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Effect of long cyclic exchanges on the magnetic properties of bcc 3He
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Using path-integral Monte Carlo calculations, we have calculated ring exchange frequencies in the bcc phase of
solid 3He for densities from melting to the highest stable density. We evaluate 42 different exchange frequencies
from two atoms up to eight atoms and find their Grüneisen exponents. Using a fit to these frequencies, we
calculate the contribution to the Curie-Weiss temperature, �CW, and upper critical magnetic field, Bc2, for even
longer exchanges using a lattice Monte Carlo procedure. We find that contributions from seven- and eight-particle
exchanges make a significant contribution to �CW and Bc2 at melting density. Comparison with experimental
data is given.
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I. INTRODUCTION

The magnetic properties of solid 3He have attracted much
attention over the last four decades because at millikelvin
temperatures, solid 3He is an almost pure spin-1/2 fermion
system with a simple crystal structure. The large amplitude
of its zero-point motion induces exchanges among the atoms;
their frequencies determine the magnetic properties and give
rise to a rich magnetic phase diagram. Because of the simplicity
of the atomic interaction, it is possible to determine the spin
Hamiltonian from first principles and thereby to confront
experiment with theory without any adjustable parameters.
Hence, this is a very important model with applications to
other physical systems. However, it is quite challenging to
treat such a highly quantum spin system even with modern
computational capabilities.

Following on Dirac,1 Thouless2 elucidated the relation
between exchange of 3He atoms and the nuclear magnetism
of solid 3He. He showed how a spin Hamiltonian results from
ring exchanges among 3He atoms. According to this theory, at
low temperatures the spins are governed by a Hamiltonian of
the form

Hspin = −
∑

P

(−1)P JP P̂spin, (1)

where the sum is over all cyclic permutations P of atoms, JP >

0 is an exchange frequency, the P̂spin is the corresponding spin-
exchange operator, and (−1)P is the sign of the permutation:
an exchange of an even number of atoms is antiferromagnetic
and an odd number of atoms is ferromagnetic.

Above the solidification density (v = 24.23 cm3/mole),
3He crystalizes into a body-centered cubic (bcc) structure
until the higher density (v = 19.85 cm3/mole), when it
transforms into an hcp lattice. The bcc lattice is bipartite,
so if exchange were only between pairs of nearest-neighbor
atoms, the above spin Hamiltonian would reduce to the
nearest-neighbor Heisenberg model and the ground state
would be antiferromagnetic. However, this is not consistent
with experiments.3 The state at magnetic fields less than 0.4 T
and temperatures less than 1 mK is found experimentally
to be the U2D2 structure, having two planes of up-spins
and two planes of down-spins. At higher magnetic field, the

system transforms into the canted-normal antiferromagnetic
(CNAF) phase. At the upper magnetic field Bc2(v) the system
transforms into a spin-polarized phase having the same order as
the high-temperature paramagnetic phase. A discussion of the
history of solid 3He, the exchange model, and its application
to other physical systems is given in two recent reviews.4,5

Roger, Hetherington, and Delrieu introduced the multiple-
spin exchange (MSE) model.3 In this model, one also considers
exchange between three and four atoms. By adjusting the
frequencies to some features of the experimental data, they
were able to understand the observed spin ordering, the
ground-state U2D2 structure, the high-temperature specific
heat coefficient, and the mean spin-wave velocity. Roger6 also
performed approximate Wentzel-Kramers-Brillouin (WKB)
calculations for the exchange frequencies and found that
exchanges of two, three, and four particles have the same
order of magnitude. This leads to spin frustration because of
the competition between exchanges containing an odd or an
even number of atoms.

A much more accurate Monte Carlo procedure to calculate
the exchange frequencies was introduced by Ceperley and
Jacucci7 (referred to as CJ below). The results were in rough
agreement with the empirically determined values and even
better agreement with the experimental data. Godfrin and
Osheroff8 (called GO below) then used the MSE model with
the CJ exchange frequencies, within the T = 0 mean-field
approximation to study magnetic properties of the U2D2 and
CNAF phases of the 3He considering from two- up to six-atom
exchange. There are difficulties in testing the MSE model more
precisely due to statistical errors of the CJ calculation and the
lack of values for higher-order exchanges. For example, it
has been suggested that in high magnetic fields (e.g., 20 T)
exchanges of more than six spins contribute.9

In this paper, we address the contribution of longer
exchanges. We want to determine how quickly the exchanges
converge if they do, in fact, converge. In doing so we can
assess how well first-principles calculations can describe the
magnetic properties of solid helium. We report here higher-
accuracy Monte Carlo exchange-frequency calculations for
bcc 3He including up to eight-atom exchanges at different
densities. The exchange-frequency calculations have been
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determined to better than 5% accuracy. We estimate finite size
corrections and time-step errors for the first time. The corrected
frequencies are fit to a formula, allowing us to estimate the
exchange frequency for any exchange and thus definitively
take into account very long exchange cycles. We then examine
the convergence of properties versus cycle length.

We note that the problem of long exchange cycles is
relevant to other systems that are more complex than bcc
3He. For example, supersolidity in commensurate solid 4He is
determined by long ring exchanges.10 The same path-integral
methods have been used for that problem as well,11 showing
that long ring exchanges are not possible in a perfect helium
crystal. However, it is still very unclear what is giving rise
to the experimentally observed anomalous dynamic response
in solid 4He. A related physical system is 3He absorbed on
various substrates, forming a two-dimensional (2D) crystal.
The systems might show complex novel phases, but both
the calculations12 and experiments13 are much more difficult.
Finally, exchange frequencies have been calculated for both
the 2D (Ref. 14) and three-dimensional (3D)15 Wigner crystal,
the low-density phase of the electron gas. While the 3D Wigner
crystal has the conventional antiferromagnetic magnetic order,
path-integral Monte Carlo (PIMC) calculations predict the 2D
system will form a spin liquid magnetic ground state. Thus,
confrontation between theory and computation on bcc 3He can
give confidence in the results for other physical systems.

In the next section, we give some details of the computa-
tional approach and tests that we have done to establish the
accuracy. After that we describe the results and compare to
experiment.

II. COMPUTATIONAL APPROACH

The PIMC method for calculating exchange frequencies in
quantum crystals is based on the ratio

fP (β) = 〈Z|e−βH |PZ〉
〈Z|e−βH |Z〉 , (2)

where Z represents the many-body configuration where each
atom is on the site of a perfect lattice and PZ is a permutation
of the mapping of the atoms to lattice sites. The denominator is
the quantum partition function for the distinguishable particle
system (Boltzmann statistics) at an inverse temperature β.
Assuming the exchange energies are much smaller than
phonon energies, an exchange frequency, JP , is related
to fP by

fP (β) = tanh[JP (β − β0P )], (3)

for β > β0P where β0P is the amount of imaginary time to
accomplish the exchange P . The ratio fP is determined by the
path-integral Monte Carlo method and then Eq. (3) is inverted
to estimate JP .

In this path-integral algorithm, one does simulations with
two types of paths: paths beginning and ending at the perfect
lattice positions [the denominator of Eq. (2)] and paths
beginning at Z and ending at PZ [the numerator of Eq. (2)].
The imaginary time density matrices e−βH are expanded out
into a discrete path integral connecting the end points of the
paths using an approximate action with a time step τ . Under

the polymer isomorphism, fP is related to the free energy
needed to induce a specific cross-linking, corresponding to
the permutation P , into a crystal of ring polymers. Using the
Bennett method,7,16 we directly determine the ratio fP by
matching histograms of the change in action in mapping paths
of one type into paths of the other type. We can determine very
small values of fP , and hence JP , to a relative accuracy of a
few percent. The details of the method have been given in an
earlier paper17 including several important improvements over
the original method. The method was developed with computer
capabilities many orders of magnitude smaller than what is
presently available and to examine individual small cyclic
exchanges. On current computers we can examine much larger
exchanges; however, it is possible that different algorithms
could be used to advantage to treat large numbers of large
cyclic exchanges.

Helium is unique among the elements in how well its
interaction is described by a pair potential. The use of a
semiempirical pair potential gives an error in the ground-state
energy of less than 1%. We have used the semiempirical Aziz
two-body potential18 and the exact pair action.10 Note that the
earlier CJ calculation used a different potential,19 one with a
different repulsive core. The observed agreement between the
present and previous calculations is a test of how sensitive the
results are to the potential.

We now discuss the various errors arising in these calcu-
lations. In addition to statistical errors, there are systematic
errors from the temperature, the time step, and the number of
atoms in the periodic box.

A. The statistical error

The dominant error in our calculations is the statistical
error. This error is estimated by breaking the computer run into
subsets and finding the fluctuation in the estimate of JP . The
statistical error can be reduced by averaging over more PIMC
steps or by independent runs on separate computer processors.

B. The temperature bias

Temperature or its inverse, β, enters in this method in
Eq. (2) as a parameter. Physically we have to ensure that
thermal phonons do not influence the exchange frequencies.
This implies that the temperature has to be smaller than the
Debye temperature. Note that the Debye temperature for bcc
3He at melting20 is 19 K. It is not important that we choose
a temperature on the scale of the millikelvin temperature
at which helium magnetically orders. The most important
restriction on β is that it has to be greater than β0, the imaginary
time of the exchange as given in Eq. (3). We estimate β0 in
the calculation and find that it is weakly dependent on the
exchange and varies from 0.35 K−1 for p = 2 to 0.55 K−1 for
p = 8; here p is the number of exchanging atoms.

In order to judge the effect of temperature, we have
performed calculations of the two-atom exchange frequency
(which is the largest exchange frequency) at five different
temperatures for a system with 128 atoms near the melting
volume, v = 24.12 cm3/mole. The results are shown in Fig. 1.
The observed temperature dependence for 128 atoms is well
fit by the expression J1N (T ) = J1N (0) + ηT 3.
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FIG. 1. (Color online) Temperature dependence in the PIMC
calculations for J1N (the two-particle nearest-neighbor exchange)
at v = 24.12 cm3/mole for systems with N = 128 atoms. The red
curve is a nonlinear least-squares fit to the PIMC data: J1N (T ) =
J1N (0) + ηT 3.

Because the Debye temperature increases with decreasing
molar volume, a system at smaller volume should reach its
convergence at higher temperature. We therefore conclude
that, for T � 0.5 K, temperature effects are negligible at all
densities. All the following calculations use T = 0.5 K and
β = 2 K−1.

C. The time-step error

Next, we study how the exchange frequencies depend on
the time step τ of the approximate action. Trotter’s formula
ensures that if τ is sufficiently small the quantum integrals
will be computed exactly; the rate of convergence depends on
the quality of the action. The present calculations use tables
of the exact action for pairs of atoms. The discretization only
has to correct for effects of three or more bodies. Figure 2
shows the time-step dependence for exchanges involving two,
three, and four atoms. The results are fit to the expression
JP (τ ) = JP (0) + ξτ 5. The exponent 5 reflects the high quality
of the pair action. We see that for τ � 0.025 K−1 the exchange
frequencies are practically independent of the time step. One
expects that since higher-body exchanges keep atoms farther
apart during exchange, time-step errors would be largest for the
two-body exchange. We use τ = 0.025 K−1 in the subsequent
calculations. Hence, using the temperature as determined
above, the exchange process has 80 discrete steps.

D. The size effect

Finally, we study how the exchange frequency depends on
the number of atoms, N , in the simulation cell. As is typical
in most simulations, periodic boundary conditions are used to
eliminate most effects of finite N . The bcc lattice is consistent
with cubic boundary conditions; the number of lattice sites is
taken to be twice the cube of an integer, starting at 128 and
going up to 1024.

The main effect on the exchange frequency of the finite
system size comes from the highly nonlinear dependence of the
exchange frequency on density. If a zero-point phonon, with
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FIG. 2. (Color online) The dependence of the estimated exchange
frequency on the time step for the most important two-, three-,
and four-particle exchange frequencies at v = 24.12 cm3/mole for
systems with N = 128 atoms.

wavelength greater than several lattice constants, is present,
in regions of enhanced (decreased) density the exchanges are
suppressed (enhanced). However, in a finite simulation cell, the
maximum wavelength equals the box size. Since the exchange
frequency is highly dependent on the local density, ρ, and
J ∼ ρ−� where 15 < � < 30, cutting off the long-wavelength
phonon spectrum makes exchange more difficult and reduces
the average exchange frequency.

We have investigated the size dependencies of the most
important exchanges from two to six atoms by varying the
number of atoms in the cell from 128 up to 1024 as shown
in Fig. 3 near melting. We find that the exchange frequencies
can be described by JP = JP (∞) + ζP /N . The corrections for
five- and six-body exchanges are negligible within statistical
error, as are all size corrections for exchange frequencies
with JP < 0.1 mK. Figure 4 shows the size effect near the
high-pressure limit of the bcc solid, v = 20.07 cm3/mole. For
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FIG. 3. (Color online) Dependence of the exchange frequency
on the number of atoms in the cell, N , for most important 2, 3,
4, 5 and 6 particle exchanges at the volume v = 24.12 cm3/mole,
τ = 0.025 K−1 and T = 0.5 K. The red curve is a fit to the PIMC
data.

064515-3
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FIG. 4. (Color online) Size dependence for the important
two-, three-, and four-particle exchange frequencies at v =
20.07 cm3/mole. The red curve is a fit to the PIMC data.

two-body exchange at this density, we need terms using both
N−1 and N−2. At the highest pressure, the size correction is
insignificant for JP < 1 μK.

III. CALCULATED EXCHANGE FREQUENCIES

We have performed PIMC calculations of the exchange
frequencies from two- up to eight-atom cyclic exchanges
at different densities. Some of the exchanges considered
are shown in Table I. They include all possible ring

exchanges involving two, three, and four atoms with nearest-
or next-nearest-neighbor “hops.” We have calculated the 10
most important five-atom exchange frequencies, the 18 most
important six-atom exchanges, as well as some important
eight-atom exchange frequencies. We selected these longer
exchanges by performing random walks on a bcc lattice, as
explained below.

We use the notation for the exchanges from Refs. 3 and
8. We label distances between nearest neighbors as 1, next-
nearest neighbor as 2, etc. For a p particle cyclic exchange,
the first p numbers are the distances between successive sites
on the exchange; thus we write a six-particle exchange between
nearest neighbors as {111111} or more succinctly as {16}. The
next group of integers (separated by a semicolon) gives the p

distances between atoms that are two atoms apart on the cycle.
The next set of numbers would give the distances between
atoms three apart on the cycle, etc. Although the notation does
not always map onto a single exchange, in almost all cases one
can work out the specific cycle with this notation. In addition,
some of the smaller exchanges are given symbols and names,
in agreement with the previous literature, in particular Godfrin
and Osheroff,8 who give explicit diagrams of the exchanges.

Figure 5 shows our estimates of the three most important
exchange frequencies as a function of molar volume. It is
evident that they scale with density as

JP (v) = JP (v0)(v/v0)�P , (4)

where �P is the so-called Grüneisen parameter. Table II
gives the size-corrected exchange frequencies at the reference
volume: JP (v0) and �P . Note that the three largest exchanges,

TABLE I. The exchange frequencies in μK as a function of molar volumes (cm3) for N = 128 atoms. The digits in parentheses are the
estimated standard errors in the last decimal place.

p Exchange Name 20.07 22.47 22.69 23.90 24.12 24.22

2 (11) J1N (NN) 13.1(1) 118(2) 136(2) 359(7) 430(5) 454(8)
(22) J2N (NNN) 0.84(2) 11.8(3) 15.8(3) 52(1) 63(1) 67(2)
(33) J3N (NNNN) 0.11(3)

3 (112) T1 (triplet) 4.38(9) 38.1(7) 46.1(8) 119(2) 143(2) 151(3)
(113) T2 0.0163(3) 0.42(1) 0.60(2) 2.56(7) 3.41(9) 3.7(1)

4 (14;23) KP (planar) 9.7(2) 69(1) 83(2) 199(4) 223(3) 257(6)
(14;22) KF (folded) 0.403(7) 5.70(9) 6.9(1) 23.0(5) 27.2(6) 30.7(6)

(1212;14) KL (lozenge) 0.118(3) 1.91(3) 2.39(5) 8.4(2) 10.6(2) 11.4(3)
(1122;31) KA (diamond) 0.0498(8) 1.04(3) 1.26(3) 4.8(3) 6.3(1) 6.6(1)

(24;33) KS (square) 0.0207(5) 0.46(2) 0.55(2) 2.32(8) 3.01(5) 3.2(1)
(1212;11) KB (eight) 0.76(2)

5 (142;52341) F1 (planar) 0.104(3) 1.690(6) 2.18(7) 7.6(2) 9.4(2) 10.2(3)
(11211;24133) F2 0.054(1) 1.01(2) 1.28(3) 4.9(1) 6.2(2) 6.6(2)
(11211;24132) F3 0.0116(3) 0.316(9) 0.40(1) 1.8(1) 2.20(8) 2.42(8)
(22122;34243) F4 0.125(4)

6 (16;36;43) S1 (crown) 0.72(1) 7.3(2) 8.8(3) 26.3(9) 33(1) 36(1)
(16;253253;471) S2 (planar) 0.125(4) 1.84(6) 2.50(7) 8.5(3) 10.7(4) 12.0(5)
(16;233323;144) S3 0.023(1) 0.50(1) 0.66(2) 2.8(1) 3.6(2) 4.0(2)
(16;332323;414) S4 0.024(1) 0.53(2) 0.63(2) 2.7(1) 3.3(1) 4.0(2)

(2142;433343;544) S5 0.0177(5) 0.41(2) 0.54(2) 2.0(1) 2.5(1) 3.1(2)
(16;325223;144) S6 0.0094(3) 0.25(1) 0.35(3) 1.53(6) 1.96(8) 2.06(8)
(16;322523;414) S7 1.90(8)

8 (18;(5222)2;(7117)2; 2626) O1 0.0138(5) 0.28(1) 0.40(2) 1.40(6) 1.94(8) 2.4(2)
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FIG. 5. (Color online) Density dependence of the largest two-,
three-, and four-atom exchange frequencies for N = 128 (the circles
and dashed lines) and for N = ∞ with sized corrections (the squares
and solid lines).

J1N , T1, and KP , have 17 � �P � 19, the six-cycle crown
exchange has �P = 21, while all the other exchanges have
23 < �P < 29. As the density increases, the first four men-
tioned exchanges become dominant. This is in accordance
with the measurements by Fukuyama et al.21 and the estimate
of the action by Roger6 using a WKB method.

TABLE II. The estimated frequencies at v0 = 24.12 cm3/mole
and the Grüneisen exponent �P . Also shown are the previous PIMC
results (JCJ) from Ref. 7 as reported in Ref. 8. The digits in parentheses
are the estimated standard errors in the last decimal place.

p Name JCJ JP (v0) (μK) �P

2 J1N 453(32) 474(5) 19.0(2)
J2N 62(6) 63(1) 23.4(2)

3 T1 182(20) 150(2) 18.5(1)
T2 5.3(1) 3.36(9) 29.0(2)

4 KP 250(25) 243(4) 16.9(2)
KF 32(5) 28.1(6) 23.0(2)
KL 11(3) 10.5(2) 24.4(1)
KA 6(2) 6.2(1) 26.1(3)
KS 1.9(6) 2.95(5) 26.9(2)

5 F1 5.3(1) 9.5(2) 24.5(1)
F2 6.1(2) 25.7(1)
F3 2.26(8) 28.5(3)

6 S1 34(10) 32(1) 20.8(2)

S2 10(3) 10.7(4) 24.2(2)
S3 3.6(2) 27.5(1)
S4 3.4(1) 27.0(3)
S5 2.6(1) 27.1(4)
S6 1.95(8) 29.0(3)

8 O1 1.97(8) 27.0(5)

Also shown in Table II are the previous PIMC estimates
of exchange frequencies. In general, the agreement with the
previous calculation is very good in spite of the difference
between that calculation and the present one. The main
difference is the magnitude of the statistical error. Also those
calculations were for N = 54, they did not include size
corrections, and the helium interaction was different.

In order to estimate the effects of longer exchange cy-
cles, we compute the frequencies of 6 different five-atom
exchanges, 11 different six-atom exchanges, and 6 different
eight-atom exchanges at the molar volume 24.12 cm3/mole.
These results are not shown in Table I. We then fit all of the
exchange frequencies to the expression

JP = exp(a0 + a1n + a2m + a3c), (5)

where n and m are the number of first- and second-neighbor
hops in the exchange (with p = n + m), c = ∑p

i (1 + d̂
+
i ·

d̂−)2, and d̂±
i is the unit vector from site i on the exchange to

the nearby sites in the two exchange directions. The parameters
a1 and a2 measure the increase in action in adding a nearest-
or next-nearest-neighbor “hop” to an exchange cycle. On the
other hand, a3 favors straight exchanges versus ones that
double back on themselves; if the exchange angle is acute,
it is likely that the incoming and outgoing atoms will collide,
thus decreasing the exchange frequency. This expression for
the action was found by Ceperley and Bernu11 to provide a
good fit to exchange frequencies of solid 4He. For 3He at this
density, it fits the exchange frequencies to a relative error of
12% accuracy over our database of 42 different computations.
Figure 6 shows the comparison between the PIMC frequencies
and the fitted frequencies. We excluded from the fit the pair
exchanges and exchanges beyond next-nearest neighbors, e.g.,
all Jn’s and T2. At the melting density, we find the best fit
parameters are exp(a0) = 3.27 K, a1 = −1.702, a2 = −2.826,
and a3 = −0.640 with errors on a1, a2, and a3 less than 1%.
By using the 16 frequencies at 20.07 cm3, we estimate the

FIG. 6. Comparison of the fitted expression Eq. (5) with the 42
PIMC determined frequencies with error bars.
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Grüneisen parameters of the fitting coefficients (∂ak/∂ ln v) to
be (−8.3,4.0,6.7,2.1), respectively.

IV. CALCULATION OF MAGNETIC PROPERTIES

Having determined the exchange frequencies in Table II,
and using the fit for exchanges not in Table II, we can study
the magnetic properties based on the spin Hamiltonian, Eq. (1).

Previous work, for example, the MSE model, has as-
sumed that only a few frequencies contribute to experimental
properties. We wish to establish, from first principles, the
extent to which longer exchanges are important. We are
in a position to do so because the fit to the 42 exchange
frequencies allows an estimate of the frequency of all cyclic ex-
changes. However, note that we restrict consideration to cyclic
exchanges composed of nearest- or next-nearest-neighbor
hops.

It is not feasible to analyze by hand relevant cycles as
has been done in the past, because the number of possible
cycles grows rapidly with exchange length. Instead, we sample
random walks on the lattice and thereby obtain a Monte Carlo
(MC) estimate of some of the measured properties, in partic-
ular, the Curie-Weiss temperature �CW and the value for the
upper critical magnetic field, Bc2. We choose these quantities
to compute because each is a linear function of the exchange
frequencies, making the MC estimate straightforward, and
because experimental measurements are available.

The procedure to perform the random-walk estimate of
these quantities is as follows. The random walk on the bcc
lattice is started at the origin, and one of the 14 possible “hops”
to a neighboring site is chosen at random (8 nearest- plus 6
next-nearest-neighbor sites). The random walk continues until
either the walk revisits one of the previously visited lattice
sites, or the walk is too long (has more than 20 hops). Walks that
return to the origin before they hit any of the other visited sites
are counted in the statistics, while all other walks are discarded.
Let p be the number of hops of a useful walk with permutation
P . The contribution of that walk is then 14pJP . The exchange
frequency is either evaluated from Eq. (5) or for the exchanges
in Table II, that table value is used. We used the exponents in
Table II to scale to different densities; for frequencies not in
this table we used the estimated Grüneisen exponents of the
fitted parameters. Importance sampling could be used to make
the procedure more efficient; however, enough precision could
be easily obtained with the simple procedure outlined above.
Using the lattice MC algorithm, we reproduced the results of
GO8 with the CJ frequencies; those results involved explicit
counting of exchanges and group theory analysis of their effect
on properties.

To characterize the overall contribution of cycles of various
lengths, we computed the contribution to the ferromagnetic
energy of cycles of length p: Ap = −(−14)p〈JP 〉, where the
brackets indicate averaging over the lattice walks. Observable
properties are a function of Ap, as we discuss below. In the
results reported, 2 × 1010 lattice walks were used so that the
error due to the lattice walk statistics was very small. Values of
Ap at high and low density are shown in Fig. 7. We see there
is a fairly slow decay at the melting density but a much faster
decay at high density. The high-density exchanges are clearly
dominated by the small exchange cycles. The slow decay at

FIG. 7. Convergence of the contribution of exchange frequencies
of a given cycle length at molar volume 24.22 cm3 (solid line) and at
a smaller volume 20.07 cm3 (dashed line).

melting density comes about because the rapid decay of the
exchange frequencies is partially offset by the rapid increase in
the number of exchanges. We note that because even and odd
exchanges have opposite signs, the effect of long exchanges
on physical properties converges much faster.

A. Estimate of �CW

We define the partial Curie-Weiss temperature θp as the
contribution to �CW coming from exchange cycles of length
p. Hence �CW = ∑

p θp. It is related to Ap by

θp = (p − 1)2−p+1AP (6)

and is given in Table III at the melting density.
At the melting volume we calculate �CW =

−1.98 ± 0.1 mK. The experimental estimates range
from −1.7 to −2.0 mK, in agreement with the present
calculations.22 Figure 8 shows the convergence of �CW versus

TABLE III. Contributions to �CW and to magnetization for
exchange cycles of length p for v = 24.22 cm3/mole.

θp xp

p (mK) (mK)

0 0.228
1 −1.333
2 2.26 2.592
3 −5.83 0.652
4 6.22 0.143
5 −2.03 0.039
6 1.76 0.016
7 −0.66 0.007
8 0.35 0.013
9 −0.153 0.002
10 0.061
11 −0.027
12 0.013
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FIG. 8. Convergence of the Curie-Weiss temperature and the
upper critical field vs the maximum cycle length at molar volume
24.22 cm3.

the maximum cycle length. We note that the contribution
from nine cycles is 0.15 mK (Table III). However, there is
substantial cancellation between even and odd cycles, so the
convergence is effectively reached after seven cycles. Figure 9
compares the theoretical and measured values of �CW as

FIG. 9. Comparison of theory with experiment for the upper
critical field (top) and the Curie-Weiss temperature (bottom) vs molar
volume. In the top panel the dashed line represents the experimental
estimates9 and the solid line the PIMC estimates. In the bottom panel,
the line represents the PIMC estimate and the open symbols with error
bars the measurements.22 Note that we have matched the experimental
measurements of �CW with the PIMC ones at the molar volume
21.07 cm3.

FIG. 10. Comparison of the theoretical magnetization (solid
curve) vs the experiment measurements (dotted23 and dashed
curves21) at v = 24.22 cm3/mole.

a function of molar volume between 22 and 24 cm3. The
agreement is very good at all densities.

The errors in �CW come almost entirely from the PIMC
uncertainties in JP (e.g., from Table I), particularly the
statistical errors of the largest exchange frequencies. The errors
from the fit for large p and the error due to sampling the lattice
walks are an order of magnitude smaller.

B. Estimate of Bc2 and magnetization

As described by GO,8 at the mean-field level at zero
temperature, the relation between the applied magnetic field
(B) and the resulting magnetization (M) in the CNAF phase is

B = 4kB

γh̄

∞∑

k=1

kxky
2k−1, (7)

where y = M/Msat is the fractional magnetization. The coef-
ficients xk are obtained in the lattice walk as averages:

xk = (−14)p〈JP δn,2k/n〉. (8)

Here n is the number of nearest-neighbor hops in the
permutation P . This formula arises because of the antiferro-
magnetic structure of the CNAF phase. Every nearest-neighbor
exchange costs energy because it puts a spin on the incorrect
sublattice; thus it is inhibited by a factor yn. The upper critical
field is given by setting y = 1: Bc2 = (4kB)/(γh̄)

∑
kxk .

Computed values of xk at the melting density are shown in
Table III.

We obtain an estimate for Bc2 = 17.6 ± 1 T at the melting
volume 24.22 cm3. The experimental estimates9,23 are between
19.3 and 22.7 T. But we note that existing experimental data
are limited to a maximum of 12 T; hence, the experimental
Bc2 is extrapolated from measurements at smaller fields. The
comparison between theory and experiment is better at higher
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densities because the value of Bc2 is in the experimentally
accessible range, as seen in Fig. 9.

Figure 8 shows the convergence of Bc2 as a function of the
maximum cycle length at the melting density. As others have
speculated,8,9 convergence versus cycle length is very slow.
There is an appreciable even-odd effect. However, when the
cycles are partially summed to get xk , the result is a positive
number that converges much faster. Only the first four values
of xk are needed, which are determined by up to nine cycles.

Figure 10 shows the comparison between the magnetization
curve from theory and measurement.21,23 Although they cross
at around 4 T, they have different slopes. We note that
the magnetization formula does not account for quantum
fluctuations in the CNAF phase. These could be important for
values of magnetic field less than saturation, though they are
not important at M/Msat = 1 since polarized systems cannot
fluctuate.

V. CONCLUSION

Overall we see important effects of long exchange cycles.
More importantly, we have found that it is quite feasible
with modern techniques to determine all of the exchange
frequencies of solid 3He with enough accuracy to compare
directly to experiment. To go further, one has to perform
many-body calculations of the exchange Hamiltonian. This
later step is particularly challenging in view of the very large
number of exchange cycles that contribute, but it could be
done with a stochastic technique by further developments

of the random lattice walk. The present study gives added
confidence in using the Monte Carlo method for other systems
where the physics is determined by ring exchanges. In those
systems, for example in two dimensions, it will be interesting
to see whether the limitation to small exchange cycles goes
away.

In the development of the original exchange picture, one
imagined that exchanges were localized, proceeding across a
handful of low action barriers in phase space. This picture
is certainly appropriate at high density. However, a comple-
mentary picture, the “liquid drop” model, might be useful
near melting. Suppose long-wavelength zero-point phonons
combine to create a low-density spot in the crystal. Because
the system is near melting, the atoms in this spot will have a
mobility equivalent to the liquid. As the phonons move on, the
crystal will freeze into a long permutation cycle. In this model,
there are many equivalent barriers for exchange in phase space.
The rate-limiting step for all exchanges is the creation of the
low-density region. Although there is nothing in our results
to directly support this model, it could be a useful model for
other physical systems and possibly amenable to experimental
test.
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