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Different length scales for order parameters in two-gap superconductors:
Extended Ginzburg-Landau theory
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Using the Ginzburg-Landau theory extended to the next-to-leading order, we determine numerically the healing
lengths of the two order parameters at the two-gap superconductor/normal metal interface. We demonstrate on
several examples that those can be different even in the strict domain of applicability of the Ginzburg-Landau
theory. This justifies the use of this theory to describe relevant physics of two-gap superconductors, distinguishing
them from their single-gap counterparts. The calculational degree of complexity increases only slightly with
respect to the conventional Ginzburg-Landau expansion, thus the extended Ginzburg-Landau model remains
numerically far less demanding compared to the full microscopic approaches.
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I. INTRODUCTION

Over the past half century, the Ginzburg-Landau (GL)
theory1 has proven to be a very helpful tool in studies of
superconductors, but also other systems in and out of the
condensed-matter physics. By its construction, the formalism
is only justified near the critical temperature Tc, but it typically
produces qualitatively correct results even far below the Tc.
Recently an exception was found to this unwritten rule,
when it was shown that the standard formulation of the GL
theory is insufficient for adequate description of two-band
(or multiband) superconductors because it predicts the same
spatial variation of the condensates in all bands2 (within its
range of applicability, i.e., close to Tc). This renders it unable
to connect to the theoretical results obtained by using Usadel3,4

or Eilenberger5 equations in the broader temperature range,
which unambiguously show the presence of two separate
length scales for two gaps. Experimentally, the evidence
for different coherence lengths in σ and π bands of MgB2

was previously found by direct vortex imaging,6 muon spin
relaxation (μSR) imaging of the supercarrier density,7 and in
pronounced features in the flux-flow resistivity8 as a function
of applied magnetic field.

In order to capture the important physics of different length
scales, one needs to extend the GL formalism as realized
in Ref. 9, where the two order parameters are calculated
up to order τ 3/2 in the small deviation from the critical
temperature τ = 1 − T/Tc, instead of the standard τ 1/2 as
used in Ref. 2. In the latter paper, the authors mention that the
extra terms in the next-to-leading order are by construction
small corrections, not significant enough to alter the single
coherence length controlling the spatial distribution of both
condensates. First, we argue that the effects of higher-order
corrections can be significant since the above argument about
small corrections applies only to the order parameter—not
necessarily to its spatial profile, i.e., healing lengths and
other physical quantities. Second, we argue that any (even
small) difference between the characteristic length scales of
two condensates is of fundamental importance, since it may
lead to other unique phenomena related to the competition
of length scales. Note that here we do not enter the recent
debate about sufficient discrepancy of length scales to provide
“type-1.5” superconductivity.10–12 Instead, we complement

that discussion by exactly quantifying the difference in length
scales in the domain of the extended GL theory.

The fact that the difference of characteristic length scales
of two Cooper pair condensates exists even in the strict
Ginzburg-Landau domain is of great practical importance,
since the calculations based on the Ginzburg-Landau theory
are typically far less computationally demanding than the
calculations based on full microscopic theories (Bogoliubov-
de Gennes, Gor’kov, Usadel, or Eilenberger equations). In
microscopic formalisms, one usually has to make clever
approximations and make compromises in the calculation
procedure. As a consequence, even though these approaches
are valid in the whole temperature range from absolute zero to
Tc, they are limited to the simple systems such as a single vortex
or other highly symmetric or effectively one-dimensional
cases. On the contrary, the Ginzburg-Landau equations have
a much simpler structure and therefore allow for studying
of highly nontrivial situations such as vortex lattice statics
and dynamics, current-driven systems, and interaction with
pinning and fluxonic devices. Since the above is well estab-
lished in the standard GL formalism, we emphasize here that
the calculations become only a fraction more complicated
in the extended Ginzburg-Landau formalism—while it does
contain more equations (for the order parameters to the leading
and next-to-leading order), the coupling of the equations for
different order parameters is realized through the coefficients
and not the calculated variables—contrary to the standard set
of two-band GL equations.12,13

Finally, the present paper and its conclusions are relevant
not only to bulk multiband materials, but also to nanoscale su-
perconductors, e.g., single-crystalline metallic nanofilms,14–17

and also pancake-shaped superfluid Fermi gases in optical
traps,18 where the multiband structure appears due to quantum
confinement. The key mechanism there is the formation of
discrete single-particle energy levels for the motion in the
strongly confined direction (while motion is quasifree in the
other directions).

II. THEORETICAL FORMALISM

Following Ref. 9, we employ the extended GL formalism
for the order parameters �j evaluated up to order τ 3/2 by
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taking �j (x) = �
(0)
j (x) + �

(1)
j (x), where �

(0)
j (x) ∝ τ 1/2 and

�
(1)
j (x) ∝ τ 3/2, with j = 1,2 indexing two coupled conden-

sates in a two-band superconductor. In the absence of applied
magnetic field, the order parameters can be taken real. The
extended GL equations then read (at zero magnetic field)
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where α = −N (0)τ (n1A2 + n2A1)/λ12,K = N (0) h̄2W 2
3

(n1v
2
1A2 + n2v

2
2A1)/(6λ12),β1(2) = N (0)W 2

3 (n1(2)A2(1)/λ12 +
n2(1)A3

1(2)/λ
3
12), with A1 = λ22 − ηn1A and A2 = λ11 −

ηn2A. Here A = ln(2e
h̄ωD/πTc), with Euler constant

 = 0.577 and ωD the Debye frequency, and η denotes
the determinant of the interaction matrix λij = N (0)gij ,
with gij the coupling constant, N (0) the total density of
states (DOS), and njN (0) the band-dependent DOS. In
addition, the coefficients feature Fermi velocities vj of
both bands, W 2

3 = 7ζ (3)
8π2T 2

c
, with ζ (· · ·) the Riemann zeta

function, and terms F and Fj which are given in complete
form in Ref. 9. Since Eq. (1a) is completely equivalent to
the single-gap GL equation and the bands share the same
critical temperature Tc, we have either both bands normal
or both bands superconducting. In the first case, Eq. (1b)
allows only �

(1)
j = 0 as a solution and thus superconductivity

cannot be restored by corrections in the extended GL model.
In the following we will consider that both bands are
superconducting and their bulk amplitudes Wj = √−α/βj

are real. We rescale the equations using �
(k)
j = Wj�̃

(k)
j and

x = ξ x̃, where ξ = √−K/α is the length unit common for
both condensates, and obtain (tildes omitted)
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The first equation is the same for both bands, while the
second one differs through the terms on the right-hand side.
This is exactly the cause for the emergence of two different
characteristic lengths in the two bands. From Eq. (2) it is
also directly apparent why this does not happen in the order
parameters of order τ 1/2, i.e., in Eq. (2a), but only in the
higher-order considerations as in Eq. (2b). To evaluate the
coefficients entering Eq. (2), one needs in principle to specify
the coupling constants λ11, λ22, and λ12, the partial density of
states in one band, e.g., n1 (since n1 + n2 = 1 this determines
n2 as well), and the ratio of the Fermi velocities v1/v2. All
other parameters enter units of scaling, and therefore have no
impact on any physical effects.

III. THE GINZBURG-LANDAU DOMAIN

Before discussing the numerical results of Eq. (2), it is very
important to get a feeling about the relevant values of τ , i.e., the
domain of applicability of the extended GL model. First of all,
our analysis shows that τ�

(0)
j ∼ �

(1)
j . Then, by construction,

�
(0)
j > �

(1)
j and the trivial inequality τ < 1 holds. However,

this is a necessary but not sufficient condition justifying
Eq. (2), as one also needs to keep in mind the justification
for the use of the gradient expansion in the derivation of
Eq. (2). This expansion requires the GL coherence length
ξ to be larger than the band-dependent correlation length
ζj = h̄vj /(2πT ) that controls the spatial variations of the
relevant kernels in the integral expansion of the anomalous
(Gor’kov) Green’s function in powers of the band-dependent
order parameters (in the clean limit), i.e.,

ζ1,ζ2 < ξ. (3)

It is important to note here that for a two-band superconductor
ζj is not necessarily close to the band-dependent generalization
of the Pippard length, i.e., h̄vj /(π�j )|T =0, often used as an
estimate of the coherence lengths of two bands.2,11 Using
definitions of α, K , and βj , we obtain from Eq. (3) the
following estimate for the GL domain τ � τ ∗ with

τ ∗

(1 − τ ∗)2
= 1 + v2

1

/
v2

2 − 1

1 + n2A1/(n1A2)
(v1 < v2). (4)

If v1 � v2, the replacement 1 ↔ 2 should be made. Equa-
tion (4) shows that the extent of the Ginzburg-Landau domain
for specific multigap superconductor depends on its material
parameters, as was first pointed out in Ref. 4. Equation (4)
is most sensitive to the ratio of the Fermi velocities v1/v2.
In particular, when v1/v2 = 1, the above inequality simply
implies τ � 0.38, i.e., the same as in the one-band case,
regardless of the particular values of the other parameters,
i.e., n2/n1 and A2/A1 (where A2/A1 = [�(0)

1 /�
(0)
2 ]2). For

n1 ≈ n2 and A1 ≈ A2, we typically obtain 0.27 < τ ∗ < 0.38,
thus the temperature domain of GL theory is still very large.
The GL domain shrinks significantly only when the ratio
n2A1/(n1A2) acquires either extremely large or very small
values, which, e.g., can occur when the two energy gaps differ
more than an order of magnitude and at the same time v1 is very
different from v2. For example, for the magnesium diboride
parameters (as elaborated further below) one finds from Eq. (4)
τ ∗ = 0.08–0.32 depending on the relevant ratio of the Fermi
velocities, i.e., on the direction considered, because the σ band
of magnesium diboride is highly anisotropic. The threshold
temperature for the applicability of the GL theory (τ ∗) for a
broader range of parameters (i.e., other materials) is plotted in
Fig. 1.

IV. DIFFERENT LENGTH SCALES IN SELECTED
BORIDES, PNICTIDES, AND NANOTHIN LEAD FILMS

To evaluate and compare the spatial distribution of the two
order parameters in a two-band superconductor, we study
the simple case of a superconductor/normal metal (S/N)
interface in the absence of any applied magnetic field. It then
suffices to consider the one-dimensional version of Eq. (2),
along the x axis perpendicular to the S/N interface. The
appropriate boundary conditions are �

(k=0,1)
j (x = 0) = 0, and

∇�
(k)
j (x → ∞) = 0, where thus x = 0 lies at the interface,

with superconductivity fully suppressed there. The second
boundary condition ensures unperturbed two-gap supercon-
ductivity away from the S/N interface. In Fig. 2(a) we show
the results for �j (x) in MgB2 (normalized to bulk values, at

064522-2



DIFFERENT LENGTH SCALES FOR ORDER PARAMETERS . . . PHYSICAL REVIEW B 84, 064522 (2011)

FIG. 1. (Color online) The estimated temperature range τ < τ ∗

of the validity of the GL theory based on Eq. (4). The gradient
expansion made in the derivation of the GL equations (both standard
and extended) is fully justified below the plotted three-dimensional
surface.

temperature T = 0.95Tc, and with other parameters taken from
Refs. 11 and 19), obtained within standard,12 extended,9 and
reduced2 GL formalism. In the case of MgB2, the extended GL
model clearly gives two length scales for two order parameters
�j=1,2, smaller than those obtained in the standard GL theory
(with incomplete higher-order terms).

For correct comparison one must define a measure for
the spatial variations of �j . From the numerical solution of

FIG. 2. (Color online) (a) The spatial profile of the order
parameters at the S/N interface at T = 0.95Tc, for microscopic param-
eters of MgB2 [ξ1/ξ2 = v1/v2 = 0.255 (Ref. 11); λ11 = 1.88,λ22 =
0.5,λ12 = 0.21, n1 = 0.43 (Ref. 19)], compared in three versions of
the two-band GL theory. The ratio of the healing lengths of the two
coupled condensates ξ1/ξ2 calculated in extended GL theory [with
ξ1,2 determined as illustrated in (b)] is shown in (c) as a function of
temperature for fixed v1/v2 = 0.255, and in (d) as a function of the
ratio v1/v2 at T = 0.95Tc.

Eq. (2a) we found that at the characteristic distance ξ the
single-gap-like order parameter �

(0)
j increases from zero to

0.6089 of its bulk value. Therefore, we define the healing
lengths ξj for the two condensates in a two-gap superconductor
using the criterion �j (ξj ) ≡ 0.6089�j0, where �j0 is the bulk
value of �j , as depicted in Fig. 2(b). The difference between
the characteristic length scales in two bands is clear already
from their definition in Fig. 2(b), but we emphasize this point
in Figs. 2(c) and 2(d), where the ratio of the healing lengths of
the two order parameters is plotted as a function of temperature
[Fig. 2(c)] and ratio of Fermi velocities v1/v2 [Fig. 2(d)]. At
the lowest temperature shown in Fig. 2(c), T = 0.92Tc, the
disparity between the healing lengths is already over 25%, and
the difference increases as the ratio of the Fermi velocities is
taken smaller [see Fig. 2(d)].

In the analysis of the above phenomenon we noticed that
only the coefficient S in front of the term ∇2�

(0)
j in F (�(0)

j )
depends both on τ and v1/v2:

S = h̄2N (0)W 2
3 τ

6λ12

∑
j=1,2

v2
j [2njλjj − ηn1n2(1 + 2A)]. (5)

Due to this special form, for particular values of nj and λij the
term in brackets can be positive for one band, but negative for
the other. In such a case it is possible to change the sign of S

term by varying the ratio of the Fermi velocities v1/v2 around
its threshold value(

v1

v2

)∗
=

(
−2n2λ22 − ηn1n2(1 + 2A)

2n1λ11 − ηn1n2(1 + 2A)

)1/2

, (6)

which equals 0.46 for the parameters of Fig. 2. Therefore, two
cases with v1/v2 significantly larger and smaller than 0.46 will
show very different behavior with respect to the disparity of
the healing lengths of the two condensates, as is visible in
Fig. 2(d). For v1/v2 ≈ 0.46, the term with coefficient S has no
influence and other terms determine the spatial behavior of the
order parameters.

Besides the difference in the healing lengths of the two
condensates, the extended GL model provides insight also
in a more accurate temperature dependence of the order
parameters. Namely, standard GL theory leaves one with
simply � ∝ τ 1/2, which is shown in Fig. 3 to be clearly
inadequate for our calculations. Specifically, in Fig. 3 we show
two healing lengths as a function of temperature, both already
normalized to the temperature-dependent length ξ ∝ τ−1/2.
It is directly obvious that we are left with a nonconstant
value, and we fitted the general temperature dependence of the
residue to a quadratic form ξj /ξ = 1 + Aτ + Bτ 2, as shown
in Fig. 3. Note that the accurate fitting of our data requires a
quadratic function, although the terms of order O(τ 2) are not
included in the extended GL theory. Therefore, the obtained
coefficient B should be taken with reservations.

In what follows, we extend our analysis to materials other
than MgB2. We first address the recently discovered iron-
pnictides, more specifically LiFeAs. Interestingly enough,
several existing experimental works on this material provide
us with radically different microscopic parameters obtained
from the fit of the superfluid density data in the self-consistent
γ model20,21 and from two-band fitting of the upper critical
field.22,23 In Fig. 4(a), we show the GL-calculated ratio of the
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FIG. 3. (Color online) The healing lengths ξ1 (empty rhombuses)
and ξ2 (solid circles) of the two order parameters in MgB2 [Fig. 2(a)]
scaled to the standard GL length scale ξ as a function of temperature.
The solid (dashed) line shows the fitting function of ξ1/ξ (ξ2/ξ ).

healing lengths of two bands in LiFeAs, for the parameters
taken from latter two references. Although different, both
curves in Fig. 4 clearly show a discrepancy between the healing
lengths, up to 20% at temperatures above 0.8Tc.

Specific bulk superconductors are not the only possible
multiband system. As already mentioned in the Introduction,
other interesting examples are single-crystalline superconduct-
ing nanofilms and quasi-1D and 2D optically trapped fermionic
condensates. An advantage of such multiband systems is that
the band Fermi velocities can be widely tailored here by simply
changing the quantum-confinement dimensions (through a
change in the energetic positions of the discrete levels—see
details in Ref. 24). In particular, the Pb(111) nanofilms
with thickness four and five monolayers (ML) are two-band
superconductors due to the presence of only two perpendicular
single-electron levels below the Fermi energy.16 In this case,
the ratio of the band Fermi velocities can be estimated on
the basis of the available tunneling data in Ref. 16, i.e., the
energetic positions of single-electron levels. This results in
v1/v2 ≈ 3 or v1/v2 ≈ 2.5 for 4 and 5 ML, respectively (when
assuming the parabolic band approximation for each band with
the same band mass). In addition, we have the constraint

FIG. 4. (Color online) The temperature dependence of the ratio
of the healing lengths ξ1/ξ2 in LiFeAs, for parameters from Ref. 21
(solid squares) and Ref. 22 (empty circles).

FIG. 5. (Color online) The temperature dependence of the ratio of
the healing lengths ξ1/ξ2 in 4- (open squares) and 5-ML-thick (solid
circles) Pb(111) nanofilms.

λ11 = λ22 = 1.5λ12, the ratio between the interband and
intraband coupling which is typical for the film geometry.25,26

The thickness-dependent Tc can then be taken to adjust λ11,
which is expected to be close to its bulk value 0.39. For
the band-dependent dimensionless DOS it is reasonable to
take n1 = n2, which follows from the well-known expression
for the two-dimensional DOS. We inserted such estimated
parameters in the extended GL formalism, and again obtained
a nonzero difference between the spatial scales of the two
order parameters (∼5%), as shown in Fig. 5. Here, contrary
to the case of MgB2, both healing lengths decrease with
respect to the standard GL ξ , and therefore the ratio ξ1/ξ2

is smaller than in MgB2. However, since in quantum confined
systems, either nanofilms or pancake fermionic condensates,
the exact position of the bands with respect to the Fermi level
(and therefore the v1/v2 ratio) can be tuned the discrepancy
between the corresponding healing lengths can be further
enlarged.

V. CONCLUSIONS

To summarize, we demonstrated on examples of sev-
eral relevant superconducting materials that characteristic
length scales of coupled condensates in two- or multiband
samples are in general different from each other in the
domain of the extended Ginzburg-Landau theory. Although
we do not show it explicitly, we mention here again
that the extended model is not more complicated than its
standard predecessor—it does contain more equations, but
the coupling of those equations is realized in a computa-
tionally friendly manner. This makes our model an excel-
lent tool for further studies of two-band systems, where
one expects a plethora of unique physical effects emerg-
ing from the competition of different characteristic length
scales.
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