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Relaxation and frequency shifts induced by quasiparticles in superconducting qubits
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As low-loss nonlinear elements, Josephson junctions are the building blocks of superconducting qubits. The
interaction of the qubit degree of freedom with the quasiparticles tunneling through the junction represents an
intrinsic relaxation mechanism. We develop a general theory for the qubit decay rate induced by quasiparticles,
and we study its dependence on the magnetic flux used to tune the qubit properties in devices such as the phase
and flux qubits, the split transmon, and the fluxonium. Our estimates for the decay rate apply to both thermal
equilibrium and nonequilibrium quasiparticles. We propose measuring the rate in a split transmon to obtain
information on the possible nonequilibrium quasiparticle distribution. We also derive expressions for the shift in
qubit frequency in the presence of quasiparticles.
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I. INTRODUCTION

The operability of a quantum device as a qubit requires long
coherence times in comparison to the gate operation time.1

Over the years, longer coherence times in superconducting
qubits have been achieved by designing new systems in
which the decoupling of the quantum oscillations of the
order parameter from other low-energy degrees of freedom
is enhanced. For example, in a transmon qubit,2 the sensitivity
to background charge noise is suppressed relative to that
of a Cooper-pair box. Irrespective of the particular design,
in any superconducting device, the qubit degree of freedom
can exchange energy with quasiparticles. This intrinsic re-
laxation mechanism is suppressed in thermal equilibrium at
temperatures much lower than the critical temperature, due
to the exponential depletion of the quasiparticle population.
However, both in superconducting qubits3 and resonators,4

nonequilibrium quasiparticles have been observed, which can
lead to relaxation even at low temperatures. In this paper,
we study the quasiparticle relaxation mechanism in qubits
based on Josephson junctions, both for equilibrium and
nonequilibrium quasiparticles.

Quasiparticle relaxation in a Cooper-pair box was con-
sidered in Ref. 5. In this system, the charging energy is
large compared to the Josephson energy and quasiparticle
poisoning6,7 is the elementary process of relaxation: a quasi-
particle entering the Cooper-pair box changes the parity (even
or odd) of the state, bringing the qubit out of the computational
space consisting of two charge states of the same parity. More
recently, the theory of5 was extended to estimate the effect of
quasiparticles in a transmon.2 In this case, the dominant energy
scale is the Josephson energy, so that quantum fluctuations
of the phase are relatively small, while the uncertainty of
charge in the qubit states is significant. As mentioned above,
the advantage of the transmon is its low sensitivity to charge
noise. The possible role of nonequilibrium quasiparticles in
superconducting qubits was investigated in Ref. 3. While the
properties of many superconducting qubits, e.g., the phase
and flux qubits,8 the split transmon, and the newly developed
fluxonium,9 can be tuned by an external magnetic flux, the
effect of the latter on the quasiparticle relaxation rate has not
been previously analyzed. Elucidating the role of flux is the
main goal of this work. In particular, we show that studying the

flux dependence of the relaxation rate can provide information
on the presence of nonequilibrium quasiparticles.

The paper is organized as follows: In the next section, we
present results for the admittance of a Josephson junction
and the general approach to calculate the decay rate and
energy level shifts due to quasiparticles in a qubit with a
single Josephson junction. In Sec. III, we consider a weakly
anharmonic qubit, such as phase qubit or transmon, and
relate its decay rate, quality factor, and frequency shift to
the admittance of the junction. The cases of a Cooper-pair
box (large charging energy) and of a flux qubit with large
Josephson energy are examined in Sec. IV. Some of the results
presented in Secs. II–IV have been reported previously10 in
a brief format. In Sec. V, we describe the generalization to
multijunction systems and study, as concrete examples, the
two-junction split transmon and the many-junction fluxonium.
We summarize the present work in Sec. VI. Throughout the
paper, we use units h̄ = kB = 1 (except otherwise noted).

II. GENERAL THEORY FOR A SINGLE-JUNCTION QUBIT

We consider a Josephson junction closed by an inductive
loop (see Fig. 1). The low-energy effective Hamiltonian of the
system can be separated into three parts

Ĥ = Ĥϕ + Ĥqp + ĤT . (1)

The first term determines the dynamics of the phase degree of
freedom in the absence of quasiparticles:

Ĥϕ = 4EC(N̂ − ng)2 − EJ cos ϕ̂ + 1
2EL(ϕ̂ − 2π�e/�0)2 ,

(2)

where N̂ = −id/dϕ is the number operator of Cooper pairs
passed across the junction, ng is the dimensionless gate
voltage, �e is the external flux threading the loop, �0 = h/2e

is the flux quantum, and the parameters characterizing the
qubit are the charging energy EC , the Josephson energy EJ ,
and the inductive energy EL.

The second term in Eq. (1) is the sum of the BCS
Hamiltonians for quasiparticles in the leads

Ĥqp =
∑

j=L,R

Ĥ j
qp, Ĥ j

qp =
∑
n,σ

εj
n α̂j†

nσ α̂j
nσ , (3)
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FIG. 1. (a) Schematic representation of a qubit controlled by
a magnetic flux [see Eq. (2)]. (b) Effective circuit diagram with
three parallel elements, capacitor, Josephson junction, and inductor,
characterized by their respective admittances.

where α̂
j
nσ (α̂j†

nσ ) are quasiparticle annihilation (creation)
operators and σ =↑ ,↓ accounts for spin. The quasiparticle

energies are ε
j
n =

√
(ξ j

n )2 + (	j )2, with ξ
j
n and 	j being the

single-particle energy level n in the normal state of lead j and
the gap parameter in that lead, respectively. The occupations
of the quasiparticle states are described by the distribution
functions

f j
(
ξ j
n

) = 〈〈
α̂

j†
n↑α̂

j

n↑
〉〉

qp = 〈〈
α̂

j†
n↓α̂

j

n↓
〉〉

qp, j = L,R (4)

assumed to be independent of spin; double angular brack-
ets 〈〈. . .〉〉qp denote averaging over the quasiparticle states.
Hereinafter, we assume for simplicity equal gaps in the leads
	L = 	R ≡ 	.

The last term in Eq. (1) describes quasiparticle tunneling
across the junction and couples the phase and quasiparticle
degrees of freedom

ĤT = t̃
∑
n,m,σ

(
ei

ϕ̂

2 uL
n uR

m − e−i
ϕ̂

2 vR
mvL

n

)
α̂L†

nσ α̂R
mσ + H.c. (5)

The electron tunneling amplitude t in this equation determines
the junction conductance gT = 4πe2νLνRt̃2 in the tunneling
limit t̃ � 1, which we are considering. From now on, we
assume identical densities of states per spin direction in the
leads νL =νR =ν0. The Bogoliubov amplitudes u

j
n, v

j
n can

be taken real, since Eq. (5) already accounts explicitly for the
phases of the order parameters in the leads via the gauge-
invariant phase difference11 in the exponentials. Accounting
for the Josephson effect and quasiparticles dynamics by
Eqs. (2)–(5) is possible as long as the qubit energy ω and
characteristic energy δE of quasiparticles (as determined by
their distribution function and measured from 	) are small
compared to 	 (Ref. 5): ω,δE � 2	. In this low-energy
limit, we may further approximate u

j
m � v

j
n � 1/

√
2. Then,

the operators e±iϕ̂/2 in Eq. (5), which describe transfer of
charge ±e across the junction, combine to give

ĤT = t̃
∑
n,m,σ

i sin
ϕ̂

2
α̂L†

nσ α̂R
mσ + H.c. (6)

Starting from this low-energy tunneling Hamiltonian, in the
next section we calculate the dissipative part of the junction
admittance.

A. Response to a classical time-dependent phase

We consider here the “classical” dissipative response of a
Josephson junction to a small ac bias to show that Eq. (6)
correctly accounts for the known11 junction losses in the low-
energy regime. These “classical” losses are directly related to
the decay rate in the quantum regime, as we explicitly show in
the next section.

We assume a time-dependent bias v(t) = v cos(ωt) of
frequency ω > 0 superimposed to a fixed phase difference
ϕ0. In other words, we take the phase to be a time-dependent
number, which, by the Josephson equation dϕ/dt = 2ev(t),
has the form

ϕ(t) = ϕ0 + 2ev

ω
sin(ωt). (7)

Here, we focus on the linear in v response in the low-energy
regime. Expressions for the current through the junction valid
beyond linear response can be found, for example, in Ref. 11.
Substituting Eq. (7) into Eq. (6), expanding for small v,
and keeping the linear term, we find for the time-dependent
perturbation δĤ (t) causing the dissipation

δĤ (t) = ĤAC sin(ωt),
(8)

ĤAC = it̃ cos
ϕ0

2

ev

ω

∑
n,m,σ

α̂L†
nσ α̂R

mσ + H.c.

The average dissipated power can be calculated using Fermi’s
golden rule: it is given by the product of the transition rate
times the energy change in a transition between quasiparticle
states caused by the perturbation. The energy change in a
transition is ±ω by energy conservation, with the two signs
corresponding to the events giving energy to or taking energy
from the system. The average power P is

P = 2π
∑
{λ}qp

〈〈|〈{λ}qp |ĤAC | {η}qp〉|2ω

× [δ(Eλ,qp − Eη,qp − ω) − δ(Eλ,qp − Eη,qp + ω)]〉〉qp,

(9)

where Eη,qp and Eλ,qp are the total energies of the quasiparti-
cles in their respective initial {η}qp and final {λ}qp states. We
use Eq. (8) to evaluate the matrix element, average over initial
quasiparticle states, and sum over final states to find

P = 1
2 Re YJ (ω,ϕ0)v2 (10)

with12

Re YJ (ω,ϕ0) = 1 + cos ϕ0

2
Re Yqp(ω). (11)

Here, Re Yqp is the real part of the quasiparticle contribution
to the junction admittance at zero phase difference:

Re Yqp(ω) = gT

2	

ω

∫ ∞

0
dx

1√
x
√

x + ω/	
{fE[(1 + x)	]

− fE[(1 + x + ω/	)	]}. (12)

In deriving these formulas, we have approximated the standard
BCS density of states functions as

ε√
ε2 − 	2

,
	√

ε2 − 	2
∼

√
	

2(ε − 	)
≡ 1√

2x
(13)
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and taken equal quasiparticle occupations in the two leads
f L = f R ≡ f . The latter assumption considerably simplifies
the calculations; moreover, it is physically justified in many
devices since the leads are often fabricated with the same
material and deposition technique and, hence, have identical
properties. We indicate with fE the energy mode of the
distribution function

fE(ε) = 1
2 [f (ξ ) + f (−ξ )], (14)

where ε =
√

ξ 2 + 	2. Equation (11) for the real part of the
admittance, valid at ω > 0, agrees with the linear response,
low-energy limit of the nonlinear I -V characteristic presented
in Ref. 11. Extension to ω < 0 is found by noticing that Re Yqp

is an even function of frequency.
In thermal equilibrium and at low temperatures T � 	, the

distribution function can be approximated as

fE(ε) � e−ε/T , (15)

and Eq. (12) gives, at arbitrary ratio ω/T ,

Re Y eq
qp (ω) = gT

2	

ω
e−	/T eω/2T K0

( |ω|
2T

)
[1 − e−ω/T ].

(16)

Here, K0 is the modified Bessel function of the second kind
with asymptotes

K0(x) �
{
e−x

√
π/2x, x � 1

ln 2/x − γE, x � 1
(17)

with γE the Euler gamma.
For a generic distribution function, we can relate Re Yqp

to the density of quasiparticle nqp in the high-frequency
regime ω � δE, where δE indicates the characteristic energy
of quasiparticle (measured from the gap) above which the
occupation of the quasiparticle states can be neglected; in
thermal equilibrium, δE ∼ T . Under the assumption ω � δE,
we obtain from Eq. (12)

Re Yhf
qp (ω) = 1

2
xqp gT

(
2	

|ω|
)3/2

, (18)

where

xqp = nqp

2ν0	
(19)

is the quasiparticle density normalized to the Cooper-pair
density and

nqp = 2
√

2ν0	

∫ ∞

0

dx√
x

fE[(1 + x)	] (20)

is the density written using the approximation in Eq. (13). Note
that in thermal equilibrium at low temperatures [Eq. (15)], we
have

neq
qp = 2ν0

√
2π	T e−	/T . (21)

Then, using Eq. (17), it is easy to check that for T � ω Eq. (16)
takes the form given in Eq. (18).

The real and imaginary parts of the admittance satisfy
the Kramers-Krönig relations. However, when taking the
Kramers-Krönig transform of the real part, a purely inductive
contribution to the imaginary part can be missed. Indeed, at

low energies, the complex junction admittance (obtained from
the expressions in Ref. 11) can be written as

YJ (ω,ϕ) = 1 − 2xA
qp

iωLJ

cos ϕ + Yqp(ω)
1 + cos ϕ

2
, (22)

where

xA
qp = fE(	) (23)

can be interpreted as the population of the Andreev bound
states,13 and the inverse of the Josephson inductance is

1

LJ

= gT π	qp (24)

[the subscript qp in 	qp is used to indicate that in this
expression it may be necessary to account for the effect of
quasiparticles on the gap (see Secs. II C and III B)].

Unlike the Andreev states, free quasiparticles contribute to
both dissipative and nondissipative parts of the total admittance
YJ via the complex term Yqp. The real part of the quasiparticle
admittance is defined in Eq. (12), while its imaginary part is
given by the Kramers-Krönig transform of that expression:

Im Yqp(ω) = −gT

2	

ω

P

π

∫ ∞

0

dx√
x

∫ ∞

0

dy√
y

{fE[(1 + x)	]

−fE[(1 + y)	]}
[

1

x − y + ω/	
− 1

x − y

]
,

(25)

where P denotes the principal part and ω > 0. Using that
Im Yqp is an odd function of frequency, we can simplify the
above expression to a form with a single rather than double
integral:

Im Yqp(ω) = gT

2	

ω

[∫ |ω|/	

0
dx

fE [(1 + x)	]√
x
√|ω|/	 − x

− πxA
qp

]
.

(26)

As discussed above for the real part, an analytic expression for
Im Yqp can be obtained in thermal equilibrium,

Im Y eq
qp (ω) = −gT

2	

ω
e−	/T π

[
1 − e−|ω|/2T I0

( |ω|
2T

)]
.

(27)

Here, I0 is the modified Bessel function of the first kind with
asymptotes

I0(x) �
{
ex

√
1/2πx, x � 1

1 + x2/4, x � 1.
(28)

For arbitrary distribution functions satisfying the high-
frequency condition ω � δE, we find

Im Yhf
qp (ω) = 1

2
gT

2	

ω

[
xqp

√
2	

|ω| − 2πxA
qp

]
. (29)

Using Eq. (21) and the large-x limit in Eq. (28), it is easy
to show that, for T � ω, Eq. (27) reduces to the general
expression in Eq. (29). In the high-frequency regime, real
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and imaginary parts of the quasiparticle admittance can be
combined into the complex admittance

Yhf
qp (ω) = − 2

iωLJ

[
xqp

π

√
	

iω
− xA

qp

]
. (30)

By substituting Eq. (30) into Eq. (22), we find that, in the total
admittance YJ , the coefficient multiplying xA

qp is proportional
to (1 − cos ϕ) and vanishes for ϕ = 0. This is in agreement
with the absence of Andreev bound states when there is no
phase difference across the junction.

B. Transition rates

The effects of the interaction between quasiparticles and
qubit degrees of freedom Eq. (5) can be treated perturbatively
in the tunneling amplitude t̃ . The interaction makes possible,
for example, a transition between two qubit states (initial |i〉
and final |f 〉, differing in energy by amount ωif > 0) by
exciting a quasiparticle during a tunneling event. The rate
for the transition between qubit states can be calculated using
Fermi’s golden rule

�i→f = 2π
∑
{λ}qp

〈〈|〈f,{λ}qp|ĤT |i,{η}qp〉|2

× δ(Eλ,qp − Eη,qp − ωif )〉〉qp. (31)

We remind that in our notation Eη,qp (Eλ,qp) is the total energy
of the quasiparticles in their initial (final) state {η}qp ({λ}qp),
and double angular brackets 〈〈· · · 〉〉qp denote averaging over
the initial quasiparticle states, the occupation of which is
determined by the distribution function.

In the low-energy regime we are considering, the transition
rate factorizes into terms accounting separately for qubit
dynamic and quasiparticle kinetics

�i→f =
∣∣∣∣〈f | sin

ϕ̂

2
|i〉

∣∣∣∣
2

Sqp(ωif ). (32)

Equation (32) is one of the main results of this work: it shows
that the qubit properties affect the transition rate via the wave
functions |i〉 and |f 〉 entering the matrix element, while the
quasiparticle kinetics is accounted for by the quasiparticle
current spectral density Sqp:

Sqp(ω) = 16EJ

π

∫ ∞

0
dx

1√
x
√

x + ω/	
(fE[(1 + x)	]

×{1 − fE [(1 + x)	 + ω]}), (33)

where ω > 0 and we used the relation

EJ = gT 	/8gK (34)

with gK = e2/2π the conductance quantum. The expression
for Sqp at ω < 0 is obtained by the replacements x → x −
ω/	, ω → −ω in the integrand in Eq. (33).

The spectral density Sqp depends on the detail of the distri-
bution functions. In thermal equilibrium at low temperatures
T � 	, by using Eq. (15), we find

Seq
qp (ω) = 16EJ

π
e−	/T eω/2T K0

( |ω|
2T

)
. (35)

Note that the equality

S
eq
qp (−ω)

S
eq
qp (ω)

= e−ω/T (36)

implies that, in thermal equilibrium, the transition rates are
related by detailed balance

�f →i

�i→f

= e−ωif /T . (37)

The similarity between Eq. (35) for Sqp and Eq. (16) for
Re Yqp is not accidental. In thermal equilibrium, the following
fluctuation-dissipation relation holds:

Seq
qp (ω) + Seq

qp (−ω) = ω

π

1

gK

Re Y eq
qp (ω) coth

(
ω

2T

)
. (38)

Moreover, in the low-energy regime for an arbitrary distribu-
tion function, the two quantities are also related by

Sqp(ω) − Sqp(−ω) = ω

π

1

gK

Re Yqp(ω). (39)

In the high-frequency regime ω � δE, we can simplify the
above relation to

Shf
qp (ω) = ω

π

1

gK

Re Yhf
qp (ω). (40)

For the transition rates, this corresponds to neglecting the
downward transitions with ωif < 0, in which a quasiparticle
loses energy to the qubit, compared to the upward ones. This
is a good approximation since the assumption ω � δE means
that there are no quasiparticles with energy high enough to
excite the qubit. Equation (40) can be checked by comparing
Eq. (18) to

Shf
qp (ω) = xqp

8EJ

π

√
2	

ω
(41)

with EJ given in Eq. (34) and the normalized quasiparticle
density xqp in Eq. (19).

C. Energy-level corrections

In addition to causing transitions between qubit levels,
the quasiparticles affect the energy Ei of each level i of the
system. We can distinguish two quasiparticle mechanisms that
modify the qubit spectrum and, hence, separate two terms in
the correction δEi to the energy

δEi = δEi,EJ
+ δEi,qp. (42)

First, in the presence of quasiparticles, the Josephson energy
takes the form

EJ,qp = gT

8gK

	qp
(
1 − 2xA

qp

)
(43)

with xA
qp defined in Eq. (23). As mentioned after Eq. (24), we

use 	qp to distinguish the self-consistent gap in the presence of
quasiparticles from the gap 	 when there are no quasiparticles.
At leading order in the quasiparticle density, we have

	qp � 	(1 − xqp). (44)
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By treating these modifications to the Josephson energy as
perturbations, the correction to the energy of level i is

δEi,EJ
= EJ

(
xqp + 2xA

qp

)〈i| cos ϕ̂|i〉. (45)

Second, the virtual transitions between the qubit levels
mediated by quasiparticle tunneling cause a correction that
can be expressed in terms of the matrix elements of sin ϕ̂/2 as

δEi,qp =
∑
k �=i

∣∣∣∣〈k| sin
ϕ̂

2
|i〉

∣∣∣∣
2

Fqp (ωik) , (46)

where

ωik = Ek − Ei. (47)

The derivation of the above formulas and the definition of
function Fqp in terms of the quasiparticle distribution function
[Eq. (A19)] are given in Appendix A. Here, we give the
relation between Fqp and the imaginary part of the quasiparticle
impedance,

Fqp(ω) + Fqp(−ω) = − ω

2π

1

gK

Im Yqp(ω), (48)

which we will use in the next section to obtain the
quasiparticle-induced change in the qubit frequency.

III. SINGLE JUNCTION: WEAKLY ANHARMONIC QUBIT

As an application of the general approach described in
the preceding section, we consider here a weakly anharmonic
qubit, such as the transmon and phase qubits. We start with
the semiclassical limit, i.e., we assume that the potential
energy terms in Eq. (2) dominate the kinetic energy term
proportional to EC . This limit already reveals a nontrivial
dependence of relaxation on flux. Note that, assuming EL �= 0,
we can eliminate ng in Eq. (2) by a gauge transformation.14

In the transmon, we have EL = 0 and the spectrum depends
on ng , displaying both well-separated and nearly degenerate
states (see Fig. 2). The results of this section can be
applied to the single-junction transmon when considering
well-separated states. The transition rate between these states
and the corresponding frequency shift is dependent on ng .
However, since EC � EJ , this dependence introduces only
small corrections to �n→n−1 and δω; the corrections are
exponential in −√

8EJ /EC . By contrast, the leading term in
the rate of transitions �e↔o between the even and odd states
is exponentially small. The rate �e↔o of parity switching is
discussed in detail in Appendix C.

The potential energy in Eq. (2) is extremized at phase ϕ0

satisfying

EJ sin ϕ0 + EL (ϕ0 − 2π�e/�0) = 0. (49)

For EJ < EL, there is only one solution at the global
minimum. For EJ > EL, however, there can be multiple
minima; their number depends both on the ratio EJ /EL and
the external flux �e. Here, we assume that the flux is such that
distinct minima are not degenerate; in particular, this means
that the flux is tuned away from odd-integer multiples of half
the flux quantum.15 For the transmon with EL = 0, we can take

ω p

o e
1

1 0

0.0 0.2 0.4 0.6 0.8 1.0
ng

FIG. 2. Schematic representation of the transmon low-energy
spectrum as a function of the dimensionless gate voltage ng . Solid
(dashed) lines denote even (odd) states (see also Sec. IV A). The
amplitudes of the oscillations of the energy levels are exponentially
small (Ref. 2) (see Appendix B); here, they are enhanced for clarity.
Quasiparticle tunneling changes the parity of the qubit sate. The
results of Sec. III are valid for transitions between states separated by
energy of the order of the plasma frequency ωp [Eq. (56)] and give,
for example, the rate �1→0. For the transition rates between nearly
degenerate states of opposite parity, such as �(1)

o→e, see Appendix C.

ϕ0 = 0 as a solution to Eq. (49). Next, we expand the potential
energy around a minimum and find, at quadratic order,

Ĥ (2)
ϕ = 4ECn̂2 + 1

2 (EL + EJ cos ϕ0) (ϕ̂ − ϕ0)2 . (50)

Fluctuations of the phase around ϕ0 are small under the
assumption

n
EC

ω10
� 1, (51)

where n denotes the energy level and

ω10 =
√

8EC (EL + EJ cos ϕ0) (52)

is the qubit frequency in the harmonic approximation. Note that
anharmonicity and quality factor Q determine the operability
of the system as a qubit.8 The anharmonic correction to the
transition frequencies can be calculated by considering the
effect on the spectrum of the next order in the expansion around
ϕ0 (cubic for the phase qubit, quartic for the transmon), which
defines an anharmonic potential well of finite depth U . Then,
the operability condition can be expressed as Q/nw � 1,
where nw is the number of states in the potential well
nw ∼ U/ω10.16 In a weakly anharmonic system, nw can be
large; however, if the quality factor is larger, the system can be
used as a qubit despite the weak anharmonicity, as it is indeed
the case for the transmon.2

The condition for small phase fluctuations in Eq. (51)
enables us to calculate the matrix element of operator sin ϕ̂/2
by expanding around ϕ0 up to the second order and using
standard expressions for the matrix elements of the posi-
tion operator between eigenstates |n〉, |m〉 of the harmonic
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oscillator [cf. Eq. (50)]. To first order in EC/ω10, we find (see
also Appendix D)∣∣∣∣〈m| sin

ϕ̂

2
|n〉

∣∣∣∣
2

= δm,n

[
1 − 2

EC

ω10

(
n + 1

2

)]
1 − cos ϕ0

2

+ EC

ω10
[nδm,n−1 + (n + 1) δm,n+1]

1 + cos ϕ0

2
. (53)

Note that, in the first term on the right-hand side, the
corrections due to the nonlinearity of sine (the second term
inside the square brackets) are indeed small if condition (51)
is satisfied. In addition, we have neglected here the anharmonic
corrections to the states used to calculate the matrix element;
this is a good approximation for low-lying levels n � nw.17

For the transmon (ϕ0 = 0), the leading term in Eq. (53) is
of linear order in EC/ω10 � 1; as we show in Appendix E,
by including the first anharmonic correction to the states, the
next nonvanishing term in the square of the transmon matrix
element is cubic in EC/ω10, rather than quadratic as for the
harmonic oscillator. Therefore, in the case of the transmon,
keeping only the leading term is a better approximation than
naively expected.

Equation (53) shows that at leading order we can restrict
our attention to transitions involving only neighboring levels.
Concentrating here on low-lying levels, using Eqs. (32), (39),
and (53), we find the following relation between transition rate
and impedance:

�n→n−1 − �n−1→n = n

C
Re Yqp(ω10)

1 + cos ϕ0

2
, (54)

where we also used EC = e2/2C. In the high-frequency
regime, the upward transition rate can be neglected, �n−1→n �
0, and the above expression simplifies to19 [see also Eq. (40)
and the text that follows it]

�n→n−1 = n

C
Re Yhf

qp (ω10)
1 + cos ϕ0

2

= n
ω2

p

ω10

xqp

2π

√
2	

ω10
(1 + cos ϕ0) . (55)

In the last expression, we used Eq. (18) and introduced the
plasma frequency

ωp =
√

8ECEJ . (56)

The above equation can also be obtained by substituting
directly Eq. (40) into Eq. (32). For n = 1 and ϕ0 = 0, Eq. (55)
reduces to the transition rate presented in Ref. 3.

The transition rate in Eq. (55) is proportional to the (possi-
bly nonequilibrium) quasiparticle density xqp and depends on
the external flux �e via ϕ0 and ω10 [see Eqs. (49) and (52)].
The flux dependence is, in general, sensitive to the states
involved in the transition. This sensitivity can already be
seen for transitions between harmonic-oscillator states: due
to the nonlinear interaction between phase and quasiparticles
[see Eq. (6)], transitions between distant levels are possible.
These transitions are suppressed by the smallness of phase

fluctuations when EC/ω10 � 1. For example, the rate for the
2 → 0 transition is

�2→0 = 2ω10

π

1

gK

Re Yhf
qp (2ω10)

(
EC

ω10

)2 1 − cos ϕ0

4
. (57)

Note that, in contrast to Eqs. (55) and (57) can not be written
in terms of the real part of the total admittance of the junction:
While in Eq. (55) the phase enters via the factor (1 + cos ϕ0) as
in Eq. (11), in Eq. (57), Re Yqp is multiplied by (1 − cos ϕ0). To
obtain �2→0, we substituted into Eq. (32) the high-frequency
relation (40), while the explicit form of the squared matrix
element |〈0| sin(ϕ̂/2)|2〉|2 is found by setting n = 2, and
keeping the leading term in EC/ω10 in the formula∣∣∣∣〈0| sin

ϕ̂

2
|n〉

∣∣∣∣
2

= e
− EC

ω10

(
EC

ω10

)n 1 − (−1)n cos ϕ0

2n!
(58)

derived in Appendix D. Equation (58) is valid for any ratio
EC/ω10 for transitions between eigenstates of the harmonic
oscillator. When ϕ0 = 0, Eq. (58) gives vanishing matrix
elements for even n: this is an example of the more general
selection rule according to which only transitions between
states of different parity are allowed at ϕ0 = 0.

The rate for transitions between excited states and the
ground state in the case of large phase fluctuations can be
obtained using Eq. (58) when EL � EC and EJ � ωLC =√

8ECEL. The latter condition enables us to neglect the
Josephson energy term in Eq. (2). Then, using Eqs. (32) and
(41) with ωif = nωLC , we find that the transition rate has a
maximum for n = n0 with n0 ≈ EC/ωLC :

�n→0 � ω2
p

EC

xqp

2π

√
2	

EC

[1 − (−1)n cos 2π�e/�0]

× 1√
2πn0

exp

[
− (n − n0)2

2n0

]
. (59)

Here, we have approximated e−yyn/n!
√

n � exp[−(n −
y)2/2y]/

√
2π y; the approximation is valid for y � 1 and

|n − y| �
√

2y. Equation (59) shows that when the charging
energy is the dominant energy scale, dissipation is the strongest
for transitions between states whose energy difference (nωLC)
corresponds to the energy change (EC) caused by the transfer
of a single electron through the barrier, as in the “quasiparticle
poisoning” picture for the Cooper-pair box.5 We stress that, in
the present case, charge is not quantized due to the finite value
of the inductive energy EL.14 We will comment on the relation
between Eq. (59) and the transition rate in the Cooper-pair box
in Sec. IV A.

A. Quality factor

Returning now to the semiclassical regime of small EC ,
Eq. (55) with n = 1 enables us to evaluate, in the high-
frequency regime, the inverse Q factor for the transition
between the qubit states

1

Q10
= �1→0

ω10
= 1

πgK

Re Yhf
qp (ω10)

EC

ω10

1 + cos ϕ0

2
. (60)

We stress that this formula is valid not only in thermal
equilibrium, but also in the presence of nonequilibrium
quasiparticles with characteristic energy δE � ω10. We can
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generalize Eq. (60) to account for the possible coexistence
of nonequilibrium and thermal quasiparticles. We take the
distribution function in the form

fE(ε) = fne(ε) + feq(ε), (61)

where fne is the nonequilibrium contribution, insensitive
to temperature and satisfying the high-frequency condition
ω10 � δE, and feq is the equilibrium distribution of Eq. (15).
Noting that, within our assumption, the two terms in fE

contribute separately to the transition rates and that for the
thermal part we can not in general neglect the “upward”
transitions, using Eqs. (32), (35), (41), and (53), we find

1

Q10
= �1→0 + �0→1

ω10
= 1 + cos ϕ0

2π

ω2
p

ω2
10

[
xne

√
2	

ω10

+ 4e−	/T cosh

(
ω10

2T

)
K0

(
ω10

2T

)]
, (62)

where xne is the normalized nonequilibrium quasiparticle
density [cf. Eq. (19)].

Recently, good agreement between theory Eq. (62) and
experiment has been shown for single-junction transmons
(ϕ0 = 0, ω10 = ωp) in the temperature range 10–210 mK.20

However, while these measurements indicate that thermal
quasiparticles are the main cause of relaxation above ∼
150 mK, one can not conclude that nonequilibrium quasi-
particles are present from the lower temperature data: by
Matthiessen rule, any other relaxation mechanism that is
independent of (or weakly dependent on) temperature would
have the same limiting effect on Q10 as the first term in square
brackets in Eq. (62). As we will discuss in more detail in
Sec. V A, similar measurements on a flux-sensitive device
should enable one to decide on the presence of nonequilibrium
quasiparticles since Eq. (62) [and its analogous for the split
transmon, Eq. (127)] describes the effect of flux on both
equilibrium and nonequilibrium quasiparticle contributions to
Q10, and other sources of relaxation respond differently to the
flux.

B. Frequency shift

A further test of the theory presented in Sec. II is provided
by the measurement of the qubit resonant frequency. In the
semiclassical regime of small EC , the qubit can be described by
the effective circuit of Fig. 1(b), with the junction admittance
YJ of Eq. (22), YC = iωC, and YL = 1/iωL [the inductance
is related to the inductive energy by EL = (�0/2π )2/L]. As
discussed in Ref. 10, for parallel elements, the total admittance
Y is the sum of their admittances

Y = YJ + YC + YL, (63)

and the resonant frequency ωr is the zero of the total admittance
Y (ωr ) = 0. In the absence of quasiparticles, we find ωr = ω10

with ω10 of Eq. (52).
In the presence of quasiparticles, by considering their effect

on the junction admittance at linear order in the quasiparticle
density xqp and Andreev level occupation xA

qp, we obtain

ωr = ω10 + δω (64)

with

δω = i

2C
Yqp(ω10)

1 + cos ϕ0

2
− πgT 	

Cω10
xA

qp cos ϕ0

− πgT 	

2Cω10
xqp cos ϕ0. (65)

The last term in Eq. (65) originates from the gap suppression by
quasiparticles [cf. Eq. (44)]. This term was neglected in Ref. 10
as it is subleading in the high-frequency regime considered
there [see Eq. (73)]. The correction δω has both real and
imaginary parts. The imaginary part coincides10 with half the
dissipation rate in Eq. (55) for the n = 1 → 0 transition. Here,
we show that the real part of δωr obtained in the effective circuit
approach agrees with the quantum mechanical calculation.

Within the harmonic approximation of Eq. (50), the energy
difference ωi between the neighboring levels Ei+1 and Ei ,

ωi ≡ Ei+1 − Ei = ω10, (66)

is of course independent of the level index i. The quasiparticle
corrections to energy levels of Sec. II C cause a correction δωi

to ωi :

δωi = δEi+1 − δEi. (67)

As we show below, at leading order in EC/ω10, this correction
is also independent of level index, i.e, it represents a renormal-
ization of the system resonant frequency.

As in Eq. (42), we separate the contributions due to change
in the Josephson energy and due to quasiparticle tunneling

δωi = δωi,EJ
+ δωi,qp. (68)

For the first term on the right-hand side, we use Eq. (45)
together with the matrix element of cos ϕ̂ at first order in
EC/ω10 [see Eq. (D9)],

〈i| cos ϕ̂|i〉 � cos ϕ0

[
1 − 4EC

ω10

(
i + 1

2

)]
, (69)

to find

δωi,EJ
= −1

2

ω2
p

ω10
cos ϕ0

(
xqp + 2xA

qp

)
. (70)

As discussed in Sec. II C, the term proportional to xqp is due to
the gap suppression in the presence of quasiparticles Eq. (44),
while xA

qp accounts for the occupation of the Andreev bound
states.

For the quasiparticle tunneling term, we substitute Eq. (53)
into Eq. (46) to get

δωi,qp = EC

ω10
[Fqp(ω10) + Fqp(−ω10)]

1 + cos ϕ0

2
. (71)

Finally, using the relation (48) and adding the two terms, we
arrive at

δωi = − 1

2C
Im Yqp(ω10)

1 + cos ϕ0

2

− 1

2

ω2
p

ω10
cos ϕ0

(
xqp + 2xA

qp

)
. (72)

This expression agrees with the real part of Eq. (65). We note
that by extending the above consideration to include the next
order in EC/ω10, anharmonic corrections to the spectrum can
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be calculated. They are dominated by the anharmonicity of
the cosine potential in Eq. (2), with quasiparticles contributing
negligible additional corrections. For the case of the transmon,
the leading anharmonicity can be found in Ref. 2.

In the high-frequency regime, using Eq. (29), the relative
frequency shift is

δωi

ω10
= 1

2

ω2
p

ω2
10

[
xA

qp (1 − cos ϕ0)

− xqp

(
1 + cos ϕ0

2π

√
2	

ω10
+ cos ϕ0

)]
. (73)

Note that, in the limit ω10 � 	, we can neglect the cosine
compared to the term multiplied by the square root inside the
round brackets. However, this cosine term is the appropriate
subleading contribution since the terms neglected in deriving
the energy corrections presented in Sec. II C are suppressed by
ω10/	 with respect to the leading contribution.

In recent experiments with single-junction transmons,20

relative shifts of order 10−5 have been measured at temper-
atures ∼200 mK, in agreement with Eq. (72). Together with
the above-mentioned measurements of the transition rates in
the same devices, this is an additional, independent check of
the validity of the present theory in the regime T � 150 mK.
While in the transmon (ϕ0 = 0) there are no Andreev bound
states [indeed, in this case their contribution to the frequency
shift is absent; see Eq. (73)], in a phase qubit, both Andreev
levels occupation xA

qp and free quasiparticle density xqp

affect the frequency. Assuming that the two quantities are
proportional, xA

qp ∝ xqp, the ratio between frequency shift
Eq. (73) and transition rate Eq. (55) in the high-frequency
regime is independent of the quasiparticle density. The
constancy of this ratio has been recently verified by injecting
a variable (but unknown) number of quasiparticles in a phase
qubit.21

IV. SINGLE JUNCTION: STRONG ANHARMONICITY

Here, we consider the regime, complementary to that of
the previous section, of qubits with large anharmonicities. We
study first the single-junction Cooper-pair box (CPB); as for
the transmon, it is insensitive to flux, but in contrast to the
transmon, the CPB properties are strongly affected by the value
of the dimensionless gate voltage ng . Then, we analyze a flux
qubit for which the external flux is tuned near half the flux
quantum �e ≈ �0/2.

A. Cooper-pair box

The CPB is described by Eq. (2) with EL = 0 and
EC � EJ . In this limit, it is convenient to rewrite the
Hamiltonian in the charge basis as5

Ĥ = EC

∑
q

(q − 2ng)2|q〉〈q|

− 1

2
EJ

∑
q

(|q〉〈q + 2| + |q + 2〉〈q|). (74)

The eigenstates have definite parity (even or odd) and are given
by linear combinations of even or odd charge states. The CPB

operating point is, without loss of generality, at ng = 1/2. Near
this operating point, the CPB is well described by the reduced
Hamiltonian

HCPB =

⎛
⎜⎝

EC(2ng)2 0 −EJ /2

0 EC(2ng − 1)2 0

−EJ /2 0 EC(2ng − 2)2

⎞
⎟⎠. (75)

The reduced CPB Hamiltonian has a single odd eigenstate,
the |q = 1〉 charge state,

|o,0; ng〉 = |1〉, (76)

with ng-dependent eigenenergy

E0(ng) = EC(2ng − 1)2, (77)

and two even eigenstates |e,±; ng〉, with energies

E±(ng) = EC + E0(ng) ± 1
2ω10(ng). (78)

The qubit frequency depends on the gate voltage as

ω10(ng) =
√

(4EC)2(2ng − 1)2 + E2
J . (79)

Note that, at the operating point, we have ω10(1/2) = EJ

and that the frequency rises quickly at a narrow distance
from the optimal point, more than doubling for |ng − 1/2| ∼
EJ /EC � 1. In terms of the charge states, the two even
eigenstates are

|e,−; ng〉 = cos θ |0〉 + sin θ |2〉,
(80)

|e,+; ng〉 = sin θ |0〉 − cos θ |2〉,
where

cos θ = 1√
2

√
1 − 4EC(2ng − 1)

ω10(ng)
. (81)

The nonvanishing matrix elements of sin ϕ̂/2 can be readily
obtained using the charge basis form of this operator:

sin
ϕ̂

2
= 1

2i

∑
q

(|q + 1〉〈q| − |q〉〈q + 1|). (82)

For the states in Eqs. (76) and (80), we find∣∣∣∣〈o,0; ng| sin
ϕ̂

2
|e,±; ng〉

∣∣∣∣
2

= 1

4

[
1 ± EJ

ω10(ng)

]
. (83)

We stress that the transitions are not between the qubit
(i.e., even) states, but between the even and odd states;
the corresponding transition frequencies are ω±(ng) = EC ±
ω10(ng)/2 [see Eqs. (77) and (78)]. Therefore, the tunneling
of a quasiparticle into the CPB changes the parity of the state,
an effect known as “quasiparticle poisoning.”6 Substituting the
matrix element (83) into Eq. (32) and using the high-frequency
expression (41), we find

�e,+→o,0 =
[

1 + EJ

ω10(ng)

]
2EJ

π
xqp

√
2	

ω+(ng)
(84)
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for the transition between even excited and odd states. In
thermal equilibrium with T � ω+(ng), using Eq. (21), we
obtain

�e,+→o,0 =
[

1 + EJ

ω10(ng)

]
4EJ√

π

√
T

ω+(ng)
e−	/T . (85)

Within our approximations, this expression reproduces (after
implementing the corrections described in Ref. 22 and up to a
numerical prefactor) the decay rate calculated in Ref. 5 for
the “open” qubit at the operating point ng = 1/2. For the
transition between even ground and odd states, the matrix
element in Eq. (83) vanishes at the operating point. This
vanishing is a consequence of the low-energy approximation
that leads to Eq. (6): As the results of Refs. 5 and 18 show,
the contributions that we neglect cause a finite transition rate,
which is suppressed by a small factor of order EC/2	 in
comparison with the transition rate from even excited to odd
state.

We note that, while in all the above expressions the distance
|2ng − 1| from the operating point can be large compared
to the small parameter EJ /EC � 1, the description based
on Eq. (75) is valid if other charge states can be neglected,
which limits the range of validity to |2ng − 1| < 1/2 (with
|2ng − 1| − 1/2 � EJ /EC). For example, at 2ng − 1 � 1/2,
the charge states |0〉 and |3〉 are nearly degenerate and we can
expect an enhanced transition rate �e,+→o,3 in comparison to
the rate �e,+→o,0, which we have considered above.

Finally, let us comment on the relationship between the
transition rate in the CPB and in the inductively shunted
Josephson junction with large charging energy [see the
paragraph containing Eq. (59)]. As shown schematically in
the right panel of Fig. 3 and discussed in detail in Ref. 14,
the spectra of the two systems are distinct, even in the limit of
small inductive energy EL: In the CPB (EL = 0), the energy
levels form bands as ng varies, while for any nonzero EL,
the gate voltage ng can be “gauged away” and the spectrum
consists of discrete levels that become denser as EL decreases.

0.3 0.4 0.5 0.6 0.7
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ng

E
E

C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

E
E

C

FIG. 3. Left panel: spectrum of the reduced CPB Hamiltonian
Eq. (75) around the operating point ng = 1/2 for EJ = 0.1EC .
Dashed line: energy of the odd state Eq. (77). Solid lines: energies
of ground (bottom) and excited (top) even states Eq. (78). Right
panel: in the presence of a small inductive energy EL, the CPB bands
act as potentials in the quasimomentum space (see Ref. 14). Dense
horizontal lines represent a few energy levels near the edges of the
bands.

Despite these differences, the ac responses of the two systems
due to charge coupling agree in this limit.14 Similarly, we now
show agreement for the quasiparticle transition rates. We note
that, when taking the limit EL → 0, the condition EJ � ωLC

for the validity of Eq. (59) for the rate �n→0 requires that we
also take EJ → 0.23 Moreover, since the final state considered
in deriving the rate �n→0 is the lowest possible state, the
corresponding final state in the CPB is either the even ground
state at ng = 0 or the odd ground state at ng = 1/2. Indeed, the
width of the ground state [in quasimomentum space (see Fig. 3
and Ref. 14) is ∝ (EL/EC)1/4, so that as EL → 0, the state
is localized at the bottom of the band. Note that, following
the same procedure detailed above, it is straightforward to
show that the transition rate �o,+→e,0 at ng = 0 coincides
with �e,+→o,0 at ng = 1/2; hence, for our purposes, the two
possibilities are equivalent. At finite EL, the total transition
rate to the ground state is obtained by summing Eq. (59) over
all initial levels n. Due to the Gaussian factor in the second
line of Eq. (59), the number of levels that contribute to the
total rate is approximately

√
n0 ∝ (EC/EL)1/4, which grows

as the inductive energy diminishes. However, the energy of
the contributing levels tends to the charging energy, as can be
seen by rewriting identically the argument in the exponential
of the Gaussian factor as −(En − EC)2/2ECωLC , where En =
nωLC ; this agrees with frequency for the e,+ → o,0 transition
at ng = 1/2 in the CPB being approximately EC in the small
EJ limit. Using Eq. (59), performing the sum over levels, and
taking the limit EL → 0, we find

lim
EL→0

∑
n

�n→0 = 4EJ

π
xqp

√
2	

EC

, (86)

which coincides with the leading term of Eq. (84) in the limit
EJ → 0 at the operating point ng = 1/2.

B. Flux qubit

As a second example of a strongly anharmonic system,
we consider here a flux qubit, i.e., in Eq. (2) we assume
EJ > EL and take the external flux to be close to half
the flux quantum �e ≈ �0/2. Then, the potential has a
double-well shape and the flux qubit ground state |−〉 and
excited state |+〉 are the lowest tunnel-split eigenstates in this
potential8 (see Fig. 4). The nonlinear nature of the sin ϕ̂/2
qubit-quasiparticle coupling in Eq. (6) has a striking effect
on the transition rate �+→−, which vanishes at �e = �0/2
due to destructive interference: for flux biased at half the flux
quantum, the qubit states |−〉, |+〉 are, respectively, symmetric
and antisymmetric around ϕ = π , while the potential in Eq. (2)
and the function sin ϕ/2 in Eq. (32) are symmetric. Note that
the latter symmetry and its consequences are absent in the
environmental approach in which a linear phase-quasiparticle
coupling is assumed.

Analytic evaluation of the matrix element determining the
transition rate Eq. (32) at finite �e − �0/2 is possible when
EC � EJ and the tunnel splitting ε̄ is small compared to
inductive and plasma energies ε̄ � 2π2EL � ωp; an estimate
for the splitting is given below in Eq. (100). With the above
assumptions, we can use a tight-binding approach. Neglecting
tunneling, the wave functions |m〉 are, as a first approximation,
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FIG. 4. (Color online) Potential energy (in units of EL) for a flux
qubit biased at �e = �0/2 with EJ /EL = 10. The horizontal lines
represent the two lowest energy levels, with energy difference ε̄ given
in Eq. (100).

ground-state wave functions of the harmonic oscillator with
frequency ωp and oscillator length � = √

8EC/ωp localized
around the (flux-dependent) minima ϕm of the potential energy

〈ϕ|m〉 =
(

1

π�2

)1/4

e−(ϕ−ϕm)2/2�2
. (87)

The minima are found by solving Eq. (49) approximately,
using the condition EL � EJ (which follows from the above
assumptions) to get

ϕm � 2π

[
m − EL

EJ

(m − f )

]
, f = �e

�0
. (88)

The energies of the localized states are (up to a constant term)

Em = 2π2ĒL(m − f )2, (89)

where

ĒL = EL

(
1 − 1

β

)
, β = EJ

EL

(90)

takes into account corrections small in 1/β � 1. The above
results are valid for |mEL/EJ | � 1. Still neglecting tunneling,
the matrix element of sin ϕ̂/2 between states localized in
different wells vanishes, but the diagonal matrix element is
finite due to the shift of the minima away from 2πm [see
Eq. (88)]. Using the states in Eq. (87), we obtain

〈j | sin
ϕ̂

2
|m〉 � −(−1)mπ

EL

EJ

(m − f )δm,j . (91)

To include the effect of tunneling, we allow for the possibility
of transitions between neighboring wells with amplitude ε̄/2.
As we are interested in the two lowest eigenstates for f near
1/2, we consider only the m = 0,1 wells and the effective
Hamiltonian has the form

Ĥ =
(

2π2ĒLf 2 −ε̄/2
−ε̄/2 2π2ĒL(1 − f )2

)
. (92)

The eigenenergies are [cf. Eqs. (78)–(81) ]

E±(f ) = π2

2
ĒL[1 + (2f − 1)2] ± 1

2
ω10(f ) (93)

with the flux-dependent qubit frequency

ω10(f ) =
√

ε̄2 + [(2π )2ĒL(f − 1/2)]2, (94)

while the eigenstates are

|−〉 = cos θ |0〉 + sin θ |1〉,
(95)

|+〉 = sin θ |0〉 − cos θ |1〉,

with

cos θ = 1√
2

√
1 − (2π )2ĒL(f − 1/2)

ω10(f )
. (96)

The tunnel splitting ε̄ entering in the above formulas can be
estimated by noting that, due to the assumption β � 1, the
wells are nearly symmetric. Neglecting the asymmetry [i.e.,
considering the potential in Eq. (2) at f = 1/2], the width and
height of the tunnel barrier are approximately 2π (1 − 1/β)
and 2ĒJ , respectively, with

ĒJ = EJ

[
1 − π2

4

1

β

(
1 − 1

β

)]
. (97)

To account for the height and width at EL �= 0, we treat the two
wells as cosine potentials with renormalized coefficients. That
is, we consider each well to be described by the Hamiltonian
given in Eq. (B3) with the substitutions EJ → ĒJ and EC →
ĒC , where

ĒC = EC

1

(1 − 1/β)2 . (98)

Then, we can use the known asymptotic formula2,14,24 for the
splitting ε0 in the periodic cosine potential (i.e., for EL = 0;
see Appendix B for a derivation of this formula)

ε0 = 4

√
2

π
ωp

(
8EJ

EC

)1/4

e−√
8EJ /EC (99)

to find

ε̄ = 2

√
2

π

√
8ĒJ ĒC

(
8ĒJ

ĒC

)1/4

e−
√

8ĒJ /ĒC . (100)

Here, the numerical prefactor is smaller by factor of 2 in
comparison with Eq. (99) to account for tunneling being
between two wells rather than in a periodic potential.24

Turning now to the matrix element 〈j | sin ϕ̂/2|m〉, the
diagonal elements j = m = 0, 1 are still approximately given
by Eq. (91). Tunneling introduces finite but exponentially
small off-diagonal elements, which, similarly to the splitting,
can be calculated using the semiclassical approximation. Using
the wave functions derived in Appendix B, we arrive at
[cf. Eq. (C6)]

〈1| sin
ϕ̂

2
|0〉 � D

(
ĒJ

ĒC

)1/3
ε̄

2
√

2ĒJ

(101)
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with D ≈ 1.45 [see Eq. (C7)]. We can now calculate the matrix
element of sin ϕ̂/2 between qubit states |±〉 in Eq. (95) using
Eqs. (91) and (101) to obtain

〈−| sin
ϕ̂

2
|+〉

= π (f − 1/2)
ε̄

ω10(f )

[
EL

EJ

+
√

2πD
ĒL

ĒJ

(
ĒJ

ĒC

)1/3 ]
.

(102)

Here, the first term in square brackets is the combination of
the two intrawell contributions Eq. (91), while the second
one originates from the under-barrier tunneling Eq. (101).
Comparing Eq. (102) to numerical calculations, we find that
near half the flux quantum |f − 1/2| � ε̄/2π2EL, the two
approaches give the same dependence on flux and agree on
the order of magnitude of the matrix element, with Eq. (102)
providing a smaller estimate than the numerics by a factor of
about 2/3. For |f − 1/2| � ε̄/(2π )2EL, the flux dependence
in Eq. (102) via the factor (f − 1/2)/ω10(f ) can be neglected
and the right-hand side reduces to a flux-independent constant.
However, this behavior is an artifact of our approximations: for
these larger deviations of flux, from half the flux quantum the
matrix element acquires additional flux dependence, beyond
that given in Eq. (102), once the asymmetry of the potential
is taken into account. Moreover, for very small flux |f | �
(ε̄/4

√
2π2EL)2, mixing of the state localized in well m = 1

with that localized in well m = −1 can not be neglected
and the matrix element has a narrow peak around zero flux.
Substituting Eq. (102) into Eq. (32), keeping the leading
contribution, and using the relation (40), we find for the
transition rate in the high-frequency regime25

�+→− = ω10

π

1

gK

Re Yhf
qp (ω10)

(
ε̄

4πĒJ

)2 (
1 − ε̄2

ω2
10

)

×(
√

2πD)2

(
ĒJ

ĒC

)2/3

(103)

with Re Y
hf
qp of Eq. (18).

The rate in Eq. (103) depends on reduced flux f via the
qubit frequency [see Eq. (94)]. In particular, for external flux
equaling half the flux quantum, we have ω10(1/2) = ε̄ and the
transition rate vanishes, as discussed above. In the previous
section, we mentioned in the text after Eq. (85) that, for the
Cooper-pair box, the vanishing of the rate at the operating point
is valid up to small corrections, being a consequence of the
low-energy approximation for the tunneling Hamiltonian in
Eq. (6). The same is true for the flux qubit; in the present case,
the parameter suppressing these corrections is exponentially
small, being given by ε̄/2	. Note that, if keeping in Eq. (5)
the contributions beyond the low-energy approximation, the
operators accounting for the qubit-quasiparticle interaction
can not be reduced to sin ϕ̂/2; therefore, for these additional
contributions, the symmetry argument given at the beginning
of this section for the vanishing of the transition rate at f = 1/2
does not hold.

FIG. 5. Left: schematic representation of the split transmon
with two (possibly different) junctions. Right: in the fluxonium,
a weaker junction (j = 0) is connected to a large junction array
(j = 1, . . . ,M).

V. MULTIPLE-JUNCTION QUBITS: GENERAL THEORY
AND APPLICATIONS

In this section, we generalize the theory of Sec. II to the case
of systems containing multiple junctions. This generalization
will enable us to consider the flux dependence of the transition
rates in the two-junction split transmon and in the many-
junction fluxonium. These two qubits are particular examples
of the general case in which M + 1 junctions separate M + 1
superconducting islands forming a loop. We use the convention
that junction j = 0, . . . ,M is between islands j and j + 1
and identify island j = M + 1 with island j = 0 (see Fig. 5).
When the loop-inductive energy is much larger than the
Josephson energies of the junctions (i.e., the loop inductance is
small), the phases are subject to the flux quantization constraint

M∑
j=0

ϕj = 2π�e/�0. (104)

This constraint must be taken into account to derive the Hamil-
tonian Ĥ{φ} of the M-independent phase degrees of freedom
φ, φk (k = 1, . . . ,M − 1) starting from the Lagrangian26 L{ϕ}
for the M + 1 constrained phases ϕj :

L{ϕ} =
M∑

j=0

[
1

2
Cj

(
�0

2π
ϕ̇j

)2

+ EJj cos ϕj

]
, (105)

where the overdot denotes derivative with respect to time,
Cj is the capacitance of junction j , and EJj its Josephson
energy. In Appendix F, we derive the Hamiltonian assuming
M of the M + 1 junctions to be identical, which is relevant for
both the split transmon (M = 1) and the fluxonium (M � 1).
Explicit expressions for the Hamiltonian in these two cases are
presented below.

The total Hamiltonian Ĥ of the system consists of three
terms, as in Eq. (1):

Ĥ = Ĥ{φ} + Ĥqp + ĤT . (106)

In addition to Ĥ{φ} discussed above, the second contribution is
the quasiparticle Hamiltonian

Ĥqp =
M∑

j=0

Ĥ j
qp, Ĥ j

qp =
∑
n,σ

εj
n α̂j†

nσ α̂j
nσ . (107)
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Here, the index j denotes the superconducting island; other
symbols have the same meaning as in Eq. (3) and we assume
equal gaps in all islands 	j ≡ 	. The final contribution to
Ĥ is the tunnel Hamiltonian, given by the following sum
[cf. Eq. (6)]:

ĤT =
M∑

j=0

t̃j
∑
n,m,σ

i sin
ϕ̂j

2
α̂j†

nσ α̂j+1
mσ + H.c. (108)

The transition rate between qubit states can again be
calculated using Fermi’s golden rule as in Eq. (31). We assume
that the quasiparticle distribution functions are the same in all
islands and that tunneling across each junction is not correlated
with tunneling in nearby junctions; this is a good assumption
if the mean level spacing in the finite-size superconductors is
small compared to the gap. Then, the total rate for the transition
between eigenstates of Hamiltonian Ĥ{φ} is

�i→f =
M∑

j=0

∣∣∣∣〈f{φ}| sin
ϕ̂j

2
|i{φ}〉

∣∣∣∣
2

EJj S̃qp(ωif ), (109)

where for convenience we have extracted the Josephson energy
prefactor from the spectral density S̃qp = Sqp/EJ , with Sqp

defined in Eq. (33). Similarly, the correction δEi to the energy
of state i{φ} is given by sums over junctions, which generalize
Eqs. (45) and (46),

δEi = δEi,EJ
+ δEi,qp, (110)

δEi,EJ
=

M∑
j=0

EJj 〈i{φ}| cos ϕ̂j |i{φ}〉
(
xqp + 2xA

qp

)
, (111)

δEi,qp =
M∑

j=0

EJj

∑
k �=i

∣∣∣∣〈k{φ}| sin
ϕ̂j

2
|i{φ}〉

∣∣∣∣
2

F̃qp(ωik), (112)

where F̃qp = Fqp/EJ . In the next sections, we use Eq. (109)
to calculate the transition rates for the split transmon and the
fluxonium and Eq. (110) to find the frequency shift in the split
transmon. The flux-dependent transition rate between the two
lowest even and odd states of a split Cooper-pair box has been
recently considered in Ref. 27 for gate voltage tuned at the
operating point.

A. Split transmon

A split transmon consists of two junctions j = 0,1 in a
superconducting loop (see Fig. 5). Therefore, there is only
M = 1 degree of freedom, which we denote with φ, governed
by the Hamiltonian

Ĥφ = 4ECN̂2 − EJ0 cos(φ̂ − 2πf ) − EJ1 cos φ̂ (113)

(see Appendix F). Here, N̂ = −id/dφ, f = �e/�0, and the
charging energy EC is related to the junctions’ capacitances
by

EC = e2

2(C0 + C1)
. (114)

Note that the Hamiltonian is periodic in f with period 1, so we
can assume |f | � 1/2 without loss of generality (i.e., we can
measure the normalized flux from the nearest integer). After

shifting φ → φ + πf , the sum of the two Josephson terms can
be rewritten as

EJ0 cos(φ̂ − 2πf ) + EJ1 cos φ̂ → EJ (f ) cos(φ̂ − ϑ),

(115)

where the effective Josephson energy EJ is modulated by the
external flux

EJ (f ) = (EJ0 + EJ1) cos(πf )
√

1 + d2 tan2(πf ) (116)

with

d = EJ0 − EJ1

EJ0 + EJ1
(117)

and

tan ϑ = d tan(πf ). (118)

After a further shift φ → φ + ϑ , we arrive at

Ĥφ = 4ECN̂2 − EJ (f ) cos φ̂, (119)

which has the same form of the Hamiltonian for the single-
junction transmon [i.e., Eq. (2) with EL = 0], but with a
flux-dependent Josephson energy Eq. (116). Therefore, the
spectrum follows directly from that of the single-junction
transmon (see Fig. 2) and consists of nearly degenerate and
well-separated states. The energy difference between well-
separated states is approximately given by the flux-dependent
frequency [cf. Eq. (56)]

ωp(f ) =
√

8ECEJ (f ). (120)

Note that, for the system to be in the transmon regime,

EJ (f ) � EC (121)

at some flux, a necessary condition is

EJ0 + EJ1 � EC. (122)

Then, we can distinguish two cases. First, in the nearly
symmetric case of junctions with comparable Josephson
energies |EJ0 − EJ1| � EC , the condition (121) is satisfied
not too close to half the flux quantum,

|f | − 1/2 � EC/π (EJ0 + EJ1). (123)

On the other hand, if the Josephson energies are sufficiently
different |EJ0 − EJ1| � EC , then Eq. (121) is satisfied at any
flux.

The transition rate �1→0 between the qubit states |0〉, |1〉
can be calculated using Eq. (109) if we know the relation
between ϕj and φ; the same relation is also needed to calculate
the transition rate �o→e between nearly degenerate states (see
Appendix C 2 for details). According to Appendix F, for the
variable φ in Eq. (113), we have ϕ1 = φ and ϕ0 = 2πf − φ.
Accounting for the two changes of variables performed to
arrive at Eq. (119), we obtain

ϕ̂0 = πf − ϑ − φ̂,
(124)

ϕ̂1 = πf + ϑ + φ̂.
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In the transmon regime (121), we proceed as in the derivation
of Eq. (53) to find∣∣∣∣〈0| sin

ϕ̂j

2
|1〉

∣∣∣∣
2

= EC

ωp(f )

1 + cos(πf ± ϑ)

2
, (125)

where the upper (lower) sign is to be used for j = 1 (j = 0).
Substituting this result into Eq. (109) and using Eq. (41) with
ω = ωp(f ), we find in the high-frequency regime [cf. Eq. (55)]

�1→0 = xqp

2π

√
2	

ωp(f )

ω2
p(f ) + ω2

p(0)

ωp(f )
. (126)

For the transition quality factor, we consider, as in Sec. III A,
the coexistence of equilibrium and nonequilibrium quasiparti-
cles [see Eq. (61)] to find

1

Q10
= 1

2π

(
1 + ω2

p(0)

ω2
p(f )

)[
xne

√
2	

ωp(f )

+ 4e−	/T cosh

(
ωp(f )

2T

)
K0

(
ωp(f )

2T

)]
. (127)

In Fig. 6, we show with solid lines the quality factor as a
function of temperature for four different values of flux f in
a symmetric transmon (d = 0). As we discussed in Sec. III A,
an extrinsic relaxation mechanism could be limiting the low-
temperature quality factor. Characterizing this mechanism by a
constant quality factor Qext and assuming that only equilibrium
quasiparticles are present, the transition quality factor has the
form

1

Q10,tot
= 1

Qext
+ 2

π

(
1 + ω2

p(0)

ω2
p(f )

)

× e−	/T cosh

(
ωp(f )

2T

)
K0

(
ωp(f )

2T

)
. (128)
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FIG. 6. (Color online) Quality factor as a function of 2T/ωp(0) in
a symmetric split transmon. Solid lines are obtained from Eq. (127)
using a small nonequilibrium quasiparticle density xne = 3.8 × 10−7

and a gap value such that 	/ωp(0) = 6.9 [these parameters are
taken from experiments on single-junction transmon (Ref. 20)]. Flux
increases from top to bottom; we show curves for f = 0, 0.2, 0.3, and
0.4, respectively. We plot Eq. (128) with dashed lines for the same
values of flux. The extrinsic quality factor is chosen so that solid and
dashed lines match at f = 0.

The dashed lines in Fig. 6 show Q10,tot as a function of
temperature for the same values of flux; the quality factor
Qext is chosen so that the zero-flux curve coincides with
the zero-flux curve described by Eq. (127). The change of
quality factor with flux is markedly different in the two limiting
cases (namely, presence of nonequilibrium quasiparticles and
no extrinsic relaxation mechanism versus extrinsic relaxation
with no nonequilibrium quasiparticles) described by Eqs. (127)
and (128). Therefore, the measurement of the temperature and
flux dependencies of the quality factor should give indications
on the presence of nonequilibrium quasiparticles. For example,
the low-temperature measurements reported in Ref. 28 are
compatible with a flux-independent quality factor; to explain
the data with Eq. (127) rather than Eq. (128), one would need to
assume a quasiparticle density that decreases with increasing
flux. Since magnetic fields are known to break pairs and thus
increase the quasiparticle density, for the transmons considered
in Ref. 28, it is unlikely that nonequilibrium quasiparticles are
the source of the low-temperature qubit decay.

The frequency shift for the split transmon is obtained, as
in Sec. III B, by calculating the difference between correction
to energies of nearby levels Eq. (67). The matrix elements
appearing in Eqs. (111) and (112) are given by Eqs. (53) and
(69) with ω10 = ωp(f ), ϕ0 = θ + πf for j = 1, and ϕ0 =
θ − πf for j = 0 [cf. Eqs. (124) and (125)]. Using those
expressions, we find

δEi+1,EJ
− δEi,EJ

= − 1
2ωp(f )

(
xqp + 2xA

qp

)
(129)

and

δEi+1,qp − δEi,qp

= 1

16

ω2
p(0) + ω2

p(f )

ωp(f )
{F̃qp[ωp(f )] + F̃qp[−ωp(f )]}.

(130)

Then, using the relation (48) and Eq. (29), we arrive at the
high-frequency result

δω(f )

ωp(f )
= 1

2

{
xA

qp

(
ω2

p(0)

ω2
p(f )

− 1

)

− xqp

[
1

2π

(
ω2

p(0)

ω2
p(f )

+ 1

)√
2	

ωp(f )
+ 1

]}
.

(131)

At zero flux, this expression agrees with Eq. (73) applied
to a single-junction transmon (ω10 = ωp, ϕ0 = 0). However,
similarly to the flux qubit, at finite flux, the split transmon
frequency shift is sensitive to the occupation of the Andreev
bound states (see the first term in curly brackets).

B. Fluxonium

In the fluxonium, an array of many identical junctions
(M � 1) of Josephson energy EJ1 � EC1 is connected to
a weaker junction with EJ0 < EJ1. Then, the Hamiltonian
Ĥ{φ} for the M-independent degrees of freedom can be

064517-13



CATELANI, SCHOELKOPF, DEVORET, AND GLAZMAN PHYSICAL REVIEW B 84, 064517 (2011)

approximately separated into independent terms for the qubit
phase φ and the M − 1 phases φk:

Ĥ{φ} = Ĥφ +
M−1∑
k=1

Ĥk,

Ĥφ = 4ECN̂2 − EJ0 cos φ̂ + 1

2
EL(φ̂ − 2πf )2, (132)

Ĥk = 4EC1N̂
2
k + 1

2
EJ1φ̂

2
k ,

where

EL = EJ1

M
,

1

EC

= 1

EC0
+ 1

MEC1
(133)

(see Appendix F). There, we also give Eq. (F5) the relation
between the M + 1 (constrained) ϕj variables and the M-
independent φk variables. Accounting for the changes of
variables that bring the Hamiltonian in the form given above,
we have schematically

ϕ0 = φ, ϕj = Lj ({φk}) + (2πf − φ)/M,
(134)

j = 1, . . . ,M.

Here, Lj ({φk}) denote linear combinations of the variables
φk , k = 1, . . . ,M − 1, whose specific form can be found in
Appendix F but is not needed here, while we show explicitly
the dependence of the constrained variables ϕj on the qubit
phase φ. As in the previous section, we take |f | < 1/2 without
loss of generality.

As an example of the calculation of the transition rate
for such a system, we assume that the plasma frequency
ωp1 = √

8EC1EJ1 of the array junctions is larger than the
other relevant energy scales (namely, quasiparticle energy δE

and qubit frequency ω10). Then, we can take the many-body
state of the system |�{φ}〉 in the product form

|�{φ}〉 = |ψφ〉
M−1∏
k=1

|0k〉, (135)

where |ψφ〉 is a low-energy eigenstate of Ĥφ and |0k〉 is
the ground-state wave function of the kth oscillator. The
approximations used to derive Ĥ{φ} in Eq. (132) imply that,
in the formula (109) for the transition rate, we can linearize
the sine for j = 1, . . . ,M . Therefore, for the transition rate
between two states of the form (135), we obtain

�i→f = S̃qp(ωif )

[
EJ0

∣∣∣∣〈fφ| sin
φ̂

2
|iφ〉

∣∣∣∣
2

+EL

∣∣∣∣〈fφ| φ̂
2

|iφ〉
∣∣∣∣
2]

. (136)

In the weak tunneling limit ε̄ � 2π2EL � ωp = √
8ECEJ0

(with ε̄ the tunnel splitting of the qubit states at f = 1/2), we
can use directly the results of Sec. IV B: the flux-dependent
qubit frequency ω10(f ) is given by Eq. (94) and the first excited
state |iφ〉 = |+〉 and ground state |fφ〉 = |−〉 are the linear
combination of states localized in wells m = 0, 1 in Eq. (95).

For the first term in square brackets in Eq. (136), the matrix
element is given by Eq. (102). To evaluate the second term in
the same regime, we note that for states |m〉, |j 〉, that is, states
localized in wells m and j as in Eq. (87), we have

〈j | φ̂
2

|m〉 = π

[
m

(
1 − EL

EJ0

)
+ EL

EJ0
f

]
δj,m. (137)

Therefore, for the states in Eq. (95), we find∣∣∣∣〈−| φ̂
2

|+〉
∣∣∣∣
2

=
(

π

2

)2 (
1 − EL

EJ0

)2
ε̄2

ω2
10(f )

. (138)

In contrast to the matrix element of sin ϕ̂/2 considered in
Sec. IV B, the contribution due to tunneling can be neglected
in this case. Substituting this result and the leading term from
Eq. (102) into the square brackets of Eq. (136), we get29

π2

4

ε̄2

ω2
10(f )

EL

[
(2π )2 EL

EJ0

(
f − 1

2

)2

(
√

2D)2

(
EJ0

EC

)2/3

+
(

1 − EL

EJ0

)2 ]
.

In this expression, the first term in square brackets originates
from the weak junction and the second one from the array.
Note that, when considering flux near half the flux quantum,
we can neglect the first term in comparison to the second and
the losses due to the array dominate over those due to the weak
junction. Keeping only the leading contribution in Eq. (139)
and using Eq. (41) in Eq. (136), we arrive at the expression for
the rate in the high-frequency regime

�+→− = xqp

√
2	

ω10(f )
2πEL

ω2
10(1/2)

ω2
10(f )

(139)

with ω10(f ) defined in Eq. (94). Note that since the frequency
increases as the reduced flux f moves away from 1/2, the tran-
sition rate is the largest at half the flux quantum. Interestingly,
due to the factor EL, the rate scales as 1/M [see Eq. (133)] and
thus can be made small in an array with M � 1 junctions. The
decrease of the rate as the number of junctions increase is due to
the suppression of the phase fluctuations in the array junctions
[see Eq. (134)].

VI. SUMMARY

In this paper, we have presented in detail a general
approach to study the effects of quasiparticles on relaxation
and frequency of superconducting qubits. The theory is
applicable to any qubit; the case of single-junction systems
is considered in Sec. II and the generalization to multijunction
systems is given in Sec. V. Our analysis is valid for both
thermal equilibrium quasiparticles and arbitrary nonequilib-
rium distributions, so long as the quasiparticle energy is
small compared to the qubit frequency; this condition, not
necessary in thermal equilibrium, ensures that quasiparti-
cles primarily cause relaxation and not excitation of the
qubit.

For single-junction qubits, we have studied in Sec. III the
weakly anharmonic limit. For small phase fluctuations, both
quality factor (Sec. III A) and frequency shift (Sec. III B)
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are determined by transitions between neighboring qubit
levels and can be related to real and imaginary parts of
the “classical” junction admittance, respectively. The small
fluctuation case applies to phase and transmon qubits and
our results in Eqs. (62) and (73) have been successfully
tested in recent experiments20,21 with these qubits. For strong
anharmonicity, we have presented in Sec. IV results for the
quasiparticle transition rate in the Cooper-pair box and the flux
qubit.

We have considered two examples of multijunction qubits,
the two-junction split transmon in Sec. V A and the many-
junction fluxonium in Sec. V B. In particular, we argue that
measuring the temperature and flux dependencies of the quality
factor of a split transmon could help resolve the question
of whether nonequilibrium quasiparticles are present at low
temperatures [see Eqs. (127) and (128) and Fig. 6].
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APPENDIX A: CORRECTION TO ENERGY LEVELS

To calculate the correction to the energy levels as presented
in Sec. II C, we must account for both quasiparticle and pair
tunneling. Note that, due to energy conservation, the latter
does not affect the transition rate �i→f between states |i〉 and
|f 〉 so long as ωif < 2	; for this reason, the pair tunneling
Hamiltonian H

p

T was neglected in Eq. (1). More generally, the
total Hamiltonian of the single-junction system is

Ĥtot = Ĥ0 + ĤT + Ĥ
p

T + ĤEJ
(A1)

with

Ĥ0 = Ĥϕ + Ĥqp. (A2)

The Hamiltonians Ĥϕ , Ĥqp, and ĤT are defined in Eqs. (2),
(3), and (5), respectively, and the pair-tunneling term is

Ĥ
p

T = t̃
∑
n,m

[(
ei

ϕ̂

2 uL
n vR

m + e−i
ϕ̂

2 uR
mvL

n

)
α̂

L†
n↑α̂

R†
m↓

+ (
e−i

ϕ̂

2 vR
muL

n + ei
ϕ̂

2 vL
n uR

m

)
α̂R

m↓α̂L
n↑

] + (L ↔ R).

(A3)

The last term in Eq. (A1),

ĤEJ
= EJ cos ϕ̂, (A4)

is necessary to avoid “double counting”: the Josephson
energy originates from pair tunneling, so its inclusion in
the effective Hamiltonian Ĥϕ [Eq. (2)] must be compen-
sated for by subtracting the same term here. We will show
below that this treatment is justified for small quasiparticle
density.

In both the quasiparticle tunneling Hamiltonian ĤT

[Eq. (5)] and the pair-tunneling one in Eq. (A3), using
the definitions given after Eq. (3), the (real) Bogoliubov
amplitudes are

(
uj

n

)2 = 1 − (
vj

n

)2 = 1

2

(
1 + ξ

j
n

ε
j
n

)
, j = L,R. (A5)

As in the main text, we assume equal gaps and distribution
functions in the leads 	L = 	R ≡ 	 and f L = f R ≡ f .
Moreover, we neglect the contributions of the charge mode
fQ(ε) = [f (ξ ) − f (−ξ )]/2 since they are suppressed by the
small factor δE/	 � 1 compared to the leading contributions
due to the energy mode fE [Eq. (14)]; for simplicity, in this
appendix we drop the subscript E.

We want to evaluate the correction δEi to the energy of
level i of the qubit at second order in the tunneling amplitude
t̃ for small quasiparticle density. Thus, Ĥ0 in Eq. (A2)
is the unperturbed Hamiltonian, and we distinguish three
contributions to δEi ,

δEi = δE
(1)
i + δE

(2)
i + δE

(3)
i , (A6)

caused, respectively by ĤT , Ĥ p

T , and ĤEJ
. Noting that the latter

is already of second order in t̃ , we treat it within first-order
perturbation theory to write

δE
(3)
i = EJ 〈i| cos ϕ̂|i〉. (A7)

The quasiparticle tunneling correction δE
(1)
i is obtained by

second-order perturbation theory

δE
(1)
i = −

∑
k,{λ}qp

〈〈
|〈k,{λ}qp|ĤT |i,{η}qp〉|2
Eλ,qp − Eη,qp − ωik

〉〉
qp

, (A8)

where

ωik = Ek − Ei (A9)

and the notation is the same as in Sec. II: {η}qp and {λ}qp denote
quasiparticle states, Eλ,qp and Eη,qp their energies, and 〈〈. . .〉〉qp

averaging over {η}qp. Performing the averaging, after lengthy
but straightforward algebra, we arrive at

δE
(1)
i = 4EJ

π2	
P

∑
k

∫ ∞

	qp

dεL

∫ ∞

	qp

dεR

×
[∣∣∣∣〈k| sin

ϕ̂

2
|i〉

∣∣∣∣
2

A+(εL,εR) +
∣∣∣∣〈k| cos

ϕ̂

2
|i〉

∣∣∣∣
2

×A−(εL,εR)

][
f (εL)[1 − f (εR)]

εL − εR − ωik

− [1 − f (εL)]f (εR)

εL − εR + ωik

]
, (A10)

where we introduced the functions

A±(εL,εR) = εL√
ε2
L − 	2

qp

εR√
ε2
R − 	2

qp

± 	qp√
ε2
L − 	2

qp

	qp√
ε2
R − 	2

qp

(A11)

describing combinations of BCS densities of states. Both
these functions and the lower integration limit depend on
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the self-consistent gap 	qp; however, since the integrand in
Eq. (A10) is at least linear in the distribution function f , we
can neglect the gap suppression by quasiparticles [see Eq. (44)]
and approximate 	qp � 	.

We note that the combinations of distribution functions in
the last term of Eq. (A10) restrict to low energies only one of
the energy integrals, while the other integral is logarithmically
divergent. To isolate this divergence, we add and subtract the
term obtained by setting ωik = 0 in the denominator; more
precisely, we define

P
1

εL − εR

= 1

2
lim

ω→0+

1

εL − ω − εR

+ 1

εL + ω − εR

(A12)

and separate in δE
(1)
i = δE

(1),f
i + δE

(1),d
i a finite term

δE
(1),f
i = 8EJ

π2	
P

∑
k �=i

∫ ∞

	

dεL

∫ ∞

	

dεR

×
[ ∣∣∣∣〈k| sin

ϕ̂

2
|i〉

∣∣∣∣
2

A+(εL,εR) +
∣∣∣∣〈k| cos

ϕ̂

2
|i〉

∣∣∣∣
2

×A−(εL,εR)

]
f (εL)[1 − f (εR)]

[
1

εL − εR − ωik

− 1

εL − εR

]
, (A13)

from a divergent one

δE
(1),d
i = 4EJ

π2	
P

∫ ∞

	

dεL

∫ ∞

	

dεR

f (εL) − f (εR)

εL − εR

×
[

εL√
ε2
L − 	2

εR√
ε2
R − 	2

−〈i| cos ϕ̂|i〉 	√
ε2
L − 	2

	√
ε2
R − 	2

]
. (A14)

To obtain this expression, we used the identities

∑
k

∣∣∣∣〈k| sin
ϕ̂

2
|i〉

∣∣∣∣
2

+
∣∣∣∣〈k| cos

ϕ̂

2
|i〉

∣∣∣∣
2

= 1 (A15)

and

∑
k

∣∣∣∣〈k| sin
ϕ̂

2
|i〉

∣∣∣∣
2

−
∣∣∣∣〈k| cos

ϕ̂

2
|i〉

∣∣∣∣
2

= −〈i| cos ϕ̂|i〉. (A16)

Equation (A13) for δE
(1),f
i can be further simplified using the

relations

εLεR

[
1

εL − εR − ωik

− 1

εL − εR

]

= ε2
L

[
1

εL − εR − ωik

− 1

εL − εR

]
− εLωik

εL − εR − ωik

� 	2

{[
1

εL − εR − ωik

− 1

εL − εR

]
− ωik/	

εL − εR − ωik

}
,

(A17)

where the approximation is valid because the distribution
function restricts the integral over εL to low energies above
the gap. As discussed in Sec. II, the matrix elements of
operators e±iϕ̂/2 describe the transfer of a single charge. For
this reason, for a low-lying level i, the main contribution in
the sum over states k comes either from levels with energy
difference ωik ∼ EC � 	 (when EC is large compared to EL,
EJ ), or from nearby levels (for small EC). In both cases, we
have ωik � 	 since, at large energy differences, the matrix
elements quickly decrease; this is evident, for example, in the
expressions for the matrix elements in Sec. III. Then, according
to Eq. (A17), the term proportional to A− is suppressed by the
small parameter ωik/	 in comparison to the leading term in
A+, and we can approximate δE

(1),f
i as

δE
(1),f
i � 16EJ

π2	
P

∑
k �=i

∫ ∞

	

dεL

∫ ∞

	

dεR

∣∣∣∣〈k| sin
ϕ̂

2
|i〉

∣∣∣∣
2

× 	√
ε2
L − 	2

	√
ε2
R − 	2

f (εL)[1 − f (εR)]

×
[

1

εL − εR − ωik

− 1

εL − εR

]
. (A18)

Defining the function Fqp by

Fqp(ω) = 16EJ

π2	
P

∫ ∞

	

dεL

∫ ∞

	

dεR

	√
ε2
L − 	2

	√
ε2
R − 	2

×f (εL)[1 − f (εR)]

[
1

εL − εR − ω
− 1

εL − εR

]
,

(A19)

we arrive at the expression for the quasiparticle correction to
the energy δEi,qp given in Eq. (46).

The treatment of the pair-correction term δE
(2)
i in Eq. (A6)

is similar to the above one for δE
(1)
i . The pair correction is

found by calculating the matrix element of Ĥ
p

T [Eq. (A3)]
rather than ĤT in Eq. (A8); we find

δE
(2)
i = 4EJ

π2	
P

∑
k

∫ ∞

	qp

dεL

∫ ∞

	qp

dεR

[ ∣∣∣∣〈k| sin
ϕ̂

2
|i〉

∣∣∣∣
2

×A−(εL,εR) +
∣∣∣∣〈k| cos

ϕ̂

2
|i〉

∣∣∣∣
2

A+(εL,εR)

]

×
[

f (εL)f (εR)

εL + εR − ωik

− [1 − f (εL)][1 − f (εR)]

εL + εR + ωik

]
.

(A20)

Note that, in this expression there is a term independent of the
distribution function for which the approximation 	qp � 	 is
not applicable. Since εL + εR � 2	qp, repeating the argument
preceding Eq. (A18), we can neglect ωik in the denominator
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and use identities (A15) and (A16) to obtain

δE
(2)
i � 4EJ

π2	
P

∫ ∞

	qp

dεL

∫ ∞

	qp

dεR

f (εL) + f (εR) − 1

εL + εR

×
⎡
⎣ εL√

ε2
L − 	2

qp

εR√
ε2
R − 	2

qp

+ 〈i| cos ϕ̂|i〉 	qp√
ε2
L − 	2

qp

	qp√
ε2
R − 	2

qp

⎤
⎦ . (A21)

Both in this expression and in Eq. (A14), the first term in square
brackets does not depend on the level index i. Therefore, it
leads to an unimportant common shift of all the levels, which
we neglect.30 Keeping only the second term in each square
bracket, we write

δE
(1),d
i + δE

(2)
i ≈ δE	

i + δEA
i , (A22)

where, separating the terms independent of and proportional
to the distribution function f , we have

δE	
i = − 4EJ

π2	
〈i| cos ϕ̂|i〉P

∫ ∞

	qp

dεL

∫ ∞

	qp

dεR

× 	qp√
ε2
L − 	2

qp

	qp√
ε2
R − 	2

qp

1

εL + εR

(A23)

and

δEA
i = 8EJ

π2	
〈i| cos ϕ̂|i〉P

∫ ∞

	

dεL

	√
ε2
L − 	2

f (εL)

×
∫ ∞

	

dεR

	√
ε2
R − 	2

[
1

εL + εR

− 1

εL − εR

]
. (A24)

In both expressions, the integrations can be performed analyt-
ically [using in Eq. (A24) the definition (A12)]. We obtain

δE	
i = −EJ

	
	qp〈i| cos ϕ̂|i〉 (A25)

and

δEA
i = 2EJ f (	)〈i| cos ϕ̂|i〉. (A26)

Finally, using Eqs. (23), (44), and (A7), we arrive at

δE	
i + δEA

i + δE
(3)
i = EJ

(
xqp + 2xA

qp

)〈i| cos ϕ̂|i〉, (A27)

which is the correction δEi,EJ
in Eq. (45). This result, together

with Eqs. (A18) and (A19), concludes the derivation of the
formulas presented in Sec. II C.

APPENDIX B: GATE-DEPENDENT ENERGY SPLITTING
IN THE TRANSMON

The transmon low-energy spectrum is characterized by
well-separated [by the plasma frequency ωp, Eq. (56)] and
nearly degenerate levels, the energies of which, as shown in
Fig. 2, vary periodically with the gate voltage ng . Here, we
derive the asymptotic expression (valid at large EJ /EC) for
the energy splitting between the nearly degenerate levels. We

consider first the two lowest-energy states and then generalize
the result to higher energies.

Using the notation of Sec. II, the transmon Hamiltonian is

Ĥϕ = 4EC

(
N̂ − ng

)2 − EJ (1 + cos ϕ̂) . (B1)

Its eigenstates can be written exactly in terms of Math-
ieu functions.2 However, since EJ � EC , a tight-binding
approach31 can be used in which the two lowest (even and
odd) eigenstates �e and �o are given by sums of localized
wave functions

�e(ϕ; ng) = eingϕ
1√
L

∑
j

ψ(ϕ − 2πj )e−ing2πj ,

(B2)

�o(ϕ; ng) = eingϕ
1√
L

∑
j

ψ(ϕ − 2πj )e−ing2πj e−iπj ,

where L � 1 is the number of sites, labeled with index j , and
ψ is the ground state of the Hamiltonian

Ĥ = 4ECN̂2 + V (ϕ̂) (B3)

with

V (ϕ) =
{−EJ (1 + cos ϕ), |ϕ| < π

0, |ϕ| > π.
(B4)

This potential is such that
∑

j V (ϕ − 2πj ) = −EJ (1 +
cos ϕ). Note that the even (odd) state is a linear combination of
even (odd) charge eigenstates, as can be shown by considering
the overlap of �e(o) with the charge eigenstate einϕ/2 for
arbitrary integer n [in Eq. (B2), what distinguishes the odd
state from the even one is the last exponential in the expression
for �o, which changes the sign of the localized wave function
at odd sites j ].

The energy difference ωeo between the two states is

ωeo = 〈�o|Ĥϕ|�o〉 − 〈�e|Ĥϕ|�e〉. (B5)

Using Eq. (B2), the contributions to ωeo due to products of
wave functions ψ localized at the same site cancel. The leading
contribution to ωeo originates from products of wave functions
localized at nearby sites,

ωeo = ε0 cos(2πng) (B6)

with

ε0 = −4
∫

dϕ ψ(ϕ)ψ(ϕ − 2π )V (ϕ). (B7)

To estimate the above integral, the behavior of the wave
function ψ near ϕ = π is needed; in this region, a good
approximation is given by the semiclassical wave function32

ψ(ϕ) �
⎧⎨
⎩

C0

2
√

p(ϕ)
exp

[− ∫ ϕ

a
dφ p(φ)

]
, a < ϕ < π

A0 exp
[ −

√
EJ

2EC

(
1 − ωp

4EC

)
(ϕ − π )

]
, ϕ > π

(B8)

where C0 and A0 are constants,

p(ϕ) =
√

EJ

4EC

√
1 − ωp

2EJ

− cos ϕ , (B9)
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and a is the classical turning point defined by p(a) = 0. The
constant C0 is determined by the normalization condition of
the wave function, and A0 then follows from continuity of
the wave function. For states with large quantum number, the
semiclassical approximation can be used also in the classically
accessible region |ϕ| < a; the corresponding estimate for
the normalization constant, which we indicate with C∞, is
C∞ = √

ωp/4ECπ (see Ref. 32). Here, we are interested
in the ground state (and more generally in low-lying states)
for which C∞ is known to underestimate the normalization
factor.24,33 To evaluate C0, we note that for |ϕ| � π , the
potential V (ϕ) in Eq. (B4) is well approximated by that of
the harmonic oscillator; therefore, the semiclassical wave
function (B8) should match the normalized wave function
of the harmonic oscillator given in Eq. (87) (with ϕm = 0)
in the region a � ϕ � π . Indeed, in this region, we expand
the cosine in Eq. (B9) and rescale variables (φ = φ̃

√
ωp/EJ )

to find∫ ϕ

a

dφ p(φ) �
∫ ϕ̃

1
dφ̃

√
φ̃2 − 1

= 1

2
[ϕ̃

√
ϕ̃2 − 1 − ln(ϕ̃ +

√
ϕ̃2 − 1)]

� 1

2

EJ

ωp

ϕ2 − 1

4
− 1

2
ln(2ϕ

√
EJ /ωp). (B10)

Using this expression, and p(ϕ) � ϕ
√

EJ /8EC in the denom-
inator, Eq. (B8) becomes

ψ(ϕ) � C0
e1/4

√
2

(
8EC

EJ

)1/8

e−ϕ2EJ /2ωp . (B11)

This function matches Eq. (87) by setting

C0 =
√

ωp

4EC

(πe)−1/4 = C∞

(
π

e

)1/4

. (B12)

The last form shows that the correct normalization factor is
larger than the usual semiclassical estimate.

Having found the normalization constant, we now consider
the wave function in the region near ϕ = π . There, we can
further simplify Eq. (B8) as follows: We rewrite the integral
in the exponential in the first line of Eq. (B8) as∫ ϕ

a

dφ p(φ) =
∫ π

a

dφ p(φ) −
∫ π

ϕ

dφ p(φ). (B13)

Then, the first integral on the right-hand side is∫ π

a

dφ p(φ) =
√

2EJ

EC

[E(k) − (1 − k2)K(k)], (B14)

where E and K denote the complete elliptic integrals with
modulus k, which has the value

k2 ≡ 1 − k′2 = 1 − ωp

4EJ

. (B15)

Here, we are interested in the limit k → 1 in which the
complete elliptic integrals behave as

E(k) � 1 + 1

2
k′2

(
ln

4

k′ − 1

2

)
,

(B16)

K(k) � ln
4

k′ .

The last integral in Eq. (B13) can be approximated as∫ π

ϕ

dφ p(φ)

�
√

EJ

2EC

[√
1 − ωp

4EJ

(π − ϕ) − (π − ϕ)3

24
√

1 − ωp/4EJ

]
.

(B17)

Substituting Eqs. (B13)–(B17) into Eq. (B8), using p(π ) �√
EJ /2EC in the square root in the denominator of the first

line, and requiring continuity of the wave function, we arrive
at

ψ(ϕ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 exp
{

−
√

EJ

2EC

[√
1 − ωp

4EJ
(ϕ − π )

− (ϕ−π)3

24
√

1−ωp/4EJ

]}
, ϕ � π

A0 exp
[
−
√

EJ

2EC

√
1 − ωp

4EJ
(ϕ − π )

]
, ϕ > π

(B18)

with

A0 = 1

(2π )1/4

(
8EJ

EC

)1/8

e−√
2EJ /EC . (B19)

The wave function near ϕ = −π can be obtained by substi-
tuting ϕ → −ϕ in Eq. (B18). We can now proceed with the
calculation of the integral in Eq. (B7). Using Eqs. (B4) and
(B18), expanding the potential for ϕ � π , and changing the
integration variable (ϕ → π − ϕ), we find

ε0 � 2EJ A2
0

∫
0
dϕ ϕ2 exp

[
−
√

EJ

2EC

ϕ3

24
√

1 − ωp/4EJ

]

� 8ωpA2
0 = 4

√
2

π
ωp

(
8EJ

EC

)1/4

e−√
8EJ /EC , (B20)

where, going from the first to the second line, we neglect the
subleading correction originating from the denominator in the
argument of the exponential. The final expression for ε0 agrees
with the known asymptotic formula,2,14,24 thus validating our
approach.

The above result can be generalized to calculate the
splitting between nearly degenerate even and odd states of
approximate energy nωp above the ground state by letting
ωp → ωp(2n + 1) in Eqs. (B8) and (B9) and those that
follow [this replacement is appropriate so long as ωp(n +
1/2) � 2EJ ]. Matching the semiclassical wave function to
the excited eigenstates of the harmonic oscillator, we find that
the normalization coefficient depends on n:

Cn =
√

ωp

4EC

(
2

πe

)1/4 (
n + 1/2

e

)n/2 (√
n + 1/2

n!

)1/2

.

(B21)

Note that Cn approaches C∞ as n grows. Repeating the above
calculation, we find the energy splitting

εn = ε0(−1)n
22n

n!

(
8EJ

EC

)n/2

, (B22)

also in agreement with the expression in the literature.
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APPENDIX C: RATE OF PARITY SWITCHING INDUCED
BY QUASIPARTICLES IN THE TRANSMON

The spectrum of the transmon, as described in Appendix B,
comprises both well-separated and nearly degenerate levels of
opposite parity (see also Fig. 2). The leading contribution to
the transition rate between states of different parity separated
in energy by (approximately) the plasma frequency is given
by Eq. (55) with ϕ0 = 0 and is independent of ng . Here,
we consider the quasiparticle-induced transitions between
the nearly degenerate states �e and �o. We first consider
a single-junction transmon to show explicitly that the rate
depends on ng and is exponentially small. Next, we study
the experimentally relevant case of a split transmon; its rate
is qualitatively different, not displaying such exponential
smallness.

1. Single-junction transmon

According to Eq. (32), the quasiparticle transition rate �o→e

between states �o and �e can be written as

�o→e =
∣∣∣∣〈�e| sin

ϕ̂

2
|�o〉

∣∣∣∣
2

Sqp (ωeo) . (C1)

This rate depends on the gate voltage ng via the states in the
matrix element as well as via their energy difference ωeo [see
Eq. (B6)]. For the matrix element, we use Eq. (B2) to find∣∣∣∣〈�e| sin

ϕ̂

2
|�o〉

∣∣∣∣ � | sin(2πng)|s, (C2)

where

s = 2

∣∣∣∣
∫

dϕ ψ(ϕ)ψ(ϕ − 2π ) sin
ϕ

2

∣∣∣∣ . (C3)

The matrix element in Eq. (C2) vanishes at half-integer values
of ng , as in the case of the Cooper-pair box [see Eq. (83)]. In
fact, the vanishing holds at arbitrary ratio EJ /EC , as can be
shown using the symmetry properties of Mathieu functions.
For example, at ng = 0, 1/2 the two lowest eigenstates of the
transmon Hamiltonian Eq. (B1) can be written in the charge
basis as34

|�e〉 =
∞∑

m=0

A
(0)
2m[|2m〉 + | − 2m〉],

(C4)

|�o〉 =
∞∑

m=0

A
(1)
2m+1[|2m + 1〉 + | − (2m + 1)〉]

and

|�e〉 =
∞∑

m=0

A
(1)
2m+1[|2m + 2〉 + | − 2m〉],

(C5)

|�o〉 =
∞∑

m=0

A
(0)
2m[|2m + 1〉 + | − 2m + 1〉],

respectively, where the coefficients A
(0)
2m, A

(1)
2m+1 depend on

the ratio EJ /EC .35 Using the charge-basis representation of
sin ϕ̂/2 in Eq. (82), it is easy to check the vanishing of its
matrix element between the above states for both values of ng .

In the transmon limit EJ /EC � 1 under consideration,
the product of wave functions localized at the same site
does not contribute to the matrix element in Eq. (C2): the
intrawell integral vanishes because ψ2(ϕ) is a symmetric
function (ψ being the ground state of a symmetric potential),
which is multiplied by the antisymmetric function sin ϕ/2; the
vanishing of the intrawell term has, thus, the same origin of
the vanishing of the matrix element for a weakly anharmonic
qubit at zero phase bias [see Eq. (53) with n = m and ϕ0 = 0].
To estimate the interwell contribution s in Eq. (C3), we use
Eq. (B18) and that near ϕ = π we have sin ϕ/2 � 1. After
changing integration variable (ϕ → π − ϕ), we arrive at

s � 4A2
0

∫
0
dϕ exp

[
−
√

EJ

2EC

ϕ3

24
√

1 − ωp/4EJ

]

� D

(
EC

EJ

)1/6
ε0

ωp

, (C6)

where (with � denoting here the gamma function)

D = 21/63−2/3�
(

1
3

) ≈ 1.45. (C7)

Due to the factor ε0 in Eq. (C6), the transition rate in Eq. (C1)
is indeed exponentially small. Turning now to the factor
Sqp in Eq. (C1), we note that its argument ωeo is usually
small due to its exponential suppression at large EJ /EC [see
Eq. (B20)]. Therefore, the “high-frequency” condition ωeo �
δE (with δE the characteristic quasiparticle energy) is in
general not satisfied and use of Eq. (41) expressing Sqp in
terms of the quasiparticle density is not appropriate. In thermal
equilibrium, one can use Eq. (35) for arbitrary ratio ωeo/T .
Assuming ε0 � T , using Eqs. (17) and (35), and the above
results, we rewrite Eq. (C1) as

�o→e = 16EJ

π
e−	/T

[
ln

4T

|ε0 cos(2πng)| − γE

]

×
(

EC

EJ

)1/3 (
D

ε0

ωp

)2

sin2(2πng). (C8)

Generalization of this result to the transition rate �(n)
o→e between

nearly degenerate states of higher energy is obtained by
the substitution ε0 → εn. Except at the degeneracy points
ng = 1/4, 3/4 (where this expression diverges), we can
estimate the rate in order of magnitude by assuming sin(2πng),
cos(2πng) ≈ 1. For low-lying states, this estimate shows that
the rate �(n)

o→e is small compared to the rate �1→0 determining
the relaxation time of the transmon [see Eq. (55)]. This
smallness is due to the exponentially suppressed o → e

matrix element Eq. (C6) as a function of the ratio EJ /EC ,
in comparison with the weak power-law suppression of the
1 → 0 matrix element as given by Eq. (53) with ϕ0 = 0,
m = 1, and n = 0. The relationship between the two rates
is qualitatively different in the split transmon, as we discuss
next.

2. Split transmon

The above calculation of the even to odd transition rate in
the single-junction transmon can be easily modified to yield the
rate for a split transmon. As discussed in Sec. V A, the effective
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Hamiltonian and therefore the form of the eigenstates are the
same in the single and split transmon. The difference between
the two cases arises in the evaluation of the matrix elements
pertaining to each junction [cf. Eq. (125)]. For the even to odd
matrix element, we find∣∣∣∣〈�e| sin

ϕ̂j

2
|�o〉

∣∣∣∣
2

� 1 − cos(πf ± ϑ)

2
, (C9)

where the upper (lower) sign applies to junction j = 1 (j =
0), f is defined in Eq. (88), and ϑ in Eq. (118). In contrast
with the single-junction transmon case considered above, here
the matrix element is dominated by the intrawell contribution
having the same form of Eq. (53) at n = m = 0 and finite
phase bias πf ± ϑ . Substituting Eq. (C9) into Eq. (109) and
assuming thermal equilibrium quasiparticles [cf. Eq. (35)], we
obtain

�o→e = 8(EJ0 + EJ1)

π
e−	/T eωeo(f )/2T K0

( |ωeo(f )|
2T

)

×
(

1 − ω2
p(f )

ω2
p(0)

)
(C10)

with ωp(f ) of Eq. (120). The frequency ωeo(f ) depends both
on gate voltage, as in Eq. (B6), and on flux via ε0(f ); the
latter quantity is given by Eq. (B20) with the substitutions
ωp → ωp(f ), EJ → EJ (f ) [see Eq. (116)]. As above, the
rate �(n)

o→e of transitions between nearly degenerate levels of
higher energy is obtained upon the substitution ωeo(f ) →
εn(f ) sin(2πng) in Eq. (C10). Note that the rate vanishes
at integer multiples of the flux quantum; at those values of
flux, exponentially small contributions to the matrix element
analogous to those calculated above should be included. At
noninteger values of reduced flux f , Eq. (C10) should be
compared with the transition rate between qubit states induced
by thermal quasiparticles

�1→0 = 8(EJ0 + EJ1)

π
e−	/T eωp(f )/2T K0

( |ωp(f )|
2T

)

× EC

ωp(f )

(
1 + ω2

p(f )

ω2
p(0)

)
, (C11)

obtained using Eq. (125). The ratio between these two
quantities

�o→e

�1→0
=

eωeo(f )/2T K0

(
|ωeo(f )|

2T

)
eωp(f )/2T K0

( |ωp(f )|
2T

) ωp(f )

EC

ω2
p(0) − ω2

p(f )

ω2
p(0) + ω2

p(f )

(C12)

depends on temperature through the first factor on the right-
hand side. Experimentally, measurements for the rate are
performed near ng = 1/2, so that the relevant even and
odd frequencies are ωeo(f ) ∼ ε0(f ),ε1(f ); they are gener-
ally two to three orders of magnitude smaller than ωp(f )
(∼2π × 4 GHz), while the latter is usually larger than twice
the temperature (T ∼ 20–200 mK). Under these conditions,
the first factor in Eq. (C12) can be approximated, in order
of magnitude, by 5 to 10. The last factor in Eq. (C12)
varies between 0 at f = 0 and 1 at f = 1/2; as flux is
used to suppress the qubit frequency from its maximum value

(�10 GHz), we can approximate the last factor by 1/2. Finally,
the central factor can be rewritten as

√
8EJ (f )/EC ; since

EJ (f )/EC usually is varied between 10 and 30, we arrive at
the order-of-magnitude estimate

�o→e

�1→0
∼ 20–80 (C13)

in the experimentally relevant ranges of parameters. This is an
example of the more general statement that, except close to
integer values of f , the even and odd transition rate in a split
transmon is faster than its decay rate. This result is qualitatively
in agreement with experimental bounds for the even and odd
transition rate in split transmons.36,37

APPENDIX D: MATRIX ELEMENTS FOR THE
HARMONIC OSCILLATOR

In this Appendix, we present an analytic expression for the
matrix elements of sin ϕ̂/2 between harmonic-oscillator states
|n〉 and |m〉. Let us introduce the displacement operator

D̂(μ) = eμâ†−μ∗â , (D1)

where â (â†) is the harmonic-oscillator annihilation (creation)
operator. The matrix elements of D̂ are38

〈m|D̂(μ)|n〉 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−|μ|2/2
√

m!
n! (−μ∗)n−mL(n−m)

m (|μ|2),

m � n

e−|μ|2/2
√

n!
m! (μ)m−nL(m−n)

n (|μ|2),

m � n

(D2)

where L(α)
n are the generalized Laguerre polynomials. Since the

position operator is ϕ̂ = �(â + â†)/
√

2, where � = 1/
√

mω is
the oscillator length for an oscillator of mass m and frequency
ω, we can write

eiϕ̂/2 = D̂

(
i�

2
√

2

)
. (D3)

Note that for the harmonic oscillator described by Eq. (50), we
have

� = 2
√

2

√
EC

ω10
. (D4)

To allow for fluctuations around a finite phase, we shift
ϕ̂ → ϕ0 + ϕ̂ in the argument of sine and rewrite the resulting
expression in terms of exponentials:

sin
ϕ0 + ϕ̂

2
= 1

2i
(eiϕ0/2eiϕ̂/2 − e−iϕ0/2e−iϕ̂/2). (D5)

Then, using Eqs. (D2) and (D3), we find for m � n

〈m| sin
ϕ0 + ϕ̂

2
|n〉

= e−�2/16

√
m!

n!

(
�

2
√

2

)n−m

×L(n−m)
m

(
�2

8

)
sin

ϕ0 + π (n − m)

2
. (D6)

064517-20



RELAXATION AND FREQUENCY SHIFTS INDUCED BY . . . PHYSICAL REVIEW B 84, 064517 (2011)

The matrix element for m � n is obtained by exchanging
n ↔ m in the right-hand side. Equation (53) can be obtained
from Eq. (D6) by Taylor expansion for small �, which for the
Laguerre polynomials gives

L(α)
m (x) = (m + α)!

m!α!
− (m + α)!

(m − 1)!(α + 1)!
x + O(x2). (D7)

Equation (58) follows from Eq. (D6) with m = 0 using
L

(α)
0 (x) = 1.

Using Eq. (D2), we can also find the expectation value of
the operator cos ϕ̂. After shifting the phase variable as done
above, and since the expectation value of sine vanishes by
symmetry, we find

〈n| cos (ϕ0 + ϕ̂) |n〉 = cos ϕ0〈n| cos ϕ̂|n〉. (D8)

Writing the cosine in exponential form, using eiϕ̂ =
D̂(i�/

√
2), we arrive at

〈n| cos (ϕ0 + ϕ̂) |n〉 = cos ϕ0 e−�2/4L(0)
n

(
�2

2

)
. (D9)

APPENDIX E: MATRIX ELEMENTS FOR THE TRANSMON

Here, we want to show that corrections to Eq. (53) for the
transmon (ϕ0 = 0) are of cubic order in EC/ωp, as claimed in
the text following that equation. The transmon Hamiltonian
is given by Eq. (B1) and we neglect exponentially small
corrections by setting ng = 0 (see Ref. 2 and Appendices B
and C). Numbering the eigenstates |ψn〉 starting with n = 0 for
the ground state, even- (odd-) numbered states are even (odd)
functions of ϕ, due to the symmetry of the potential energy.
Since sin ϕ/2 is an odd function, the matrix element between
states of the same parity vanishes,

〈ψn±2j | sin
ϕ̂

2
|ψn〉 = 0, j = 0,1,2, . . . . (E1)

Due to the smallness of the charging energy EC � EJ , as a
first approximation, we can expand the Josephson energy in
Eq. (B1) up to the fourth order in ϕ. In terms of creation
and annihilation operators (cf. Appendix D, note that in
the present case � = 2

√
2
√

EC/ωp � 1), the approximate
transmon Hamiltonian is

Ĥ = Ĥ0 + δĤ , (E2)

Ĥ0 = ωp

(
â†â + 1

2

)
, (E3)

δĤ = −EC

12
(a + a†)4. (E4)

To first order in EC/ωp, expressed in terms of harmonic-
oscillator states, the transmon eigenstates are therefore

|ψn〉 = |n〉 + |δψn〉, |δψn〉 = −
∑
j �=n

|j 〉 〈j |δĤ |n〉
Ej − En

,

(E5)

En = ωp

(
n + 1

2

)
,

and, including the first anharmonic corrections to the eigen-
states, the matrix elements are

〈ψm| sin
ϕ̂

2
|ψn〉 � 〈m| sin

ϕ̂

2
|n〉 + 〈m| sin

ϕ̂

2
|δψn〉

+ 〈δψm| sin
ϕ̂

2
|n〉. (E6)

Using Eq. (D6), we find that the leading contribution to the
first term on the right-hand side is

〈n ± (2j + 1)| sin
ϕ̂

2
|n〉 ∝

(
EC

ωp

)j+1/2

, j = 0,1,2, . . . .

(E7)

Since we are interested in calculating the square of the matrix
elements up to second order in EC/ωp, we can neglect
transitions with j � 1. For j = 0, using Eq. (D6) at next to
leading order, we find

〈n ± 1| sin
ϕ̂

2
|n〉

�
√(

n + 1

2
± 1

2

)
EC

ωp

×
[

1 − 1

2

(
n + 1

2
± 1

2

)
EC

ωp

+ O
(

EC

ωp

)2 ]
. (E8)

Consider now the case m = n − 1 in Eq. (E6). Using Eqs. (E4)
and (E5), and the leading term in Eq. (E8), the central term in
the right-hand side is approximately

〈n − 1| sin
ϕ̂

2
|δψn〉

� −〈n − 1| sin
ϕ

2
|n − 2〉 〈n − 2|δĤ |n〉

En−2 − En

� − 1

24

(
EC

ωp

)3/2 √
n − 1〈n − 2|(a + a†)4|n〉. (E9)

To calculate the last factor, we note that

(a + a†)2|n〉 =
√

n(n − 1)|n − 2〉 + (2n + 1)|n〉
+

√
(n + 1)(n + 2)|n + 2〉. (E10)

Shifting n → n − 2 and taking the scalar product, we arrive at

〈n − 2|(a + a†)4|n〉 = 4
√

n(n − 1)
(
n − 1

2

)
, (E11)

and substituting this expression into Eq. (E9), we obtain

〈n − 1| sin
ϕ̂

2
|δψn〉 = −1

6

(
EC

ωp

)3/2 √
n(n − 1)

(
n − 1

2

)
.

(E12)

Proceeding as above, we also find

〈δψn−1| sin
ϕ̂

2
|n〉 = 1

6

(
EC

ωp

)3/2 √
n(n + 1)

(
n + 1

2

)
.

(E13)
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Finally, substitution of Eqs. (E8), (E12), and (E13) into
Eq. (E6) gives

〈ψn−1| sin
ϕ̂

2
|ψn〉 =

√
n
EC

ωp

+ O
(

EC

ωp

)5/2

. (E14)

Repeating the above calculations for the case m = n + 1 and
using Eq. (E7), we conclude that the square of the matrix
element is∣∣∣∣〈ψm| sin

ϕ̂

2
|ψn〉

∣∣∣∣
2

= EC

ωp

[nδm,n−1 + (n + 1)δm,n+1] + O
(

EC

ωp

)3

. (E15)

APPENDIX F: MULTIJUNCTION HAMILTONIAN

The aim of this Appendix is to derive the Hamiltonian for a
multijunction system starting from the Lagrangian Eq. (105).
We consider a loop of M + 1 junctions and assume M of them,
denoted by index j with j = 1, . . . ,M , to be identical, so that
their capacitances and Josephson energies are, respectively,
Cj = C1 and EJj = EJ1 for 1 � j � M . These M junctions
will be referred to as the array junctions to distinguish them
from the j = 0 junction, whose capacitance C0 and Josephson
energy EJ0 can differ from those of the array junctions.

While the system comprises M + 1 junctions, there are only
M-independent degrees of freedom due to the flux quantization
constraint Eq. (104). Using that equation to eliminate the phase
ϕ0, the Lagrangian is

L{ϕ} = 1

2

C0

(2e)2

⎛
⎝ M∑

j=1

ϕ̇j

⎞
⎠

2

+ 1

2

C1

(2e)2

M∑
j=1

ϕ̇2
j

+EJ0 cos

⎛
⎝ M∑

j=1

ϕj − 2π�e/�0

⎞
⎠ + EJ1

M∑
j=1

cos ϕj .

(F1)

We introduce a new set {φ} of M independent variables

φ =
M∑

j=1

ϕj , (F2)

φk = ϕk − α

M−1∑
l=1

ϕl + ϕM√
M

, k = 1, . . . ,M − 1 (F3)

where

α =
(

1 + 1√
M

)
1

M − 1
. (F4)

The inverse transformation is given by

ϕk = φk − α

M−1∑
l=1

φl + 1

M
φ, k = 1, . . . ,M − 1

(F5)

ϕM = 1√
M

M−1∑
l=1

φl + 1

M
φ.

In terms of the M variables φ, φk (k = 1, . . . ,M − 1), the
Lagrangian is

L{φ} = 1

8e2

(
C0 + C1

M

)
φ̇2 + 1

8e2
C1

M−1∑
k=1

φ̇2
k − U ({φ})

(F6)

with potential energy

U ({φ}) = −EJ0 cos (φ − 2π�e/�0)

−EJ1

M−1∑
k=1

cos

(
φk − α

M−1∑
l=1

φl + φ

M

)

−EJ1 cos

(
1√
M

M−1∑
l=1

φl + φ

M

)
. (F7)

Introducing the M conjugate variables N = ∂Lφ/∂φ and Nk =
∂Lφ/∂φk (k = 1, . . . ,M − 1), the Hamiltonian is

H{φ} = Nφ̇ +
M−1∑
k=1

Nkφ̇k − L{φ}

= 4ECN2 + 4EC1

M−1∑
k=1

N2
k + U ({φ}), (F8)

where

EC = e2

2(C0 + C1/M)
, EC1 = e2

2C1
. (F9)

The Hamiltonian in Eq. (F8) governs the dynamics of the
M-independent degrees of freedom of the M + 1 junction
system with flux quantization and M identical array junctions.
For a two-junction system, we have M = 1 and all the sums
in Eqs. (F7) and (F8) are absent. Then, the Hamiltonian is that
given in Eq. (113).

1. Fluxonium

The fluxonium consists of M + 1 junctions such that a
“weak” junction j = 0 with EJ0 < EJ1 is connected to a large
array of M junctions (M � 1) with small phase fluctuations
EC1 � EJ1. These conditions enable us to drastically simplify
the last two terms of the potential energy U ({φ}) for the M-
independent variables φ, φk (k = 1, . . . ,M − 1) in Eq. (F7).

We consider small fluctuations of variables φk around
the configuration φk = 0, k = 1, . . . ,M − 1, which is an
extremum of U for any value of φ [as can be checked by
differentiating U with respect to φk and using Eq. (F4)]. We
further assume that typical values of φ are small compared
to 2πM (note that since M is large, this weak restriction on
φ and its fluctuations still allows for phase slips through the
weak junction). Then, we can expand the last two terms in
Eq. (F7) to quadratic order in φk and φ/M to find

U ({φ})

� −EJ0 cos (φ − 2π�e/�0) + 1

2
ELφ2 + 1

2
EJ1

M−1∑
k=1

φ2
k

(F10)
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with

EL = EJ1

M
. (F11)

Hence, in this approximation, the Hamiltonian (F8) for
the M + 1 junction fluxonium separates into independent
Hamiltonians for each of the M unconstrained variables φ, φk:

H{φ} = Hφ +
M−1∑
k=1

Hk,

Hφ = 4ECN2 − EJ0 cos(φ − 2π�e/�0) + 1
2ELφ2,

Hk = 4EC1N
2
k + 1

2EJ1φ
2
k . (F12)

Up to a change of variable φ → 2π�e/�0 − φ and
redefinitions of symbols, Hφ coincides with Hϕ of Eq. (2).
The relations in Eq. (133) between the parameters of the M + 1
junctions and the energies EC and EL entering the effective
qubit Hamiltonian Hφ follow from Eqs. (F9) and (F11),
respectively.
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6K. A. Matveev, M. Gisselfält, L. I. Glazman, M. Jonson, and R. I.
Shekhter, Phys. Rev. Lett. 70, 2940 (1993).

7P. Joyez, P. Lafarge, A. Filipe, D. Esteve, and M. H. Devoret, Phys.
Rev. Lett. 72, 2458 (1994).

8M. H. Devoret and J. M. Martinis, Quantum Inf. Process. 3, 163
(2004).

9V. E. Manucharyan, J. Koch, M. H. Devoret, and L. I. Glazman,
Science 326, 113 (2009).

10G. Catelani, J. Koch, L. Frunzio, R. J. Schoelkopf, M. H. Devoret,
and L. I. Glazman, Phys. Rev. Lett. 106, 077002 (2011).
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