments, together with the discussion in
Sec. I, the usage of the BCS approximation is appropriate
within the framework of our model, as long as we only aim
at a rough description of the low excitation energies of the
pairing spectrum of the nanoparticles.

‘We note that, in what follows, we do not assume the usual
constant pairing interaction and gap parameter as in the usual
BCS approximation. Instead we use the detailed interaction
matrix elements, and solve for the m-dependent gap parameters
Ap.

The BCS gap equations for a given HOS, characterized by
quantum numbers / and n, are given by (see, for example,

Greiner and Maruhn®?)
1 Gmm’ Aﬂl/
Ap==5 ©9)

o A& — 22+ A2,

where ¢, are the energies of the electrons in the HOS as a
function of the angular quantum number m, A is the chemical
potential, and G,,, is the pairing potential acting between
the electron pairs {m, —m} and {m', —m'}. The coupling
coefficients G, are given by

111’13 2

G, =— Z 113

L Wnsly

/ 12
m, —m.,m—m)]",

[C(l,l,lz;

(60)
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if deformations are ignored, and by Eq. (34) if they are taken
into account. The set of 2/ 4 1 equations defined by Eq. (59)
is solved together with the equation

Ey — A

N = 1 -
; J(Ew — M2+ A2,

Equation (61) is obtained by setting the expectation value of
the number operator at the BCS ground state to be equal to the
total number of electrons in the HOS. We solve the BCS gap
equations only for the case of an even number of electrons in
the HOS, since the expectation value of the number operator
in the BCS ground state is an even number. In correspondence
to the definition of the energy gap in the seniority model, we
define the energy gap as twice the energy of the lowest BCS
quasiparticle. The energy of the BCS quasiparticles is given

by
Ep =+ AZ + (g, — M) (62)

Considering only the phonon-mediated interaction in the
degenerate case (60) one finds that the sum ) G,,, does
not depend on m. Thus A, obtained by solving Eq. (59) is
independent of m (although the G, are not equal to each
other) and all BCS quasiparticles have the same energy. In this
particular case, the energy gap obtained by the seniority model
(for an even number of electrons) is reproduced by the BCS
model. The gap parameter A, becomes truly m dependent only
for nonaverage m-dependent interaction matrix elements, and
nondegenerate HOS.

By considering deformation together with the Coulomb
interaction, we obtain for a large portion of the particles an
overall repulsive average interaction. In such cases the standard
mean-field approximation of the gap parameters, A, = A,
yields an unpaired ground state. However, we do not apply
this approximation and therefore are able, in principal, to find
nontrivial solutions to the gap equations. In fact, even for an
entirely repulsive interaction such solutions may exist as long
as the interaction is not constant.

The scenario of pairing in the presence of a repulsive
interaction was first considered by Tolmachov,®' and since
then in numerous variations by many authors.”*%* Further-
more, Mila and Abrahams® have shown that, for a bulk
superconductor, a solution to the gap equation, which is an
odd function of k — kp, is possible for an arbitrarily strong
short-range repulsive interaction, and that this solution has a
lower energy than the unpaired state. For the aluminum and
zinc nanoparticles we find that at least a small part of the
overall interaction matrix elements is in fact negative.

The energy of the paired ground state (relative to the new
chemical potential 1) is

(61)

—A
Epair = Z (sm - )‘-) 1 - fn
m VAL A+ (e — )
Am (gm - )\-)2
= L B ()
m 2 Agn + (Em - }‘-)

and the condensation energy of the nanoparticles is defined
as the difference between Ep,; and the energy of the free-
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electron ground state. The gap equations (59) may possess
several solutions. Of those solutions we choose the one with
the lowest condensation energy. However, since the different
gap parameters A,, may have different signs, it is possible
that the condensation energy of this solution is positive. Only
if the condensation energy of the solution with the lowest
pairing energy (63) is negative can we claim that the paired
state is stable and that it represents the true ground state of
the nanoparticle. We find such solutions for a large portion of
the aluminum and zinc nanoparticles with nondegenerate HOS
(see Sec. VIID).

VII. RESULTS

A. Main results

We consider aluminum nanoparticles containing 100 to
400 atoms (or 300 to 1200 free electrons), zinc nanoparticles
containing 200 to 500 atoms (or 400 to 1000 free electrons),
and potassium nanoparticles with 100 to 500 atoms. Of the
three metals considered, our results indicate that aluminum is
the best candidate for observing pairing effects in ultrasmall
nanoparticles containing a few hundreds of atoms.

The average electron-electron interaction in aluminum
nanoparticles is considered in Sec. VII B, while the average
interaction in zinc and potassium nanoparticles is discussed
in Sec. VIIC. Generally, we find that the average phonon-
mediated interaction in spherical aluminum and potassium
nanoparticles is larger, on average, by a few tens of percent than
the average phonon-mediated interaction strength extrapolated
from the bulk value. For zinc particles we find that on average
there is almost no deviation from the extrapolation from the
average bulk phonon-mediated interaction strength. The av-
erage phonon-mediated interaction in deformed nanoparticles
is on average reduced by more than 55% compared to the
average interaction in spherical particles. The deformations are
more effective in splitting the HOS and reducing the average
interaction in smaller particles than in larger ones.

The addition of Coulomb interaction to the phonon-
mediated effective interaction results in an overall average
attractive interaction in almost all spherical aluminum and zinc
nanoparticles, while for spherical potassium particles it results
in an overall average repulsive interaction. Most aluminum and
zinc particles exhibit an overall average repulsive interaction
when deformations are taken into account together with
Coulomb interaction.

The energy gap in the three types of nanoparticles is
discussed in Sec. VIID. Spherical aluminum particles exhibit
an average energy gap of about 0.13 eV when Coulomb
interaction is ignored. When deformations and Coulomb
interaction are taken into account, the average energy gap
(for all particles for which we were able to find a solution
to the gap equations with negative condensation energy) is
reduced to about 0.025 eV. The effect of deformations is most
pronounced near half-shell filling. The average energy gap
in the spherical zinc particles without Coulomb interaction is
about 0.08eV, while the inclusion of both Coulomb repulsion
and deformations results in an average gap of 0.007eV. The gap
completely vanishes in potassium particles when deformations
and Coulomb interaction are taken into account.
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TABLE I. Basic properties of the three types of nanoparticles
considered in this work. A and u are the bulk material Lamé constants,
p is the bulk density, Z is the number of valence electrons per
atom, Arg is the Thomas-Fermi screening length, iw), is the average
Debye energy of the nanoparticles, and A Ey ys_gos 1S the mean energy
difference between the HOS and the LUS. The elastic constants and
density of the aluminum, potassium, and zinc particles correspond to
T=0,T=4K,and T = 4.2 K, respectively.

Aluminum Zinc Potassium

) (GPa) (Ref. 94) 68 46 2.8

i (GPa) (Ref. 94) 29 51 1.3
o(grem™3) (Ref. 94) 2.7 7.3 0.9

Z 3 2 1

Are (nm) (Ref. 95) 0.049 0.051 0.075
hwp (eV) 0.033 0.028 0.008
AEus-hos (€V) 0.26 0.33 0.11

Although the average phonon-mediated interaction, when
deformations are taken into account, is weaker in our system
than the bulk extrapolation values, the resulting energy gap
is still larger than the one found in bulk material because of
the single-electron energy shell structure. When considering
aluminum particles (with both deformations and Coulomb
interaction taken into account) the average energy gap is
larger by two orders of magnitude than the energy gap in
bulk aluminum. Also, the energy gap obtained in aluminum
particles (when deformations and Coulomb interaction are
taken into account) is typically four times larger than the
lowest single-electron excitation energy (LSEEE) of the
aluminum particles and an order of magnitude smaller than
the average HOS-LUS spacing. Therefore the energy gap lies
in an intermediate energy scale between the LSEEE and the
intershell energy spacing.

B. Average electron-electron interaction in aluminum particles

The relevant material properties of aluminum, zinc, and
potassium nanoparticles are summarized in Table I. In Fig. 1
we plot the absolute value of the average effective interac-
tion coupling constant G for aluminum nanoparticles, while
ignoring Coulomb interaction. The coupling constants are
plotted for spherical particles and for deformed particles. The
inclusion of deformations leads to an average reduction in the
average coupling constants of about 56%.

The shell structure is clearly seen in Fig. 1. The coupling
constant changes abruptly when moving from one shell to the
next. Small jumps occur in the coupling constant within a
certain HOS, such as when the number of free electrons in the
aluminum nanoparticles is varied from N, = 366 to N, = 367
or from N, =373 to N, = 374. These jumps arise from an
increase in the number of phonon modes in the specific phonon
branches that mediate the interaction between the electrons
in the HOS, due to the increased number of atoms in the
particle. Although these jumps may exist, their location and
size should not be inferred from our calculation, due to the
approximate nature of our treatment of the phonon spectrum
and wave functions. The variation of the average coupling
constant when a shell is filled up, as well as the small jumps
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FIG. 1. Absolute value of the averaged phonon-mediated inter-
action constants of aluminum nanoparticles plotted as a function
of the number of free electrons in the nanoparticle. The results for
spherical and deformed particles are shown. The effect of Coulomb
interaction is ignored. The dashed curve shows an extrapolation
from the average phonon-mediated interaction obtained from the
experimentally measured pairing interaction strength in the bulk, and
taking the dimensionless average renormalized Coulomb interaction
ux to be equal to 0.1 (Ref. 96).

due to the additional interacting phonon, are seen more clearly
in Fig. 2 where we plot —G for the HOS characterized by
I=10andn = 1.

The effect of deformation is smallest near the opening or
closing of a shell. It is more or less constant at the intermediate
range, especially for the smaller particles. In this intermediate
range, the energy difference between most electronic levels
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FIG. 2. Absolute value of the average phonon-mediated interac-
tion constants —G of aluminum nanoparticles containing between
339 and 380 free electrons. All particles belong to the filling of the
HOS characterized by / = 10 and n = 1. The jumps in —G between
N =366 and N = 367 and between N = 372 and N = 373 are due
to the addition of a single phonon to the effective interaction.
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FIG. 3. Aspect ratio of deformed aluminum particles obtained
using bulk aluminum elastic constants.

is larger than the energy of the most energetic phonon that
can mediate the interaction between the electrons. Thus most
matrix elements are in fact equal to zero, and the change in the
average coupling constant between sequential nanoparticles is
small. A more pronounced minimum at the HOS half filling
is observed for the larger particles for which the magnitude of
the deformation is smaller.

InFig. 3 we plot the aspect ratios of the deformed aluminum
particles with even numbers of electrons in the HOS and with
bulk material elastic constants. The largest deformations are
obtained for the smallest particles considered, with a maximal
aspect ratio of 1.13. The average aspect ratio for particles with
unfilled shells is 1.04. The aspect ratio is calculated using the
following expression that determines the relation between the
amplitude of the quadrupole deformation o2% [Eq. (42)] and
the aspect ratio®:

max
c_ 2 + 2027 ’ (64)
a 2—oX
where c is the length of the major axis and a is the length of
the minor axis.

We compare our results to an extrapolation from the bulk

coupling constant. The phonon-mediated interaction coupling

constant in bulk material (denoted by G*") is given by>!
40" +uEFp
3N, ’

where E, is the Fermi energy of the bulk material, A* is
the dimensionless average pairing interaction strength in the
bulk material, and p* is dimensionless average renormalized
Coulomb interaction (the dimensionless phonon-mediated
interaction in the bulk is usually denoted by A). We use
the value of A* that is extracted from measurements of the
critical temperature and the energy gap in bulk aluminum,
and for comparison the value of A* calculated by Morel and
Anderson.? In order to obtain G/ we use the value z* = 0.1
calculated by Morel and Anderson®® for aluminum. The
calculation of the phonon-mediated interaction by Morel and
Anderson is similar in some basic assumptions to ours since

G = (65)
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TABLE II. Fitting parameters for the average phonon-mediated
interaction coupling constants, Gy = A(;\;—B)*‘", of spherical and
deformed aluminum particles with bulk elastic constants, together
with the corresponding approximate parameters for bulk aluminum.

o A
Spherical, 100% bulk constants 0.719 0.0075
Deformation, 100% bulk constants 0.757 0.0030
Bulk, experimental 1.0 0.0057
Bulk, Morel and Anderson (Ref. 96) 1.0 0.0068

they used a free electron model, a screened Thomas-Fermi
interaction between the electrons and the phonons, and they
took into account only the effect of longitudinal phonons.
However, unlike our model, the phonon spectrum in the Morel
and Anderson calculation was approximated by an Einstein
phonon model smeared into a Lorentzian line shape.

We fit our results to a function of the form

GﬁtzA(Ne> , (66)

750

and list the values of A and « in Table II. The number 750
is just a typical value for the number of electrons considered.

The values of A for G,’;h [calculated using Eq. (65)] are also
given in Table II. As can be seen from Eq. (65), « is identically
equal to 1 for bulk material. We find that G in the spherical
nanoparticles is on average larger by about 40% than Gl’:h
extrapolated from the experimental value in the bulk, and by
about 15% than th extrapolated from the calculations of
Morel and Anderson.”® When deformations are considered G
is smaller than Gl’;h by about 35% on average.

Although on average there is no large difference between
the smooth extrapolation from the bulk interaction and our
results, the electronic shell structure causes a large variation
in the values of G compared to the monotonic behavior of the
extrapolation (Fig. 1). The differences between the values of
G in the various HOS reflects the differences in the electron-
phonon matrix elements and the change in the number of
phonons that can mediate the interaction in a specific HOS.
The variation is especially evident when going from a HOS
with high value of [ and low value of n to a HOS with a low
value of / and high value of n (or vice versa). For shells with
small [ we find especially high values of G. However, the low
degeneracy of these shells tends to cancel out the high value
of G when the energy gap is calculated [Eq. (58)].

There is also a large scatter of the detailed matrix elements
G, for a specific particle around the average G of the
particle. The large scatter reflects the variation in the electron-
phonon interaction when considering different m’s within a
given shell, and especially the different number of phonons
that contribute to different G, ’s. The variation in the detailed
matrix elements increases when deformations are taken into
account.

In a recent work by Croitoru et al.** the changes in
intrashell pairing interaction in spherical nanoparticles were
calculated assuming a uniform interaction, modified from
its bulk average value only because of the modifications in
the electronic wave functions [which were taken to be the
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FIG. 4. Average electron-electron interaction of aluminum
nanoparticles as a function of the number of free electrons in
the nanoparticle, taking into account the effect of the Coulomb
interaction. Results are shown for spherical and deformed particles.

same as the ones given in Eq. (2)]. Croitoru et al.* found a
large enhancement (compared to the bulk extrapolated value)
in the intrashell interaction. However, as discussed above,
the effective electron-electron interaction within the HOS is
anisotropic even within a degenerate HOS, where a large
difference between m and m  results in a reduced G,
compared to the diagonal matrix elements. The net effect is
only a moderate increase in the average effective interaction,
especially when the HOS is characterized by a large value of
I. Therefore we do not expect to find a major enhancement in
the intrashell phonon-mediated interaction, especially in large
nanoparticles such as the ones considered by Croitoru et al.>*

Taking Coulomb repulsion into account leads to an overall
average attractive interaction in the spherical particles as
shown in Fig. 4. On the other hand, the combination of
deformations and Coulomb interaction results in a repulsive
average interaction in about 85% of the particles. Both phonon
mediated interaction and Coulomb interaction decay with
the increase in the number of electrons in the particles, but
the Coulomb interaction diminishes faster. Also, the size
of the deviation from spherical symmetry decreases with the
increase in the size of the nanoparticles. Therefore we find
more nanoparticles with attractive average coupling as the size
of the particles increases.

We also evaluate the average effective interaction and
energy gap using Lamé coefficients, which are 25% smaller
than the corresponding coefficients of bulk aluminum. Using
these coefficients, the ratio between the longitudinal and
transverse speeds of sound remain unchanged, and all dimen-
sionless properties of the vibrational modes remain unaltered.
Therefore the electron-phonon matrix elements are changed
only because of the factor clf)l = /p/(A +2un) appearing
in Eq. (22). The effective electron-electron interaction is
proportional to the square of the electron-phonon matrix
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FIG. 5. Average coupling constants of deformed aluminum parti-
cles with Lamé coefficients at 75% of their bulk value, with Coulomb
interaction taken into account.

elements, and therefore it is just increased by a factor of 4/3
in the spherical particles.

On the other hand, by decreasing the elastic constants we
make the nanoparticles more susceptible to deformations. The
amplitude of the deformation and therefore the size of the
energy splitting is increased by a factor of +/64/27 due to
the smaller Lamé coefficients [Eq. (42)]. Also, the phonon
frequencies decrease compared to the particles with bulk
elastic constants. The lower frequencies together with the
larger energy splitting decrease the number of phonons that
can mediate the interaction between specific electron pairs.
The net effect is, nevertheless, an increase of the overall
electron-electron interaction, as can be seen from Fig. 5 and
from the fact that a larger portion of the particles examined
(31% compared to 15%) exhibit an overall average attractive
interaction when both deformations and Coulomb interaction
are taken into account. We note that the ratio between the
value of G at the closing of a HOS and its value at half filling
is larger for particles with reduced Lamé coefficients than it is
for particles with bulk aluminum constants.

C. Average electron-electron interaction of zinc and
potassium particles

The average coupling constants of potassium particles
containing 100 to 500 atoms are shown in Fig. 6. Since
potassium is a nonsuperconducting metal we can compare
our results only to theoretical calculations of the strength of
the phonon-mediated interaction. The calculations of Morel
and Anderson yield a major overestimate of the overall
dimensionless interaction strength. Therefore we use the
results of more detailed calculations,’”*® which yield values
of A (the dimensionless average electron-phonon interaction
strength) between 0.11 and 0.16, with most results tending
toward the lower values. In Fig. 6 we plot the values of G
for potassium particles together with the calculated average
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FIG. 6. Average coupling constant of spherical potassium
nanoparticles without Coulomb repulsion. The extrapolation from
the theoretical value of G ,‘,’h, which corresponds to A = 0.11, is also
plotted.

phonon mediated interaction th given in Eq. (65), using

A =0.11. The average of the ratio G/th is about 1.4
for A =0.11 and 1.05 for A = 0.16. Unlike the aluminum
particles, the addition of Coulomb interaction together with
deformations results in purely repulsive interaction matrix
elements. Even when deformation is disregarded, the addition
of Coulomb interaction results in an overall average repulsive
interaction for all potassium nanoparticles.

Unlike the potassium particles, the average phonon-
mediated interaction in the zinc spherical particles is larger
than the average Coulomb interaction. However, when both
deformations and Coulomb interaction are taken into account
we obtain repulsive interaction for almost all (99%) zinc
particles. The phonon-mediated average interaction of the
spherical zinc particles is plotted in Fig. 7 and the overall
average interaction of the deformed zinc particles together
with Coulomb interaction is shown in Fig. 8.

D. Energy gap
1. Energy gap of spherical particles

In Fig. 9 we plot the energy gap for spherical aluminum,
zinc, and potassium nanoparticles, as calculated by the
seniority model, without Coulomb interaction. The energy
gaps are clustered according to the filling of the HOS of the
nanoparticles. The gap shows an even-odd effect as a function
of the number of electrons Nyps in the HOS: A = G(21 4+ 1)
or A = 2Gl for even or odd Nyos, respectively. As mentioned
in Sec. VIB, the gap obtained by the BCS approximation
coincides with the seniority gap for even Nygs, regardless of
whether an average interaction or detailed matrix elements
are used in the BCS calculation. The jumps in G, due to
the addition of a single phonon to the effective interaction
between the electrons, are magnified, by the multiplication
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FIG. 7. Average coupling constant of spherical zinc nanoparticles

without Coulomb repulsion. We also plot the extrapolation from the
experimental bulk value, assuming p* = 0.09 (Ref. 96).

of G with half the HOS degeneracy. See, for example,
Fig. 9, where there is a jump in the gap between N, = 366
and N, = 367 or N, = 373 and N, = 374 for the aluminum
particles; and between N, = 450 and N, = 451 or N, = 576
and N, = 577 for the zinc particles. Figure 10 provides a
magnified view of the region N = 400-500 for aluminum, in
order to demonstrate more clearly the jumps in the energy gap
that are due to transitions into the next electronic shell and
that are caused by the addition of a phonon to the effective
interaction within a given shell.

The average energy gap of spherical aluminum particles is
given in Table III. In calculating the average gap for spherical
particles we disregard particles with Nyos = 1,41 + 1,41 + 2.
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FIG. 8. Average coupling constant of deformed zinc nanoparti-
cles with Coulomb interaction taken into account.
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FIG. 9. (Color online) Energy gap of spherical aluminum, zinc,
and potassium nanoparticles plotted as a function of the number of
free electrons in the nanoparticle, without Coulomb interaction, as
obtained by either the seniority model or BCS model. The difference
(equal to G) between the gap in particles with an even number of
electrons in the HOS and particles with an odd number of electrons
in the HOS is clearly seen for aluminum and zinc but is hard to
observe for the potassium nanoparticles due to the relatively small
average coupling constant. The larger jumps in the gap correspond
to a transition from one shell to the next one. The transition between
shells is marked by three particles with a zero gap, which correspond
to Npos = 1,4/ + 1,41 + 2. The smaller jumps, such as the ones
observed for the aluminum particles between N, = 366 and N, =
367 or N, =373 and N, = 374, or for the zinc particles between
N, =450 and N, =451 or N, = 576 and N, = 577, correspond to
the addition of a phonon to the effective interaction within a given
shell. Figure 10 shows a magnification of the region N = 400-500
for aluminum.

These particles may form a paired state only through the much
weaker intershell interaction, which we ignore. Therefore they
possess a smaller or even zero energy gap.

2. Energy gap of deformed aluminum particles without
Coulomb interaction

The BCS model is used in order to estimate the energy
gap for nanoparticles with nondegenerate HOS. Therefore we
calculate the energy gap only for particles with even Nyog
and nonfull HOS. The resulting average energy gaps of the
aluminum particles for the various scenarios considered in this
work are summarized in Table III. In calculating the average
energy gap of the deformed particles we take into account
only particles with even Nyos and nonfull HOS for which we
were able to find a solution to the gap equations with negative
condensation energy. The fraction of deformed particles (with
and without Coulomb interaction) with even Nyos and nonfull
HOS for which we were able to find such a solution is shown
in Table III.

The energy gap is seven times larger on average than the
LSEEE of the deformed aluminum particles without Coulomb

PHYSICAL REVIEW B 84, 064532 (2011)

02l .:::::::.:.: .:::::

— 015 | ***ereueyene
> o (AL TY
QL ©000000000
Q [LTTYY
© oo 000e
(@]
§ 017
()
c
L

0.05¢

0 i
400 420 440 460 480 500
Number of free electrons

FIG. 10. Seniority model energy gap of spherical aluminum
nanoparticles plotted as a function of the number of free electrons in
the nanoparticle, without Coulomb interaction, as obtained by either
the seniority model or BCS model. Five shells are shown: (! = 7,n =
D,(=2n=4),0l=0n=5),0l=11l,n=1), and ( =5,n=3).
The transition between shells is marked by three consecutive N values
for which the energy gap vanishes (within the framework of our model
in which intershell interaction is ignored): Nyos = 4/ + 1,41 + 2 for
an almost-full or full shell and Nyog = 1 for the next shell. Around
N, = 440 one notes five consecutive N, values with a zero-energy
gap. Three of these correspond to Nyos =4 x 2+ 1,4 x2+42,1
while the other two correspond to the shell / = 0,n = 5. The smaller
jumps observed between N, =420 and N, =421 and between
N, =473 and N, = 474 are due to the addition of a single phonon
to the effective interaction between the electrons and are not related
to electronic shell effects.

interaction. In calculating this average ratio (as well as the
same ratio when Coulomb interaction is taken into account)
we take into account only particles with even Nyops and nonfull
shells for which we find a negative condensation energy. Of
those, we disregard the particles for which the LSEEE involves
a shell transition.

In Figs. 11 and 12, we plot the resulting gap for deformed
aluminum nanoparticles without Coulomb interaction. We plot
the energy gap that corresponds to a solution of the gap
equations with the lowest negative condensation energy. We
note that, for a large portion of the deformed particles, a part of
the gap parameters A,, is essentially equal to zero (within the
accuracy of our numerical solution). However, this is an artifact
that disappears with the addition of Coulomb interaction,
which results in gap parameters that are both positive and
negative.

As can be seen from Table III we find solutions to the
gap equations with negative condensation energies for most
nanoparticles with nondegenerate shells. Also, as can be seen
from Fig. 11 and more clearly from Fig. 12, the energy
gap generally exhibits a quite smooth behavior as a given
energy shell is been filled up, and a minimum near half shell
fillings. This behavior is consistent with the behavior of the
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TABLE III. Summary of the results we obtained for the energy gap of the aluminum particles in the various scenarios considered in this
work. In the second column, we show the average energy gap of the aluminum particles. In the third column, we present the fraction of the
aluminum particles for which we were able to find a solution to the gap equation with negative condensation energy. In the fourth column, the
average ratio between the energy gap of the deformed aluminum particles and the lowest single electron excitation energy (LSEEE) is shown.

Average gap (eV) Fraction o)
Spherical, 100% bulk constants 0.139 100%
Spherical, 75% bulk constants 0.214 100%
Deformation, 100% bulk constants 0.040 62% 7.0
Deformation + Coulomb, 100% bulk constants 0.024 51% 4.1
Deformation + Coulomb, 75% bulk constants 0.045 50% 6.6

average coupling constants (Fig. 1). However, we fail to obtain
solutions to the gap equations with negative condensation
energy for some particles, which many times are located near
shell opening or shell closing. These failures are probably due
to the limitations of our numerical procedure and not due to
a real feature of our system. We claim that these are probably
failures of our numerical procedure and not a real feature of
our system because for most energy shells we are able to
find appropriate solutions for particles located near half shell
filling, where the shell splitting is maximal and the formation
of a paired state is least likely. We note that although the general
structure shown in Figs. 11 and 12 seems to be reasonable, we
cannot prove that solutions with lower condensation energies
do not exist.

3. Energy gap of deformed aluminum particles with
Coulomb interaction

In Figs. 13 and 14, we show the energy gap for aluminum
particles when Coulomb interaction is added on top of
deviations from spherical symmetry. The average value of the
energy gap is given in Table III. We find a solution to the gap
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FIG. 11. BCS model gap of deformed aluminum nanoparticles,
without Coulomb interaction, with even Nyos and negative condensa-
tion energy plotted as a function of the number of free electrons in the
particle. The gap is calculated using the interaction matrix elements
G, ., and by solving Egs. (5§9) and (61).

mm >

equations with negative condensation energy for 50% of the
aluminum particles with even Nyos. For these particles, we
find that the energy gap is approximately four times larger on
average than the LSEEE. However, it should be noted that near
shell opening or closing, where the effect of deformations is
minimal, the gap can be larger than the LSEEE by a factor of
10 or more. Also, the average energy gap is still two orders of
magnitude larger than the energy gap found in superconducting
bulk aluminum? (which is about 0.18 meV), but smaller (by an
order of magnitude) than the mean level spacing between the
HOS and the LUS (see Table I for the average level spacing
between the HOS and the LUS in the aluminum particles).

Aluminum particles with smaller Lamé coefficients exhibit
a larger energy gap on average than the aluminum particles
with bulk Lamé coefficients (see Table III). The percentage
of particles for which we are able to find solutions to the gap
equations with negative condensation energy is similar to the
one obtained for particles with bulk Lamé coefficients.
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FIG. 12. BCS model gap of deformed aluminum nanoparticles,
without Coulomb interaction, with even Nyos varying between
Nuos = 562 to Nyos = 612 and negative condensation energy. All
particles belong to the HOS I = 12,n = 1. The gap is calculated using
the interaction matrix elements G and by solving Egs. (59) and
(61).
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FIG. 13. BCS model gap of aluminum nanoparticles when both
deformations and Coulomb repulsion are taken into account plotted as
afunction of the number of free electrons in the particle. Only particles
with even Nyos and negative condensation energy are shown. The gap
is calculated using the detailed interaction matrix elements G,,,,, and
by solving Egs. (5§9) and (61).

4. Gap parameters anisotropy in aluminum particles

The calculated values of the gap parameters A,, exhibit
a large anisotropy compared to bulk aluminum. The average
ratio between the maximal and minimal absolute values of A,,
is about 10 when both deformations and Coulomb interaction
are taken into account. By comparison, according to the
calculations of Leavens and Carbotte,” the corresponding
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FIG. 14. BCS model gap of aluminum nanoparticles when both
deformations and Coulomb repulsion are taken into account plotted as
afunction of the number of free electrons in the particle. Only particles
with negative condensation and even Nyps varying between Nyos =
1012 to Nyos = 1074 are shown. All particles belong to the HOS
| =15,n = 1. The gap is calculated using the detailed interaction
matrix elements G, -/, and by solving Egs. (59) and (61).
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FIG. 15. BCS model gap of zinc nanoparticles, when both
deformations and Coulomb repulsion are taken into account, plotted
as a function of the number of free electrons in the particle. Only
particles with even Nyos and negative condensation energy are shown.
The gap is calculated using the detailed interaction matrix elements
G, » and by solving Egs. (59) and (61).
ratio in bulk superconducting aluminum is about 1.4. We note
that Croitoru et al.>* have found a large spatial anisotropy in
the gap parameter of spherical nanoparticles, calculated by
solving the Bogoliubov—de Gennes equations.

5. Energy gap of zinc and potassium particles

In Fig. 15 we show the energy gap of zinc particles when
deformations are taken into account together with Coulomb
repulsion. Although zinc particles are less susceptible to
deformations than aluminum particles, the smaller electron-
phonon interaction and the resulting effective electron-electron
interaction lead to a lower average energy gap for zinc particles
than for aluminum particles. We find that the average energy
gap in spherical zinc particles without Coulomb interaction is
equal to 0.08 eV, and to 0.007 eV when both deformations and
Coulomb interaction are taken into account. We find a solution
to the gap equation with negative condensation energy only in
37% of the zinc particles (with even Nyops and nonfull HOS).
We are unable to find solutions to the gap equations for potas-
sium nanoparticles when both deformations and Coulomb
interaction are taken into account. This implies that within
the framework of the BCS grand-canonical approximation,
pairing correlations are completely destroyed in potassium
nanoparticles.

VIII. POSSIBLE MEASURABLE QUANTITIES

In bulk superconductors, the energy gap is directly observ-
able by measuring the electronic DOS of the material (for
example, by tunneling experiments), which is significantly
altered compared to the normal state. By contrast, there is
no qualitative difference between the spectrum of unpaired
electrons in ultrasmall nanoparticles and the spectrum of
paired electrons, because the spectrum is discrete in both
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cases. As mentioned above, we anticipate that the lowest
excitation energy of the paired state (i.e., the energy gap) to
be several times larger on average than the lowest excitation
energy of the unpaired state, and smaller, on average, by an
order of magnitude than the energy difference between the
HOS and the LUS. Thus an observation of excitation energies
that lie between the HOS-LUS difference and the energy
differences expected from the unpaired shell structure may
indicate the presence of pairing in ultrasmall nanoparticles.
The effect of the HOS splitting is minimal near shell opening
or closing, while our results are more accurate near shell
closing since the number of particles participating in the paired
state is maximal. Therefore, like Kresin and Ovchinnikov,'8
we suggest searching for evidence for pairing correlations in
nanoparticles with Nypg near shell closing.

Although observation of alteration in the electronic spec-
trum may be used as an indicator of the presence of pairing, one
must remember that our description of the single-electronic
shell structure is quite crude and neglects effects that may
contribute to the splitting of the HOS, such as nonaxially
symmetric deformations, surface roughness, and disorder.
Therefore it is possible that we underestimate the magnitude
of the splitting, and as a result overestimate the magnitude of
the energy gap. If this is indeed the case it will be hard to
distinguish between splitting caused by pairing and splitting
caused by deviations from the spherical shell structure.

The seniority model predicts [Eq. (58)] that the spacing
between adjacent energy levels decreases linearly when higher
levels within the paired HOS are considered. The presence
of such a structure in the electronic energy spectrum could
indicate the existence of pairing interaction. Also, according
to the seniority model the difference between two adjacent
level spacings is equal to 2G (i.e., to a few meV). These
two predictions are somewhat modified (but not substantially)
when the effects of deformations are taken into account within
the framework of the BCS approximation.

An alternative fingerprint of the presence of pairing could
be found in magnetization measurements. Let us assume that
a nanoparticle does not exhibit pairing correlations and that
the degeneracy of the HOS is completely lifted (except for
the spin degeneracy) due to deformations. This is the accepted
description of the energy levels of atomic clusters.'>?? We
further assume that the energy splitting within a subshell (i.e.,
between m and —m) is smaller than the splitting between
subshells (i.e., between different values of |m|), and therefore
the electrons first fill up the subshells with small values of |m|.
We focus on nanoparticles with two electrons in the highest
populated subshell (i.e., half filling of the subshell) and con-
sider the zero-temperature value of the particle magnetization.
The magnetic field inducing the magnetization is taken to be
constant, directed in the z direction, and weak enough so it does
not change the electron population in the various subshells. The
effects of deformations or renormalization on the electronic
wave functions are ignored.

Under the above assumptions we find, to lowest order in the
weak magnetic field, that the magnetization of the nanoparticle
is

M = —ppm, (67)
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where u g is the Bohr magneton, and we assume that the lowest
nonfull energy subshell corresponds to —m. By contrast,
if pairing is present in the same nanoparticle, then the
magnetization will be zero. However, it should be noted that
if the number of electrons in the particle corresponds to a
full highest occupied subshell, then the magnetization is zero
(to the first order in the field strength) also in the absence of
pairing.

A different approach may rely on the detection of the
transition between the paired and the unpaired state as the
temperature is varied. Cao et al.'” measured the heat capacity
of aluminum atomic clusters containing between 43 and
48 atoms. They found a peak in the heat capacity of clusters
containing 44 and 47 atoms around 7" = 200 K. These peaks
are claimed to represent the transition between the paired
and the unpaired state as the temperature of the clusters is
varied. The experimental results are somewhat higher, but
are still in accordance with the calculations of Kresin and
Ovchinnikov.'®"'® We note that when evaluating the energy gap
of the nanoparticles at such a temperature, it may be necessary
to take into account finite temperature broadening of the sharp,
almost degenerate, single-electron levels.

IX. SUMMARY

We investigated the possibility of pairing interaction in
metallic nanoparticles containing a few hundreds of atoms at
zero temperature. Three materials were considered: aluminum,
zinc, and potassium. We started from a simple model of
noninteracting phonons (quantized normal modes of vibration
of a stress-free elastic sphere) and electrons (fermions in a
spherical potential box) in the nanoparticles. We introduced
an electrostatic screened Thomas-Fermi interaction potential
between the electrons and the phonons, using the Thomas-
Fermi screening length in bulk materials. We then derived
an effective phonon-mediated electron-electron interaction,
resulting from the underlying electron-phonon interaction. We
found that the strongest attractive interaction was between
time-reversed electron pairs within the same energy shell. We
neglected the rest of the effective interaction and assumed a
model pairing Hamiltonian consisting only of the interaction
between electrons in the HOS.

The effective interaction was derived by means of
either the Frohlich transformation” or the similarity
renormalization.**>" The application of the Frohlich trans-
formation was more straightforward but restricted to particles
with degenerate HOS. However, the degeneracy of the HOS is
lifted due to deviations from spherical symmetry. The effects of
deformations on the effective interaction between the electrons
were taken into account within the framework of the similarity
renormalization method. Our application of this technique
followed the work of Mielke.*® However, the interaction we
obtained includes a different cutoff function than the one
obtained by Mielke.** Our cutoff function, which resembles
more the result obtained by Hubsch and Becker,® reflects
the fact that a phonon cannot mediate the interaction between
electron states with an energy separation larger than its own
energy. We also included a screened Coulomb interaction in
our model Hamiltonian, and found that it plays a significant
role in reducing pairing effects.
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Unlike the Frohlich interaction, the effective interaction
obtained by the application of the similarity transformation
depends on the renormalized electron energies due to the
electron-phonon interaction. The size of the renormalization
was also obtained using the similarity renormalization method.
However, within the framework our model, in which intershell
interactions are neglected, the renormalization is unimportant
since (for spherical particles) it shifts all of the states within the
HOS by the same amount. However, renormalization may play
a more important role when intershell interactions are taken
into account, especially when the nonrenormalized HOS and
LUS are nearly degenerate.

On average, there was no large difference between the
average phonon-mediated interaction we obtained and the
extrapolation from bulk interaction. However, finite-size ef-
fects induced variation in the values of the average inter-
action in contrast to the smooth monotonic behavior of the
extrapolation. Finite-size effects also caused a large scatter
between the detailed effective interaction matrix elements for
a given particle. This scatter was further enhanced in deformed
nanoparticles, and it was important to take it into account when
we evaluated the energy gap in those particles. We also found
that the entrance of an additional single phonon to the effective
interaction between the electrons resulted in small jumps in the
average effective interaction, and in more pronounced jumps
in the energy gap of spherical particles. However, it was hard to
observe the fingerprints of this effect in the calculated energy
gap of deformed nanoparticles.

The effect of the pairing Hamiltonian on the electronic
spectrum was evaluated by using the seniority model (when we
considered particles with degenerate HOS) or by solving the
BCS gap equation for the HOS. When Coulomb interaction and
deformations were ignored, we found that aluminum particles
exhibit an average energy gap (i.e., the lowest excitation energy
of the paired electrons) of about 0.14 eV, while the average
gap in zinc and potassium particles was found to be 0.07 and
0.02 eV, respectively. The addition of Coulomb interaction,
together with deformations, reduced the energy gap by a
factor of 5.5 on average in the aluminum particles and by
a factor of 10 in the zinc particles. On the other hand, the
same effects reduced the energy gap to zero in the potassium
particles. Despite the large reduction, our calculations indicate
that a large portion of both aluminum and zinc particles should
exhibit pair correlations and modifications in their electronic
spectrum.

We found that within the framework of our approximate
model, the resulting energy gap is on average intermediate
between the LSEEE and the energy difference between
the HOS and the LUS. Additionally, if pairing is present,
then we expect that the magnetization of nanoparticles
with certain fillings of the HOS (namely, two electrons
at the highest subshell within the HOS) to be differ-
ent from the magnetization of the unpaired ground state.
Therefore magnetization may serve as an additional finger-
print of the existence of pairing correlations in metallic
nanoparticles.

Our results indicate that the size (and maybe even the exis-
tence) of the modifications in the electronic energy spectrum
are sensitive to several factors such as the effective elastic
constants of the particles, the details of the energy splitting of
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the HOS (which may be affected by additional mechanisms
such as disorder, nonaxially symmetric deformations, and
surface roughness), and maybe the detailed description of the
Coulomb interaction. Therefore it is probably necessary to
consider these aspects more accurately in order to reliably
predict whether pairing correlations do exist in specific
metallic nanoparticles.

An additional improvement involves applying a canonical-
ensemble treatment of the pairing Hamiltonian instead of the
grand-canonical BCS approximation. The simplest fixed-N
treatment for the energy gap®’ is obtained by projecting the
BCS ground state, as well as the BCS ground state with two
“blocked” single electron states, onto the subspace of states
with a fixed number of electrons in the HOS and calculating
the energy difference between them. This method yields results
that are quite close to the ones obtained by an exact solution of
the pairing Hamiltonian for aluminum particles with constant
interaction strength”!! and uniform or random level structure.
Therefore it is probably sufficient in order to evaluate the
accuracy of the BCS approximation results for our case, where
an exact approach is inapplicable. More sophisticated methods
could also be used, but their application should be considered
in light of the approximations involved in deriving the effective
interaction between the electrons and in estimating the single-
electron level structure.

Finally, we note that the standard approach for calculating
properties of superconducting bulk material relies either on the
application of Eliashberg theory’®!°=193 or density-functional
theory!*1%8 instead of a BCS approach based on an effective
model Hamiltonian. In fact, density-functional theory was
already used to describe pairing in the nucleus'*!'* and in
nanometric superconductors.!!! Specifically, the application
of density functional approach to equally spaced''"!''? or ran-
domly distributed'!? electronic spectrum (both with constant
pairing interaction) reproduced remarkably well the results
of the exact Richardson solution. It would be interesting to
see how our simple BCS approach would fair compared to
a density-functional approach applied to nonconstant pairing
interaction and an approximate electronic shell structure. On
the other hand, the adaption of the Eliashberg theory to the
problem of pairing in ultrasmall nanoparticles will enable an
alternative (and indeed a far more widely used one in the
context of bulk material) to our similarity renormalization
+ BCS solution approach, for the calculation of pairing
correlations from the underlying electron-phonon interaction.
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APPENDIX A: SPHEROIDAL PHONONS AND THEIR
LONGITUDINAL COMPONENT

The details of the solution of the linear elasticity equation
of motion can be found in many references;’® here we shall
cite only the relevant results.

The frequencies of the spheroidal modes are determined by
solving

T Ty — TyTi3 =0 (A1)

064532-19



ZE’EV LINDENFELD, ELI EISENBERG, AND RON LIFSHITZ

for [ # 0, where

2
T = (12 - %) JE) + 2pRji ),

T3 =1L+ DI = Dji() — njix1(m)]
Ty = = Dji§) — &jit1(6),

2
n . .
Ty3 = <12 -5 1) Ji) + njira (),

where j; is the spherical Bessel function of the order /. For
[ = 0 one needs to solve

T, = 0. (A2)
In the above equations = pR and £ = %R, where ¢, is the
transverse sound velocity.

The ratio between the amplitude of the longitudinal com-
ponent A and the amplitude of the transverse component C is
determined by the stress-free boundary conditions imposed on
the surface of the sphere (0, = 0g, = 0y, = 0, where o;; are
the components of the stress tensor). If / > 0 the ratio is given
by —T11/ T3, while if ] = 0 then C = 0 and A is determined
solely by the wave-function normalization condition.

APPENDIX B: DERIVATION OF THE
ELECTRON-PHONON MATRIX ELEMENTS

We derive the explicit expression for the electron-phonon
matrix elements M,y (21). Using Egs. (2) and (6)—(9), we
obtain the following expression for the matrix elements:

Miyn = // Biin, iy (kiyny71) Y, (20) By,

—krg|ri—r;
e krrlri—r2| hwlws

Izn
3n3 2100120

X jlz (klznzrl)yvlzmz(gl) |r1 _ r2|

% ji, (kins72) Yy ()17 drid 2173 drad 0, (B1)

where the indexes LM N denote the same as in Eq. (15).
We insert the spherical harmonic expansion of the screened
electrostatic potential (13), and the explicit expression for By,
(3) into Eq. (B1), and obtain

00 1
87TZ€2n0kT]:
My =) ) — 7 —
=0 m=—I

hwlwa Alwz
X 7 . .
2,06'10 Jii+1 (allﬂl )]lz+l (alznz)

R
X {/ dryri ji, (kiry) ji, (kary)
0

r
X |:kl3(kTFrl)/ drar; ji,(kara )iy, (krera)
0
R
+il3(kTFrl)/ dVZrzzjl;(k3"2)kl;(kTFrz)j|}
ri
X /Yle](QI)YIsz(Ql)YZm(Ql)dQI

< / Vi (22 Yo (22)d 2. (B2)
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The angular integrations in Eq. (B2) yield

/ Yiumy (822) Y1, (822)d Q20 = 8, 0114 (B3)

/Ysz](Ql)lem2(Ql)Y1m(Ql)dQI

11,1,1:0,0,0
sy Gk )

Xc(ll’lz’l;mla _m27m)(_1)mz' (B4)

We note that the only nonvanishing Clebsch—Gordan coeffi-
cients in Eq. (B4) are those complying with the conservation
laws (16)—(20). Therefore the summation in Eq. (B2) is
restricted only to these values of I’s, and m’s.

APPENDIX C: APPLICATION OF THE SIMILARITY
RENORMALIZATION

_ \/(211 + 1)L+ 1)

The similarity renormalization is a renormalization scheme
in which an initial nondiagonal Hamiltonian, which connects
states separated by a large energy difference (up to a large
initial cutoff A), is transformed, via a continuous set of
infinitesimal unitary transformations, into a band diagonal
effective Hamiltonian with a smaller energy cutoff A. The
renormalization is carried out perturbatively and in a manner
which avoids small-energy denominators that may appear
in ordinary perturbation expansions, or in a single unitary
transformation of the initial Hamiltonian such as the Frohlich
transformation (for more details see Refs. 48 and 49).

Guided by the results obtained using the Frohlich transfor-
mation, and in order to simplify the notation, we concentrate
on the interaction within the HOS and ignore intershell
interaction. The entire Hamiltonian can be obtained following
the same steps we outline below (see also the results of
Mielke* who derived a general effective electron-electron
interaction for the bulk system).

The transformed Hamiltonian H, can be divided into a
diagonal part Hy, and an interaction part Hy;. It is preferable
to carry out the pertubative renormalization expansion using
only normal ordered operators.'!® Therefore we write the H,
and Hj; in the following manner:

- § : pt .
HO)x - hwl}ﬂ})x . b13m3n3b13m3n3 .

lym3ns

+ ) Emn  ChgCo ¢ (Cl)

mao

_ § E E : o T .
Hp = Mmlmzlzﬂz)\ : Cm|O‘CmZG‘bl3mlfszl3 :

mymy lzny o
. . 2
+ Mn*’l]mzlj,ng)» : Crl—}'lgo'cmlo'bIBmI*mzn3 t+O0(M7),
(C2)
where 1, is the average occupancy of an electronic state
at the HOS, :: denotes normal ordering, and the following
shortened notation was used:
Emr = €lmni,

Cmo = Clmno »

__ agnnn3
Mmlmzl3113A - Mlll3m]mgm| —moA*

The average occupancy is equal to N,/(4l 4 2) if the HOS
is degenerate, where N, is the total number of electrons in
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the HOS, while N, in the deformed particles is determined
by the Fermi-Dirac distribution. The term O(M?) contains
new interactions generated by the transformation, including
the effective electron-electron interaction.
The renormalization of the matrix elements of a general
Hamiltonian matrix element H;;, is determined through
d H,‘ Jh dlnui Jh
dxr dx

and the matrix elements of the generator of the transformation
(denoted by 1;;,) is given by

= ujn[nn, Hindij + rija Hijy, (C3)

dh’ll/t,'j H

Nijr = — 7 ij/\) , (CH

Tija
Er—E, <[T7,\,H1x]u
where the states i and j are eigenstates of the diagonal part of
the renormalized Hamiltonian Hy,, with eigenenergies E;; and
E j,. The properties of the function u;;, are discussed below.
The detailed derivation of Eqs. (C3) and (C4) can be found,
for example, in the original paper by Glazek and Wilson*® or
in the work of Mielke.*

The function u;, is a continuous and differentiable function
of the argument (A — |E;, — Ej,]) x B.Itisequal to 1 if (A —
|E,')\ — Ejk|) X ﬁ < Oandtozeroif()\ — |E,')\ — Ejk|) X ﬁ >
0, where B~ is the width in which u;;, varies from one to zero
around |E;; — Ej;| = A. We use a single value of 8 to all u; ),
and take B! to be small so u; j». varies sharply around |E;; —
Ej;| = 1. The meaning of “small” 8~! and “sharp variation”
is given in what follows.

The function r;;, is defined as r;;; = 1 — u;;;. The factor
rij, multiplying the right-hand side (RHS) of Eq. (C4) [and
thus also the RHS of Eq. (C3)] ensures that energy denomina-
tors small compared to A (E;; — Ej, < A) are avoided.

Equations (C3) and (C4) cannot be solved explicitly.
Instead, we assume that it is possible to expand the generator 7;,
and the transformed Hamiltonian H, in powers of the electron-
phonon coupling coefficients M, 11,1 and disregard any
terms in H, that are proportional to the third power of
M,y imyl5n55. OF MoOTE.

The lowest-order contribution to 1, comes from the second
term in the parentheses in Eq. (C4) and is linear in M.y, m, 1513155
The factor r;;, ensures that Hp, do not contribute to 7. The
renormalization of H, is affected by the generator through the
commutator on the RHS of Eq. (C3). Thus only the lowest-
order term of the generator affects the renormalization of the
Hamiltonian up to the second order in My, m,i3n,.. We obtain
the following expression for 1, :

_ E § E .t T .
= Nmymalznad - leacmzﬂblgmlfmzm .

mymy lzny ©

* . . 2
_n;nlmz]3n3)L . C,];lzgcml(rblgmml—mzn3 . +0(M ), (CS)

PHYSICAL REVIEW B 84, 064532 (2011)

where

—Vmimylznsi
Emin — Emaa + hwlwgk
dlnumlmzlgm)»
dxr

nmlmzlgn_;)u =

Momaisns + O(M?), — (C6)

and

Umimalznzh = u[()‘- - |‘9m1A — Emyr +hw13n3)»|) X /3] (C7)

We note that we do not take into account corrections to the
electron-phonon matrix elements arising from deviations from
spherical symmetry. Therefore the electron-phonon interaction
cannot change the energy structure within the HOS (although
the intershell energy structure is modified) and all electronic
energy differences &,,,, — &n,, are in fact A independent. Thus
in the rest of the calculation, as well as in the expression for
the renormalization of the generator matrix elements (C6),
we replace €,,, — &m,n With the initial energy differences
EmyA — Emyn, Where g, 4 are the nonrenormalized energies of
the electrons.

Inserting the generator (C5) into Eq. (C3) we find that the
commutator in Eq. (C3) contributes to the renormalization of
M1yt only to the third power (or more) of the electron-
phonon coupling. Therefore the renormalization is determined
through the following equation:

delmzl3'l3)~ _ dlnuimmﬂyuk
T — rmmnlgn;kT
X Myt + O(M?),  (C8)
with the solution
Mmlmzlgnﬁ = Mm1m213n3Aem1mzlgn3)»
= m|mzlgngAumlmzlgng)herm]mz’}”}k~ (C9)

Note that the function e, m,i,n;» has the same asymptotic
behavior as t,mylzn51-

The renormalization of the single-particle electron and
phonon energies is determined solely by the commutator in
Eq. (C3), while the second term in Eq. (C3) is irrelevant due
to the presence of the prefactor r,,,,1,n;2- By contrast, both
terms contribute to the generated electron-electron interaction.
We calculate the commutator and use the expressions for the
matrix elements of the generator (C6) and the renormalized
electron-phonon coupling coefficients (C9), in order to derive
differential equations describing the renormalization of the
single-particle energies €yx;, and wy,,;, and the effective
interaction V,,,,, between time-reversed electron pairs ({M 1
,— M J}and{M 1, — M |}). We obtain the following three
differential equations:

AV —u 2 ¢ deMM’l3n3x }M |2
— 5, T Umma E M Mlynsh ™~ 19 MM l3n3 A
d Tt \EMA — Ey'p F O3, T da "
2 deM’Ml s du 4
3n3A 2 MM ) MM x
+ eMM nsh ™ MMM’13n3A| + ——————Vuwm (C10)
Epm'a — Ema +hopas dxr Uppr's A
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— 2
dSMEA 1- Mo 2 delign3A
= |Mipinsn|” —52
da Emoh — EMzA thOLa3 dx
mlinzo
— 2
o 2 deMml3n3k
- |MMml3n3A‘ - . ] (Cll)
EMSA — Emon + Rwpn3 dA
— — 2
dw13n3)\. nmla - nml—m3a 2 demlmlfmg,lgnﬂ»
= |Mm1m17m313n3A| ) (C]Z)
dxr ! EmioA — Emi—m3zo A + hw13113k dxr
3n3mio
where
Uprpr's, = Ul(A = 2]lepon — eppoal) X Bl (C13)

From Eq. (C12) we see that the renormalization of the
phonon frequencies is zero (at least up to the second order
in My, m,15n;) When we consider spherical nanoparticles with
degenerate energy shells. Even if deviations from spherical
symmetry are taken into account, the corrections are small
compared to the nonrenormalized frequencies. Therefore we
neglect the renormalization of the phonon frequencies and
assume that they are A independent.

The solution of Eq. (C10) is given by

A
Vs, = —€Xp (/; » p(t)dt)
A w A
X / exp (—/ p(t)dt) g(s)ds, (C14)
A s

‘min

where we used the fact that V,;;,7, = 0, and the functions p(})
and g(A) are defined as

2
gA) = uMM’)\(Z

ol EMoA ~ Ep'on + hwpyu3),

deMM’13n3A M 2
X eM’Mzmx—dk | MM s A |
2

EM'on — EMoA T RO.3,.

2

l3n3

dew mizns 2
S eMM’l3n3)\d—)Lm |MMM’13n3A|
= Uyus Zg;m + ngm , (C15)
I3n3 I3n3
s AUy
PV = — MM . CUpM ) (C16)

Uy dA

In order to explicitly calculate V. ;  we need to choose
a specific form of uypp). .5 and ;. We define ryppp o
and ry;,,; to be Fermi-Dirac functions with a width that we
denoted before as B~!. These functions (as well as u,,, sk
and u )y, ) vary sharply from O to 1 around A = 4/, and
A = Ay respectively, where Ay 1y, and Ay, are defined
as

(C17)
(C18)

)\'MM/I3YL3 = |<’3MaA —EM oA +h0)l3n3‘ ,

Aum' = 2lEMon — Epopl-

Each term in the two sums in Eq. (C15) is characterized by
certain Ay py'p.,, and Ay ., at which the functions ey pyr.,.5
and e,y y7;,,5 vary from 1 to O as A is lowered. These variations
result in formation of peaks in g(1) around the various A 5,7/, .
and A 'y, - We take B ~! to be much smaller than any energy
difference in our system, and therefore ensure that the variation
from 1 to 0 of e/, @and €y 5py,,.5 18 Tast enough, so there
is only a small overlap between the various peaks in g(1). The
smallness of B! also ensures that there is only a small overlap
between the peak located around the lowest value of Ay,
and the drop (from 1 to 0) in p(A) at A, .

If effects of deformations on the electron-phonon matrix
elements are taken into account, then the difference &, —
Em,y. becomes A dependent. In this case we need to impose an
additional condition on the size of 8~'. We choose 87! to be
small enough so the change in |epo1 — €452, @s A is varied
across Ay ps'1in, OF Ay 1s small compared to either Ay, .,
or Ay, - This last condition can be written as

-1
d|epor — €y ol

—1
BT K 7

}‘:)‘MM’13n3 e

X (A= Apsat tms Aanr’) | (C19)

forall Ay and Apppp )y,

Using the specific form we chose for u .., We can
show that ey ..., is essentially equal to u s, ,,; €ven in
the transition zone around A,;,,,,,. (and not just as A tends
to zero or to A). We can also show that the terms in the first
sum of g(4) (C15) with A, larger than both Ay,
and A, give a finite nonzero contribution to Vi, . as
long as Apiy is smaller than A, but larger than Ay, .
Furthermore, due to the narrowness of the variation in g/, (%)

around A,,,,,.,,. the integral f;r\mn exp(— fsA pt)dn)g}.,, (s)ds
is independent of A, as long as Ay, is slightly smaller than
AMM 1yns

On the other hand, all terms in the first sum of g()\)
with Appppp.,, smaller than either Ay, Or Ay give
exponentially small contributions, regardless of the exact value
of Amin- The same is true for the second sum in Eq. (C15) with
the roles of Ay, and Ay yyy.,. interchanged.
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Aslong as Ay is larger than A, the exponential prefactor
in Eq. (C14) is approximately equal to 1. However, if Ay, is
chosen to be smaller than A,,,, then the prefactor becomes
exp(—A,y B), and the effective interaction is suppressed. This
is in accordance with the general scheme of the similarity
renormalization, since A, is just the difference between the
single-electron energies of the pair {M 1, — M |} and the
pair (M 4+, — M ).

Therefore if we try to completely diagonalize the Hamilto-
nian (up to the second order in M, m,in,1) by taking Amin
to zero, we obtain decoupled free electrons and phonons
with renormalized energies. This is not surprising since
our application of the similarity renormalization method is
perturbative in its nature, and one cannot hope to obtain the
paired ground state of the electrons from the single-electron
ground state via a perturbation expansion. However, our aim is
not to completely diagonalize the Hamiltonian but to decouple
the electrons from the phonons sufficiently so as to obtain the
effective electron-electron interaction while accounting for all
relevant mediating phonons. This goal is achieved by carrying
the integration in Eq. (C14) down to Apin, Which is slightly
smaller than the smallest of Ay, OF Ay, that is still
larger than A, .

The contribution from the first sum in g(A) (C15) to
Vum's,, (@s long as Ay, is larger than A, and smaller
than the smallest relevant A ;. ,,, and Ay pz,,,) 18

first sum __
VMM/)Lmin - Z

I3n3

-2 }MMM’lng |2

, (C20)
EMa — Ey'a T+ hwL,

where eyp > €y 5 and ey — &)y o < hwy,y,. The contribu-
tion from the second sum is

Vsec0,nd sum __ § :
MM Amin

I3n3

-2 |MMM'13n3A|2

, (C21)
Ey'a — EMA Fhwpn,

where €, 4, > eya and €y 5 — ey < hwy,,,. Both contribu-
tions do not depend explicitly on An,i,. We see that either the
first or the second term contribute to the interaction matrix
element, depending on the sign of ey — &, 5. Therefore we
can write the interaction matrix element as

Voo — Z _2|MMM'13n3A|2
MM £ lesrn — €pra| + Rorng

X O (hwpn, — |ema — epral) . (C22)

Inspecting the expression in Eq. (C22) we can see that
the resulting effective interaction is always attractive and
decays monotonically with the increasing separation between
the electronic energy levels. Furthermore, a phonon cannot
couple electron pairs with energies that are separated by
more than its energy. The result in Eq. (C22) coincides
with the effective interaction obtained by the application
of the Frohlich transformation (33), if the nanoparticle is
completely spherical. We note that if intershell interaction
is not neglected then Eq. (C22) includes a summation
over all relevant shells as well as intershell terms. In
this case the nonrenormalized energies of the electrons in
Eq. (C22) are replaced by the A-dependent renormalized
energies.
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The renormalization of the single-particle electron energies
is obtained by integrating Eq. (C11). The integration from A,
up to A yields

(ﬁmo - 1) ‘Mli3n3A|2

Emon — EMzA T hwp,3

,
EMSAmn = EMEA T+ E

+3y

— 2
Nme ’ MMm13n3A ‘

(C23)
EMSA — EmoA + hwlgnS

The sum Z in Eq. (C23) runs over all values of ¢,,,, and

hiwy,nz for which Ay, is larger than Ay, and the sum Z
runs over all values of €,, and hiw,,3 for which A, is
larger than Any;,. In order to take into account the effect of
all relevant phonons we need to take An;, to be smaller than
the energy of the least energetic spheroidal phonon that can
interact with electrons in the HOS.

We now consider an initial untransformed Hamiltonian
that includes a Coulomb interaction term. In principal, the
additional Coulomb term should modify the generator and the
flow of the Hamiltonian. However, if we retain the generator
(C5) and do not include in it terms arising from Coulomb
interaction, then the flow of the electron-electron effective
interaction remains unmodified up to the second order in
the interaction coefficients. Therefore the only modification
introduced into the calculation is the appearance of the term
MzchM on the RHS of Eq. (C22), since the electron-electron
interaction is equal to the Coulomb term and not to zero at
A = A. Furthermore, the inclusion of the Coulomb term in Hj;
does not affect the renormalization of the electron energies as
long as the generator (C5) is retained, since the commutator
on the RHS of Eq. (C3) does not yield additional terms that
contribute to the renormalization of the electron energies up
to the second order (including) in the electron-phonon and
Coulomb interaction coefficients. The generator (C5) cannot
induce the elimination of the Coulomb interaction, which even
after the transformation is still able to couple states with large
energy difference.

We note that Mielke*” solved the equivalent Eq. to Eq. (C10)
in the bulk while assuming u;,; = 1, which is equivalent to
assuming u,,,,, = 1inour calculation. This assumption leads
to p(A) =0 and to the disappearance of the factor u,,,,,
which multiplies the sum in Eq. (C15). This last factor is
responsible for the Heaviside function in Eq. (C22). Therefore,
in Mielke’s interaction, phonons with energy smaller than
lesa — €3 4| can contribute to the matrix element V,,,, and
therefore artificially enhance the effective interaction. Further-
more, the effective interaction of Mielke is not eliminated in
the limit A — 0. This result is inconsistent with the general
scheme of the similarity renormalization method.

It should be noted that Mielke investigated a model in
which the effective interaction was mediated by nondispersive
phonons with an energy that is much larger than the energy
of the electrons. In this model, and as long as Ap, is
taken to be slightly smaller than the single frequency of the
nondispersive phonons, our results and the results of Mielke
coincide.
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