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We derive Ginzburg-Landau-type action for a two-dimensional disordered superconductor under far-from-
equilibrium conditions in a fluctuational regime. Then, utilizing it, we calculate fluctuation-induced density of
states and Maki-Thomson- and Aslamazov-Larkin-type contributions to the in-plane electrical conductivity. We
apply our approach to a thin superconducting film sandwiched between a gate and a substrate, which have
different temperatures and different electrochemical potentials.

DOI: 10.1103/PhysRevB.84.064510 PACS number(s): 73.23.−b, 74.45.+c, 74.78.−w, 74.40.−n

I. INTRODUCTION

Most of the processes in physics and in the technological
realm occur under far-from-equilibrium (FFE) conditions. At
the same time, the theories of nonequilibrium behavior were
mostly restricted to a small deviation from the equilibrium.
A marked progress in the approaches to quantitative descrip-
tion of FFE physics is related to Keldysh technique-based
methods.1 However, mostly FFE systems have been studied
within the nonequilibrium form of the mean-field theory (see,
for example, Refs. 2 and 3). In this paper, we address the impor-
tant question of what happens to the conventional second-order
phase transition if the system under consideration is driven
out of equilibrium. In equilibrium, when close enough to the
second-order phase transition, the mean-field theory does not
hold and the physics starts to be governed by fluctuations.4,5

In our work, we construct a theory of fluctuations under
FFE conditions. As the exemplary system, we consider a
superconductor FFE in the fluctuational regime.

Our first notion is that, while in clean three-dimensional
conventional superconductors the fluctuations are important
only in a very narrow region around the superconducting
transition line (usually within the ∼10−12 K temperature
range), in high-temperature, low-dimensional, and organic
superconductors, the fluctuation region is much wider. In
particular, as early as in 1968, Aslamazov and Larkin,
and, independently, Maki showed that in disordered thin
superconducting films, the width of the fluctuation region,
which is determined by the sheet resistance, grows noticeably
as compared to that of bulk superconductors.5–8 Moreover,
it was demonstrated that not only thermodynamic but also
dynamic characteristics of the low-dimensional systems are
strongly influenced by the fluctuations close to an equilibrium
(see, e.g., Refs. 5 and 9 for a review).

A quantitative approach to nonequilibrium fluctuation
superconductivity was recently formulated in Refs. 10 and 11.
Building on this approach, we develop further our original
Keldysh technique enabling us to find nonequilibrium fluctua-
tion contributions to the electrical conductivity of a supercon-
ductor above the (nonequilibrium) superconducting transition.
We show that, by measuring the fluctuation corrections, one
can infer the parameters of the nonequilibrium state of the
superconductor from the experimental data. Further, while in

the equilibrium, the lifetime of the fluctuation-induced Cooper
pairs is determined by the difference T − Tc, where Tc is the
critical temperature,5,9 we find that in FFE conditions, it is
controlled by the parameters of the nonequilibrium density
matrix of the system. For example, for a thin superconducting
film sandwiched between the gate and the substrate (see Fig. 1),
these parameters are the temperatures of the gate and of the
substrate, and the gate voltage VG.

The paper is organized as follows. In Sec. II, we introduce
the model. In Sec. III, we derive the nonequilibrium Ginzburg-
Landau- (GL-) type action, while in Sec. IV, we calculate
fluctuation-induced corrections to the electrical conductivity
of the normal metal. In Sec. V, we focus on the specific
experimental realization shown in Fig. 1 and analyze the pre-
viously derived results for this concrete setup. In Sec. VI, we
summarize our results and discuss their further applications.
Technical details are relegated to the Appendix.

II. KELDYSH SIGMA-MODEL ACTION

The Keldysh partition function of a superconductor with
the Hamiltonian H in the coherent state basis is defined as

Z = N
∫

Dψ̄ Dψ exp{iS[ψ̄,ψ]}, (1)

where

S[ψ̄,ψ] =
∫
C
dt

{ ∫
r
(ψ̄αi∂tψα) − H [ψ̄,ψ]

}
(2)

FIG. 1. (Color online) Thin superconducting film sandwiched
between the substrate and the gate. The substrate temperature is T1,
the gate temperature is T2, and the gate voltage is VG. Changing T1,
T2, and VG, one can tune the nonequilibrium quasiparticle distribution
in the film.
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andN is a normalization constant. Hereafter, h̄ = c = kB = 1.
Here, C is the Keldysh contour and α ≡↑,↓ is the spin variable.

The Hamiltonian has the form H = H0 + Hint, where the
single-particle Hamiltonian

H0 =
∫

r
ψ̄α

[
− (∇ − ieA)2

2m
+ Udis + eφ

]
ψα. (3)

Here, A, φ, and Udis are vector, scalar, and disorder potentials
and e is the electron charge; the tensor summation over the
spin indices is implied. The interaction Hamiltonian describes
the electron-electron interaction in the Cooper channel

Hint = −λ

ν

∫
r
ψ̄↑ψ̄↓ψ↓ψ↑ , (4)

where ρ(r) = ∑
α ψ̄α(r)ψα(r) is the local electron density and

the superconductive coupling constant λ > 0. The disorder
potential is assumed to be Gaussian distributed with the
correlator

〈Udis(r)Udis(r′)〉 = 1

2πντ
δ(r − r′). (5)

Averaging over disorder and carrying out the standard de-
coupling in the four-fermion terms in the action via the
Stratonovich-Hubbard fields {Q,�},9 and integrating out
the degrees of freedom with the energies higher than 1/τ ,
where τ−1 is the elastic scattering rate, we arrive at the Keldysh
nonlinear σ -model partition function

Z = ∫
D[Q,�] exp{iS[Q̌K,�̌K]}, (6)

S[Q̌K,�̌K] = S� + Sφ + SQ. (7)

The nonlinear σ -model action S consists of three parts:

S� = − ν

2λ
Tr[�̌†

KY̌ �̌K], (8)

Sφ = e2ν

2
Tr[φ̌KY̌ φ̌K], (9)

SQ = iπν

4
Tr[D(∂rQ̌K)2 − 4�̌∂t Q̌K

− 4ieφ̌KQ̌K + 4i�̌KQ̌K], (10)

where Q̌2 = 1. Here, D is the diffusion coefficient and ν is
the bare single-particle density of states at the Fermi level per
one spin projection. The action (7) holds while the effective
temperatures (see Sec. IV) that follow from it are much smaller
than 1/τ . The check mark above the field variables indicates
that they are defined in the space that is the tensor product of the
Keldysh and Nambu spaces. The former and latter are spanned
by the Pauli matrices σ̂i and τ̂i , i ∈ {0,x,y,z}, respectively.
So, Y̌ = σ̂x ⊗ τ̂0, �̌ = σ̂0 ⊗ τ̂z. Multiplication in time space is
implicitly assumed, and “Tr” includes an integration over real
space. The subscript K denotes the gauge transformed fields

φ̌K = φ̌ − ∂tǨ, (11)

ǍK = Ǎ + ∇Ǩ, (12)

Ǩ = [kcl σ̂0 + kqσ̂x] ⊗ τ̂0. (13)

Ǎ and φ̌ are defined in the same way as Ǩ. Also,

�̌ = [�clσ̂0 + �qσ̂x] ⊗ τ̂+ − H.c., (14)

�̌K(r,t) = eie�̌Ǩ(r,t)�̌e−ie�̌Ǩ(r,t). (15)

Q̌K is defined in the same way. The quantum (q) and classical
(cl) components are defined as half-sum and half-difference of
the field values at the lower and upper branches of the Keldysh
time contour. The field �cl becomes the superconducting order
parameter on the mean-field (saddle-point) level, while the
saddle-point equation for Q̌ produces the Usadel quasiclassical
equations, where Q̌ plays the role of the quasiclassical Green’s
function. The covariant spatial derivative is given by

∂rQ̌K = ∇rQ̌K − ie[�̌ǍK,Q̌K]. (16)

III. GINZBURG-LANDAU ACTION

First, let us consider the simplified situation ignoring the
interactions. Then, the metallic saddle point of Eq. (7) is12–14

�̌ = Ǔ�̌0Ǔ−1, �̌0 = σ̂z ⊗ τ̂z, (17)

Ǔt,t ′ (r) = Ǔ−1
t,t ′ (r) =

(
δt−t ′−0τ̂0 F̂t,t ′ (r)

0 −δt−t ′+0τ̂0

)
, (18)

F̂t,t ′ (r) =
(

Fe
t,t ′ (r) 0

0 Fh
t,t ′ (r)

)
. (19)

By setting quantum components of electromagnetic potentials
to zero, the equation for F

e/h

t,t ′ (r) reads as

D

(
∇2Fe/h ∓ 2ie

[
Acl

K,∇Fe/h
] ∓ ie

[∇Acl
K,F e/h

]
− e2

2

[
Acl

K,
[
Acl

K,F e/h
]]) − −→

∂t F e/h + Fe/h←−∂t

∓ ie
[
φcl
K ,F e/h

] = 0. (20)

After the Wigner transformation, we can map Fe/h to quasi-
particle electron (hole) distribution functions: F

e/h
ε (r,t) ≡

1 − 2f
e/h
ε (r,t). In the leading order, with respect to time and

energy partial derivatives of external potentials, the kinetic
equations become

D
[∇2Fe/h

ε ∓ 2e
(
∂tAcl

K
)(

∂ε∇Fe/h
ε

)
+ 1

2e2
(
∂tAcl

K
)2(

∂2
ε F

e/h
ε

)] − ∂tF
e/h
ε

∓ e∂t

(
D∇Acl

K + φcl
K
)
∂εF

e/h
ε = 0 . (21)

Note that one has to take into account adequate boundary
conditions.

Having specified the metallic saddle-point solution, we
consider the massless fluctuations around it. They can be
parametrized as15

Q̌K(r) = e−W̌ (r)/2 �̌(r) eW̌ (r)/2, W̌ = ǓW̌Ǔ−1, (22)

W̌ =
(

wτ+ − w∗τ− w0τ0 + wzτz

w̄0τ0 + w̄zτz w̄τ+ − w̄∗τ−

)
, (23)
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such that W̌ �̌ + �̌W̌ = 0. Here, we introduced four real fields
wα

tt ′(r),w̄α
tt ′ (r) with α = 0,z representing diffusion degrees of

freedom and two complex fields wtt ′(r),w̄tt ′(r) for cooperon
degrees of freedom.

Since the main goal of this section is the derivation of
the nonequilibrium extension of GL-type action in the normal
state but very close to the transition, in what follows we will
concentrate on cooperon degrees of freedom only. By plugging
Q̌K, given by Eq. (22), in the action Eq. (7) and expanding it
up to the second order in cooperons, we get

SQ = Sw2 + Sw�, (24)

Sw2 = i
πν

2
Tr

[
w†

t,t ′ (r)C−1
t,t ′ (r)wt ′,t (r)

]
, (25)

Sw� = −πν Tr[(−�cl∗ − Fh�
q∗)w + (�cl + Fe�

q)w∗

+ (�cl∗ − Fe�
q∗)w̄ + (−�cl + Fh�

q)w̄∗]. (26)

Here, wt,t ′ (r) = (wt,t ′ (r),w̄t,t ′(r))T and9

C−1
t,t ′ (r) =

(
C−1

t,t ′ (r) 0
0 C̄−1

t,t ′ (r)

)
, (27)

C−1
t,t ′ (r) = −∂t + ∂t ′ − ie

[
φcl
K (r,t) − φcl

K (r,t ′)
]

−D
[∇ − ieAcl

K(r,t) − ieAcl
K(r,t ′)

]2
, (28)

C̄−1
t,t ′ (r) = ∂t − ∂t ′ + ie

[
φcl
K (r,t) − φcl

K (r,t ′)
]

−D
[∇ − ieAcl

K(r,t) − ieAcl
K(r,t ′)

]2
. (29)

Note that there are additional terms in the action (24),
which are not presented here for the sake of brevity. They
contain quantum components of electromagnetic potentials.
Since quantum components of fields are the auxiliary source
fields usually used to calculate observables by the appropriate
differentiation of the Keldysh action, we omit the mentioned
terms here. They are not important for the derivation of the GL
action. We will discuss these terms in the next section when
calculating different corrections to the Drude conductivity that
arise due to superconducting fluctuations.

Now, the cooperon degrees of freedom can be integrated
out from the Keldysh partition function (6). In this way, the
GL action is generated:

iSGL[�cl,�q] = − 1
2

〈
S2

w�

〉
iSw2

+ iS�. (30)

In what follows, we consider stationary distribution functions
(i.e., Ft,t ′ = Ft−t ′ ) and stationary electromagnetic fields. Also,
we assume that they slowly vary in space as compared to the
fluctuating order parameter �(r,t). Then, we obtain (see the
Appendix )

SGL[�cl,�q] = 2ν Tr[�†
K(r,t)L̂−1�K(r,t)], (31)

where � = (�cl,�q)T . The structure of the fluctuation propa-
gator L̂ is characteristic for bosons:

L̂−1 =
(

0 L−1
A

L−1
R L−1

K

)
. (32)

The indexes R, A, and K denote the retarded, advanced, and
Keldysh propagators, respectively. The cl-cl component of L̂ is

zero. This is expected since, for �q = 0, the field on the upper
and lower branches of the Keldysh contour is the same, and
therefore the corresponding actions cancel each other, resulting
in SGL(�cl,0) = 0. The Keldysh propagator is responsible for
the Gaussian noise term in the time-dependent GL (TDGL)
equation, and it also carries information about distribution of
electrons and holes. The details of the derivation, as well as
general formulas for the fluctuating propagators (that are valid
if the system is far from the transition) are presented in the
Appendix. Close to the transition into the superconducting
state, the propagators become

L−1
K = i

π

2

(
1 − F̃ h

0 F̃ e
0

)
, (33)

L−1
R/A = π

8Te

{
− (τGLzcp)−1 + [∓ 4iTeF̃

R
0

+D
(∇ − 2ieAcl

K
)2 ∓ ∂t ∓ 2ieφcl

K
]

×
(

1 ± i
Te

�

)}
. (34)

Here, F̃
e/h
ε = F

e/h

ε±eφcl
K

denotes the gauge-invariant distribution

function, while other parameters appearing in the retarded
and advanced propagators are the functionals of FR

ε = (Fh
ε −

Fe
−ε)/2:

T −1
e = 2

dF̃ R
ε

dε

∣∣∣∣
ε=0

, (35)

�−1 = 2

π

∫
− dε

F̃ R
ε − F̃ R

0

ε2
, (36)

z−1
cp = 1 +

(
Te

�

)2

. (37)

They are strongly drive dependent, as will be demonstrated
in Sec. V. The symbol

∫− denotes the principal value of
the integral. Note that the existence of effective temperature
Te does not imply the local equilibrium form of excitation
distribution functions.

The nonequilibrium GL relaxation rate is defined as

τ−1
GL = − 4

π
zcpTe

∫ +ωD

−ωD

dε
F̃ R

ε − tanh
(

ε
2Tc

)
ε

+ 4zcp
T 2

e

�
F̃ R

0 ,

(38)

where ωD is the Debye energy. The GL relaxation rate
represents the inverse lifetime of Cooper pairs, and, therefore,
it vanishes at the transition to the superconducting state.
In an equilibrium, the density matrix is parametrized by
the temperature, and the condition τ−1

GL = 0 tells us that the
transition occurs at T = Tc. In a general nonequilibrium
case, additional parameters may appear, e.g., voltage drop
and temperatures of the thermal baths that are in contact
with the system. Then, the condition τ−1

GL = 0 defines the
phase-transition surface in the parameter space. We find that
any distribution function Fε at the phase-transition surface
satisfies ∫ +ωD

−ωD

dε
F̃ R

ε − tanh
(

ε
2Tc

)
ε

− π
Te

�
F̃R

0 = 0. (39)
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By tuning the external electromagnetic fields and/or temper-
ature of thermal baths, one can control the distance from the
phase-transition surface. We point out that the theory presented
above is valid only for the systems (in the normal state) close
to the transition, i.e., when (τGLTe)−1 � 1. The difference
between Eqs. (34) and (38) and the work in Ref. 10 is the
appearance of �−1 and presence of terms ∼F̃ R

0 (results of
Ref. 10 are restricted to the nonequilibrium states generated
by the voltage between the leads or gates in a certain way). In
general, �−1 is nonzero, as discussed in Sec. V.

In an equilibrium, the following relations hold: Fe/h =
tanh ( ε

2T
), Te = T , � = 0, zcp = 1, and we reproduce the

standard GL action. It is given by Eq. (31), but with the
propagators

(
L−1

eq

)
K

= i
π

2
, (40)

(
L−1

eq

)
R/A

= π

8T

[ − (
τ eq

GL

)−1 + D∇2 ∓ ∂t

]
, (41)

(
τ eq

GL

)−1 = 8

π
(T − Tc). (42)

In an equilibrium, the Keldysh fluctuation propagator sat-
isfies the relation following from the fluctuation-dissipation
theorem

(
L−1

eq

)
K

= coth

(
ω

2T

)[(
L−1

eq

)
R

(q,ω) − (
L−1

eq

)
A

(q,ω)
]

(43)

for ω � T . We find that, in a general case, this relation is
violated for a system out of the equilibrium.

Next, we derive the TDGL equation. After the term ∼|�q |2
in Eq. (31) is decoupled by introduction of the Hubbard-
Stratonovich field ζ (r,t), one differentiates (31) with respect
to �q∗ and obtains

8Te

π
L−1

R �cl
K + ζ = 0, (44)

〈ζ (r,t)ζ ∗(r′,t ′)〉 = 16

πν
T 2

e

(
1 − F̃ h

0 F̃ e
0

)
δ(r − r′)δ(t − t ′).

(45)

The field ζ has a meaning of the Gaussian noise. The supercon-
ducting order parameter changes under a gauge transformation
as �cl

K = �cle2iekcl

. However, the TDGL equation for the order
parameter is gauge invariant since the presence of the gauge
field kcl in L−1

R (through Acl
K and φcl

K) compensates the change
of the order-parameter phase.

Using the Keldysh formalism, derivation of the GL close-
to-equilibrium action was performed in Ref. 9. A special
gauge was utilized where D∇AK + φK = 0 and found that
the scalar potential does not appear in the TDGL equation
for the order parameter. In Ref. 9, it was used as Fε =
tanh(ε/(2T )). By looking at kinetic equation (21), it becomes
obvious that the mentioned gauge may indeed simplify the
calculation. However, in the presence of external potentials,
tanh[ε/(2T )] is not the solution of the kinetic equation even
in this gauge, due to boundary conditions. As a result, the
scalar electromagnetic potential does appear in the retarded

propagator (34) and therefore also appears in the TDGL equa-
tion for the order parameter (44), contrary to the statements in
Ref. 9.

Although the higher-order terms in the superconducting
order parameter in the GL action are unimportant for our
analysis of superconducting fluctuations, we will state them
for completeness. We focus only on local fourth-order terms
of the form �q∗�cl|�cl|2 and find

S�4 = −πν

∫ ∞

0
dτ τ Ỹ (τ )

× Tr
[
�

q∗
K (r,t)�cl

K(r,t)
∣∣�cl

K(r,t)
∣∣2] + c.c., (46)

Ỹ (τ ) =
∫ ∞

−∞

dε

2π

F̃R
ε

ε + i0
eiετ . (47)

In the equilibrium, the action reduces to9 S�4 =
−7νζ (3)Tr[�q∗

K (r,t)�cl
K(r,t)|�cl

K(r,t)|2 + c.c.]/(4π2T 2).

IV. CORRECTIONS TO ELECTRICAL CONDUCTIVITY

In this section, we derive corrections to the Drude con-
ductivity arising in thin films due to superconducting fluctu-
ations. The system is close to the transition, but under FFE
conditions.

First, we briefly explain the origin of different fluctuation-
induced contributions. Fluctuation Cooper pairs carry charge
and directly contribute to the electrical conductivity, deter-
mining the Aslamazov-Larkin (AL) contribution.6,7 Since
quasiparticles are involved in Cooper pairing, effectively the
number of carriers participating in the single-electron charge
transfer is decreased. The fluctuation pseudogap opens at
the Fermi level in the single-particle spectrum, and results
in diminishing of the Drude conductivity for the so-called
density of states (DOS) correction.5 The third contribution
to conductivity, the (anomalous) Maki-Thompson8,16 (MT)
correction, is of purely quantum origin. It arises due to
coherent scattering of the electrons, forming a fluctuation
Cooper pair, on the elastic impurities. As a result, the diffusion
coefficient changes and, therefore, the Drude conductivity is
influenced.

We are interested in linear response to the in-plane electric
field, while the system is strongly driven out of equilibrium
due to contacts with thermal baths at different temperatures
between which it is sandwiched, or due to an electric
field perpendicular to the plane. We focus on the regime
where fluctuations can be treated perturbatively, meaning that
the below derived corrections are small compared to the
Drude conductivity σD. We take into account terms linear in
the Ginzburg number Gi = (νDdf )−1, i.e., δσ/σD ∼ Gi ,
where df is film thickness. The in-plane dc conductivity is
given by

σxx = −1

2
lim
�→0

(
1

�

δ2Z

δAcl
K,x(�)δAq

K,x(−�)

)∣∣∣∣
Aq

K=0

, (48)
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where Z is the Keldysh partition function [Eq. (6)]. The terms
in the action, which are linear or quadratic in the vector
potential, arise from the first term of Eq. (10) and read as

iSA = − iπνeD

2
Tr{[W̌ ,(∇W̌ )]�̌ǍK}, (49)

iSA2 = πνDe2

4 Tr{[�̌ǍK,�̌][�̌ǍK,�̌] + 2�̌ǍK�̌�̌ǍK�̌W̌ 2

+ 2�̌ǍK�̌W̌ �̌ǍK�̌W̌ }, (50)

respectively. The first term of Eq. (50) does not contain su-
perconducting fluctuations and, therefore, after differentiation
over classical and quantum components of the vector potential
and averaging over Q̂ and � fluctuations [see Eq. (48)], it
gives the Drude conductivity. The other two terms in (50)
produce the MT and DOS correction to the conductivity. The

part of the action linear in the vector potential (SA) gives the
AL correction. The Drude conductivity is

σD = −πνDe2

4
lim
�→0

{
1

�
Tr(�̌εσ̂x�̌�+ε + σ̂x�̌ε�̌−�+ε)

}

= −πνDe2

2
lim
�→0

Tr
(
Fe

ε−� − Fe
ε+� + Fh

ε−� − Fh
ε+�

)
�

= 2νDe2. (51)

In Eq. (48), all the quantum components of vector potential are
set to zero after differentiation. Therefore, after differentiation
with respect to Acl and Aq , in calculation of σ we can use
the action (24) derived in the previous section. We assume
the stationary situation (Fe/h

t,t ′ = F
e/h

t−t ′ ). The in-plane classical
components of the vector potential can be set to zero since
we are interested in the linear response to the in-plane electric
field. Then, we find the saddle-point configuration of w for the
action (24) and, using the GL-type action (31), we obtain

〈〈w1,2(q)w∗
3,4(−q)〉〉Q,� = 2i

ν
δε1−ε2,ε4−ε3

−L−1
K LA,1−2LR,1−2 + Fh

3 LR,1−2 + Fe
1 LA,1−2

{Dq2 − i(ε1 + ε2)}{Dq2 − i(ε3 + ε4)} , (52)

〈〈w̄1,2(q)w̄∗
3,4(−q)〉〉Q,� = 2i

ν
δε1−ε2,ε4−ε3

−L−1
K LA,1−2LR,1−2 − Fh

2 LA,1−2 − Fe
4 LR,1−2

{Dq2 + i(ε1 + ε2)}{Dq2 + i(ε3 + ε4)} , (53)

〈〈w̄1,2(q)w∗
3,4(−q)〉〉Q,� = 2i

ν
δε1−ε2,ε4−ε3

L−1
K LA,1−2LR,1−2 + Fh

2 LA,1−2 − Fh
3 LR,1−2

{Dq2 + i(ε1 + ε2)}{Dq2 − i(ε3 + ε4)} , (54)

〈〈w1,2(q)w̄∗
3,4(−q)〉〉Q,� = 2i

ν
δε1−ε2,ε4−ε3

L−1
K LA,1−2LR,1−2 + Fe

4 LR,1−2 − Fe
1 LA,1−2

{Dq2 − i(ε1 + ε2)}{Dq2 + i(ε3 + ε4)} . (55)

Here, the angular brackets denote averaging over fluctuations
of Q̌,�cl/q . F

e/h

i = F
e/h
εi

and wi,j = wεi,εj
where i,j =

1, . . . ,4. Also, LA/R,i−j = [L−1
R/A(q,εi − εj )]−1.

Now, we can proceed to the calculation of different
corrections to the Drude conductivity. We start with the DOS
correction

δσ DOS = −νDe2

8π

∫
q,ε3,ε4

[(
∂ε3F

e
3

)〈〈w3,4(q)w∗
4,3(−q) + w̄3,4(q)w̄∗

4,3(−q)〉〉Q,�

+ (
∂ε3F

h
3

)〈〈w∗
3,4(q)w4,3(−q) + w̄∗

3,4(q)w̄4,3(−q)〉〉Q,�

−Fh
4 ∂�〈〈w3,4(q)w∗

4+�,3+�(−q)〉〉∣∣
�=0 − Fe

4 ∂�〈〈w∗
3,4(q)w4+�,3+�(−q)〉〉∣∣

�=0

+Fe
3 ∂�〈〈w̄3,4(q)w̄∗

4−�,3−�(−q)〉〉∣∣
�=0 + Fh

3 ∂�〈〈w̄∗
3,4(q)w̄4−�,3−�(−q)〉〉∣∣

�=0

]
, (56)

where
∫

q,ε3,ε4
= ∫

dq/(2π )2
∫ ∞
−∞ dε3dε4. Note that the terms

which in the limit � → 0 behave as 1/� will be canceled out
with similar terms from the other corrections (MT and AL),
and that is why they are omitted here. The main contribution
close to the transition reads as

δσ DOS ≈ −De2

4π
Im

[ ∫
ε,ω,q

L−1
K

(
∂εF

e
ε |LA

+|2 + ∂εF
h
ε |LA

−|2)
{Dq2 − i(2ε − ω)}2

]
,

(57)

where LA
± = LA(q, ± ω). We obtain the DOS correction in a

thin film:

δσ DOS ≈ −7e2ζ (3)

π4df

TeTcp

T 2
DOS

log

(
Te

τ−1
GL

)
, (58)

up to logarithmic accuracy. Here, df is the film thickness and
the new characteristic temperatures are

Tcp = Tezcp
(
1 − F̃ h

0 F̃ e
0

)
, (59)
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1

T 2
DOS

= − π2

7ζ (3)
Re

[ ∫
dε

∂εF̃
L
ε

(ε + i0)2

]
, (60)

F̃L = (F̃ e
ε + F̃ h

ε )/2. The important contribution in Eq. (57)
comes from small momenta and, therefore, we safely cut
the momentum integration at the upper limit Dq2

max ∼ Te.
The main contribution in the DOS, MT, and AL corrections
comes from frequencies ω − 2eφ + ε0 � τ−1

GL . Here and in the
following, we assume that the system is close to the transition,
such that the characteristic energy scales of F̃

e/h
ε are much

greater than τ−1
GL and |ε0|/2; ε0 = −4TeF̃

R
0 + τ−1

GL Te/�. If the
system is far from the transition and these conditions are not
satisfied, then one can start calculation from Eq. (56) and use
general fluctuation propagators (see the Appendix) that are not
restricted to low frequencies.

Next, we focus on the MT correction to the conductivity. It
is given by

δσ MT = −νDe2

8π

∫
q,ε2,ε3

[
∂ε2F

e
2 〈〈w̄2,3(q)w∗

3,2(−q)〉〉

+ ∂ε2F
h
2 〈〈w̄∗

2,3(q)w3,2(−q)〉〉]. (61)

The main contribution close to the transition is

δσ MT ≈ −iDe2

4π

∫
q,ε,ω

L−1
K

∂εF
e
ε |LA

−|2 + ∂εF
h
ε |LA

+|2
D2q4 + (2ε + ω)2

(62)

≈ − e2

πdf

TcpτGL ln

(
τGL

τφ

)
+ δσ DOS, (63)

where we cut off the infrared divergency in the momentum in-
tegration by introduction of the finite dephasing time Dqmin ∼
τφ , τGL � τφ .5 There are many phase-breaking sources, such as
the electron scattering on phonons or paramagnetic impurities,
or superconducting fluctuations.5 The nonequilibrium condi-
tions may affect also the equilibrium phase-breaking time.
However, we leave this problem for future studies. By treating
energy ε as a complex number in (62), we obtain the first
term in Eq. (63) from the poles of the integrand determined by
zeros of the denominator. The second term in Eq. (63) comes
from the poles of distribution functions F̃ e/h. Note that the
first term is positive, while the second one is negative. Then,
the DOS correction is effectively doubled, although the first
term in δσ MT is the dominant one close to the transition.

Next, we calculate the AL correction to the conductivity

δσ AL = −1

2
lim
�→0

[
1

�

〈〈
δ(iSA)

δAcl
x (�)

δ(iSA)

δA
q
x(−�)

〉〉
Q,�

]
(64)

= − (πνDe)2

2(2π )4
lim
�→0

{
1

�

∫
r1,r2,ε1,ε2,ε3,ε4

〈〈
[w1,2(r1)∇xw

∗
2,1+�(r1) − w∗

1,2(r1)∇xw2,1+�(r1) + w → w̄]

× [ − Fe
3−�w3,4(r2)∇xw

∗
4,3−�(r2) + Fh

3−�w∗
3,4(r2)∇xw4,3−�(r2)

+Fe
3 w̄3,4(r2)∇xw̄

∗
4,3−�(r2) − Fh

3 w̄∗
3,4(r2)∇xw̄4,3−�(r2)

]〉〉
Q,�

}
. (65)

We find that, close to the transition, the main contribution
assumes the form

δσ AL ≈ (eD)2π

16df

(
1 + i

Te

�

)
1

T 2
AL

×
∫

q,ω

q2L−1
K |LA(q,ω − ε0)|2 ∂

∂ω

[LR(q,ω − ε0)],

(66)

where the new characteristic temperature is given by

1

T 2
AL

= 4zcp

π2

(
1

T 2
a

− Te

�

1

TaTb

)
, (67)

1

Ta

= Im

[ ∫
dε

F̃ R
ε

(ε − i0)2

]
, (68)

1

Tb

= Re

[ ∫
dε

F̃ R
ε

(ε − i0)2

]
. (69)

Performing the remaining integration over q,ω, we obtain, in
the quasi-two-dimensional case,

δσ AL ≈ e2

2πdf
TcpτGL

T 2
e

T 2
AL

. (70)

We conclude that all the fluctuation-induced corrections to the
conductivity behave differently as a function of τGL. For a thin
film close to the superconducting transition, the MT is the most
important one. Moreover, each correction is parametrized by
a different combination of the effective temperatures: Te, Tcp,
TDOS, and TAL. These temperatures are strongly drive dependent,
as will be shown in the next section when considering a
concrete example. In the equilibrium, F

e/h
ε = tanh ε/2T and

Te = Tcp = TDOS = TAL = T . Then, we reproduce the well-
known results for the DOS, MT, and AL corrections to the
conductivity.

Note that the calculation of the DOS, MT, and AL
corrections in the equilibrium within the Keldysh formalism
was done in Ref. 9. In their derivation of DOS correction,
they have missed the last four terms from Eq. (56), which give
important contributions in the final result. However, after some
canceling mistakes, they surprisingly obtained the correct final
result.

In this section, we have focused on the derivation of the
fluctuation conductivity corrections close to the transition.
They are the most pronounced in that region, but nevertheless
they can be still significant also far from the transition.5 Then,
the derived GL-type theory is not applicable. One has to take
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into account high frequencies and short-wave contributions in
fluctuating propagators. However, this can be done within the
above-developed approach. Namely, the expressions for the
corrections given by Eqs. (56), (61), and (65) are valid also far
from the transition. Then, in Eqs. (52)–(55), one has to use the
general expressions for the fluctuating propagators, which are
given in the Appendix .

V. EXPERIMENTAL REALIZATION

In this section, we propose an experimental setup where our
predictions could be tested. The setup is shown in Fig. 1, where
the superconducting film is sandwiched between the substrate
and the gate and is separated from them by the interface barriers
with the resistances R1 and R2, respectively. We consider
the stationary situation and assume that the Thouless energy
corresponding to diffusion across the film E⊥

T = D/d2
f well

exceeds all the effective temperatures. Then, the current across
the interface separating the substrate and film is

I = 1

4eR1

∫
dε

{
Fe(ε) − Fe

S (ε) − Fh(ε) + Fh
S (ε)

}
, (71)

and a similar equation holds for the interface between the
film and the gate (here the subscript S denotes the substrate).
From the continuity equation for the current follows Fe/h(ε) =
xF

e/h

S (ε) + (1 − x)Fe/h
G (ε), where x = R2/(R1 + R2). Here,

F
e/h

S (ε) = tanh[ε/(2T1)] and F
e/h
G = tanh[(ε ∓ eVG)/(2T2)]

denote distributions in the substrate and in the gate. Then,
the gauge-invariant distribution in the film assumes the form

F̃ e/h(ε) = x tanh

[
ε ± (1 − x)eVG

2T1

]
(72)

+ (1 − x) tanh

[
ε ∓ xeVG

2T2

]
, (73)

in the case of very resistive interfaces, i.e., when the resistance
of the film can be neglected: Rtot ≈ R1 + R2. Next, we calcu-
late parameters appearing in the GL-type action [Eq. (31)] and
demonstrate that they are strongly drive dependent.

A. Ginzburg-Landau relaxation time

In this section, we analyze the GL relaxation rate under FFE
conditions [given by Eq. (38)] for the setup shown in Fig. 1.
The GL relaxation rate is a very important parameter since
many quantities influenced by superconducting fluctuations
are singular functions of it. One example is fluctuation-induced
corrections to the conductivity, which are analyzed in the
previous section. While in the equilibrium (T1 = T2 and
VG = 0) and close to the transition, it behaves as (42); far
from equilibrium, we find

Te =
[

x

T1ch2 (1−x)eVG
2T1

+ (1 − x)

T2ch2 xeVG
2T2

]−1

, (74)

�−1 = 2x

T1π2
Im

[
� ′

(
1

2
− i

eVG(1 − x)

2πT1

)]

+ 2(1 − x)

T2π2
Im

[
� ′

(
1

2
+ i

eVGx

2πT2

)]
, (75)

τ−1
GL = 8

π
zcpTe

{
x Re

[
�

(
1

2
+ i

(1 − x)eVG

2πT1

)]

+ (1 − x)Re

[
�

(
1

2
+ i

xeVG

2πT2

)]
+ 2 log 2

+ x log
T1

T2
− log

Tc

T2
+ γ

}
+ 4zcp

T 2
e

�
F̃ R

0 , (76)

where �(z) is the digamma function defined as �(z) =
�′(z)/�(z), where �(z) is the gamma function. γ is the Euler
constant and definitions for zcp and F̃ R are given in Sec. III.
Note that the theory presented in the previous chapters is valid
only above (τGL > 0), and very close to the transition. However,
the obtained expression for GL relaxation rate might be valid
also below the transition. Also, all the expressions are valid for
sufficiently small voltage drop. The system can be driven from
equilibrium due to finite difference of the gate and the substrate
temperatures and/or due to gate voltage. First, we start with
the zero voltage case. Then, the general expressions (74)–(76)
simplify significantly, and we obtain �−1 = 0, z = 1, and

τ−1
GL = 8

π
Te

(
x log

T1

T2
− log

Tc

T2

)
. (77)

Simple analysis shows that τ−1
GL is negative (positive) when

both temperatures T1 and T2 are smaller (greater) than the
critical temperature Tc and can be either positive or negative
when one of the temperatures is greater and another is smaller
than Tc (see Fig. 2). Looking at lower part of Fig. 2, one
notices that the GL relaxation rate can take rather different
values than in the equilibrium. The dotted line denotes the
equilibrium situation. In the equilibrium, we reproduce (42)
when the system is close to the transition (T − Tc � Tc).

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

T2 Tc

T
1

T
c

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
1.0

0.5

0.0

0.5

1.0

1.5

T1 Tc

G
L

1
T

c

T2 T1

T2 0.9Tc

T2 1.4Tc

FIG. 2. (Color online) The upper figure shows two regions in
which τGL has different signs for fixed x = 0.3. In the blue (shaded)
region, it is greater than zero, and in the white region, it is smaller
than zero. The lower figure shows τ−1

GL dependence on T1 for fixed T2

and x = 0.3.
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0.15

VG Tc

G
L

1
T

c T 0.95Tc

T Tc

FIG. 3. (Color online) GL relaxation rate dependence on the gate
voltage for T1 = T2 = T and x = 0.5. One distinguishes quadratic
and linear dependence on the gate voltage around the transition for
T = Tc and T = 0.95Tc, respectively.

Next, we switch on the gate voltage. Since the expression for
the GL relaxation rate is rather complicated, we first analyze
the case T1 = T2 = T . Then, for VG � T , we obtain

τ−1
GL ≈ −8T

π
log

Tc

T
− 2V 2

G

T π
x(1 − x)

[
log

Tc

T
− 7

π2
ζ (3)

]
,

(78)

where ζ (x) is the Riemann zeta function. Then, one sees that,
for T = Tc and VG = 0, the system is at the transition. It
moves away from the transition by increasing the gate voltage,
as it is shown in Fig. 3. The GL relaxation rate increases
quadratically with VG and assumes the form τ−1

GL = 14V 2
G
x(1 −

x)ζ (3)/(Tcπ
3). On the other hand, if for zero gate voltage, the

system is below but close to the transition [|τ−1
GL (VG = 0,T )| �

T < Tc], then at some critical finite voltage Vc it will be at the
transition

Vc = T

√√√√ 4

x(1 − x)

log Tc

T

7
π2 ζ (3) − log Tc

T

. (79)

In this case, one obtains linear behavior in V − Vc

around the transition for the fixed temperature τ−1
GL ≈

8
π

√
log( Tc

T
)x(1 − x)[ 7

π2 ζ (3) − log Tc

T
](V − Vc). This situation

is illustrated in Fig. 3. However, for some choice of parameters,
the situation can be more complicated, as it is shown in Fig. 4.

1.5 1.0 0.5 0.0 0.5 1.0 1.5
0.2

0.1

0.0

0.1

0.2

0.3

0.4

VG Tc

G
L

1
T

c

FIG. 4. (Color online) GL relaxation rate dependence on the gate
voltage for x = 0.3, T2 = 2Tc, and T1 = T

((x−1)/x)
2 T (1/x)

c ≈ 0.2Tc.

B. Corrections to the electrical conductivity

In this section, we examine fluctuation-induced corrections
to the in-plane conductivity for the setup in Fig. 1. We start with
the DOS correction, Eq. (58). We find that the characteristic
energy scale TDOS [Eq. (60)], parametrizing the DOS correction
reads as

1

T 2
DOS

= − 1

14ζ (3)

x

T 2
1

Re

[
� ′′

(
1

2
− ieVG(1 − x)

2T1π

)]

− 1

14ζ (3)

1 − x

T 2
2

Re

[
� ′′

(
1

2
− ieVGx

2T2π

)]
. (80)

Now, we have the analytic expression for δσDOS as a function
of T1, T2, VG, and x. In Fig. 5(a), we plot the dependence
on the gate and substrate temperatures for zero voltage and
x = 0.5. In Fig. 5(b), we plot the dependence on gate voltage
for T1 = T2 and x = 0.5.

Next, we analyze the AL correction [Eq. (70)]. We find that
the characteristic temperatures Ta and Tb [Eqs. (68) and (69)]
for the given setup become

1

Ta

= Re

[
x

T1π
� ′

(
1

2
+ ieVG(1 − x)

2πT1

)]

+ Re

[
1 − x

T2π
� ′

(
1

2
− ieVGx

2πT2

)]
, (81)

1

Tb

= −Im

[
x

T1π
� ′

(
1

2
+ ieVG(1 − x)

2πT1

)]

− Im

[
1 − x

T2π
� ′

(
1

2
− ieVGx

2πT2

)]
. (82)

Then, we have the analytic form of the AL correction. Its
dependence on system parameters is illustrated in Figs. 5(c)
and 5(d). All the temperatures that appear in δσMT are already
calculated. We plot just the first term in Eq. (63), the so-called
anomalous part of the MT correction, in Fig. 5(e) and Fig. 5(f)
since the second one is equal to δσDOS. The dephasing rate is
taken to be τ−1

φ = 10−3Tc. Comparing all the corrections to
the conductivity, one sees that the most important one close to
the transition is the MT correction.

VI. CONCLUSIONS AND DISCUSSION

We have derived GL-type theory valid close to the tran-
sition into the superconducting state under FFE conditions.
We considered the stationary situation and electromagnetic
fields slowly varying (with respect to the superconducting
order parameter) in space. We found that the parameters
appearing in the GL-type action are functionals of electron
and hole nonequilibrium distribution functions. Close to
an equilibrium, we reproduced known results and showed
that the time-dependent GL equation, which is frequently
found in literature,5,17 is correct, contrary to the findings in
Ref. 9.

Utilizing the theory, we studied the influence of fluctuations
on the electrical conductivity in the FFE situation. We demon-
strated that different fluctuation-induced corrections are con-
trolled by different effective temperatures. These temperatures
are drive dependent and carry information about temperatures
and electrochemical potentials of the reservoirs that are in
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FIG. 5. (Color online) DOS, AL, and MT corrections to the in-plane electric conductivity as a function of the gate and the substrate
temperatures for zero gate voltage x = 0.5 and τ−1

φ = 10−3Tc are shown in (a), (c), and (e), respectively. DOS, AL, and MT corrections to
electric conductivity as a function of gate voltage for T1 = T2 = T , x = 0.5, and τ−1

φ = 10−3Tc are shown in (b), (d), and (f), respectively.

contact with the system. We proposed the experimental setup
where our predictions could be tested (see Fig. 1).

The approach developed in this paper allows us to ana-
lytically treat many other important questions, for example,
the influence of superconducting fluctuations on the thermal
conductivity under FFE conditions. This question, close to
an equilibrium, was a controversial and puzzling issue for a
long time (see Ref. 18 and references therein). Hopefully, the
final solution is that singular contributions of the the DOS and
MT correction to the thermal conductivity cancel each other,
while the AL contribution is finite.18 Therefore, experimentally
detected structure in the thermal conductivity,19–22 which
previously was believed to be explained by these corrections,
needs a new explanation. However, since we have found
that different corrections to the electrical conductivity are

characterized by different effective temperatures under FFE,
it is likely that this is the case also with thermal conductivity.
Then, the MT and DOS corrections do not cancel each other
but instead produce a nontrivial result, which might explain
the experiments.
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APPENDIX: GINZBURG-LANDAU ACTION

In this appendix, we present a detailed derivation of the
nonequilibrium GL-type action [Eq. (31)] valid in the normal
state, but very close to the superconducting transition. We
start from Eq. (30). In the following, we consider stationary
distribution functions and stationary electromagnetic fields,
slowly varying in space with respect to the fluctuating
superconducting order parameter �cl . Then,

〈wε1,ε2 (q1)w∗
ε3,ε4

(q2)〉iSw2

= 2(2π )d+2

πν

δ(ε1 − ε4)δ(ε3 − ε2)δ(q1 + q2)

D
(
q1 − 2eAcl

K
)2 − i(ε2 + ε4)

, (A1)

〈w̄ε1,ε2 (q1)w̄∗
ε3,ε4

(q2)〉iS
w2

= 2(2π )d+2

πν

δ(ε1 − ε4)δ(ε3 − ε2)δ(q1 + q2)

D
(
q1 − 2eAcl

K
)2 + i(ε2 + ε4)

, (A2)

where d denotes the dimension. The average values of all
other two-field combinations give zero contribution. Then,
after some algebra we obtain

SGL = 2ν

∫
dω

2π

dq
(2π )d

[
�

q∗
K,−L−1

R �cl
K,+ + �cl∗

K,−L−1
A �

q

K,+

+�
q∗
K,−L−1

K �
q

K,+
]
, (A3)

where �K,∓ = �K(∓q, ∓ ω). The general formula for the
retarded part of the superconductive fluctuation propagator
is

L−1
R (q,ω) = −1

λ
− i

∫ ωD

−ωD

dε
FR

ε−

D
(
q − 2eAcl

K
)2 − 2iε

, (A4)

where ε− =ε−ω/2, FR
ε = (Fh

ε − Fe
−ε)/2, and (L−1

A (q,ω))∗ =
L−1

R (q,ω). In the following, we show that L−1
R can be

written in the form of Eq. (34). Taking into account that the
gauge-invariant distribution function is F̃

e/h
ε = F

e/h

ε±eφcl
K

and by

replacing ε = ε− + eφK, one obtains

L−1
R = −1

λ
+

∫ ωD

−ωD

dε
F̃ R

ε − F̃ R
0

2ε
− i

∫ ωD

−ωD

dε

[
F̃ R

ε

D
(
q − 2eAcl

K
)2 − 2iε − iω + 2ieφcl

K
+ F̃ R

ε − F̃ R
0

2iε

]
. (A5)

Here we have taken into account that Debye frequency ωD �
ω/2 − eφcl

K. Also, we have added and subtracted the term

∫ ωD

−ωD
dε(F̃ R

ε − F̃ R
0 )/(2ε) from Eq. (A4). Let us concentrate

on the last two terms in Eq. (A5) and denote their sum as l−1
R :

l−1
R = −i

4

∫ ∞

−∞
dε

{(
F̃ R

ε − F̃ R
0

)[
D

(
q − 2eAcl

K
)2 − iω − 2ieφcl

K
]

ε
[
ε + iD

(
q − 2eAcl

K
)2

/2 + ω/2 − eφcl
K
] + 2iF̃ R

0

ε + iD
(
q − 2eAcl

K
)2

/2 + ω/2 − eφcl
K

}
. (A6)

The value of the first term in Eq. (A6) is determined by the
poles of the function F̃ R

ε with a positive imaginary part. Then,
very close to the superconductor-metal transition, it becomes

l−1
R = −i

4

[
D

(
q − 2eAcl

K
)2 − iω + 2ieφcl

K
]

×
∫ ∞

−∞
dε

(F̃ R
ε − F̃ R

0 )

ε(ε + i0)
− iπF̃ R

0

2
, (A7)

since ω/2 + eφcl
K, as well as D(q − 2eAcl

K)2, is much smaller
than any relevant scale of the distribution functions. Taking into
account that

∫ ωD

−ωD
dε tanh (ε/2T )/ε ≈ 2 log(4ωDeγ /2πT ) for

ωD � T , where γ is the Euler constant, Tc = 2ωDeγ−1/λ/π ,
and Sokhotsky’s formula (ε + i0)−1 = −iπδ(ε) + P(ε−1),
one obtains

L−1
R =

∫ ωD

−ωD

dε
F̃ R

ε − tanh
(

ε
2Tc

)
2ε

+ [− D
(
q − 2eAcl

K
)2 + iω

− 2ieφcl
K
](+ π

4

dF̃ R

dε

∣∣∣∣
0

+ i

∫
−dε

F̃ R
ε − F̃ R

0

4ε2

)
− iπF̃ R

0

2
.

(A8)

After introducing Te, �, and τGL as given by Eqs. (35)–(38),
one arrives at Eq. (34).

Note that the term ∼�cl∗�cl vanishes. This is the expected
property of the action (see the explanation in the main text).
Taking into account that ∂t in Eq. (7) is just a symbol standing
instead of a matrix in the discrete time space, and that the sum
of the retarded and the advanced Green’s functions taken at the
same time vanishes, we find that the term ∼�cl∗�cl is zero,
while

L−1
K = i

∫
dε

1 − 1
2

(
Fh

ε−Fe
ε+ + Fh

−ε+Fe
−ε−

)
D

(
q − 2eAcl

K
)2 − 2iε

. (A9)

Very close to the transition, it reduces to

L−1
K = −1

2

∫
dε

1 − 1
2

(
Fh

ε−Fe
ε+ + Fh

−ε+Fe
−ε−

)
ε + i0

(A10)

= iπ

2

(
1 − F̃ h

−ω/2+eφcl
K
F̃ e

ω/2−eφcl
K

)
(A11)

≈ iπ

2

(
1 − F̃ h

0 F̃ e
0

)
. (A12)
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Note that, after applying the Sokhotsky’s formula, the term∫− dε(Fh
ε−Fe

ε+ + Fh
−ε+Fe

−ε−)/ε gives zero contribution, since the
function under the integral is the odd function of ε.

In the above calculation, we used that, close to the
transition, ω/2 − eφcl

K as well as D(q − 2eAcl
K)2 is much

smaller than any relevant scale of the distribution functions. Let
us demonstrate the importance of the mentioned combination
of the momenta and frequency and gauge fields by considering
a simple example. Let us consider an equilibrium situation

and denote the order parameter by �0(ω,q) in this case.
It satisfied Dq2 ∼ ω ∼ (τ eq

GL )−1 � T . Next, we turn on a
constant scalar potential φ. Then, the order parameter becomes
� = �0 exp (−2ieφt), i.e., �(ω,q) = �0(ω − 2eφ,q). Then,
ω − 2eφ ∼ (τ eq

GL )−1 � T . Similarly, it can be shown that
the combination D(q − 2eAcl

K)2 has to be compared with
characteristic energies of the distribution function. That is why
it is necessary to introduce the gauge-invariant distribution
functions during the calculation, as we did above.
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11A. Petković, N. M. Chtchelkatchev, T. I. Baturina, and V. M.
Vinokur, Phys. Rev. Lett. 105, 187003 (2010).

12A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 68, 1915
(1975) [Sov. Phys. JETP 41, 960 (1976)].

13A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 73, 299
(1977) [Sov. Phys. JETP 46, 155 (1988)].

14E. V. Bezuglyi, E. N. Bratus’, V. S. Shumeiko, G. Wendin, and
H. Takayanagi, Phys. Rev. B 62, 14439 (2000).

15M. V. Feigel’man, A. I. Larkin, and M. A. Skvortsov, Phys. Rev. B
61, 12361 (2000).

16R. S. Thompson, Phys. Rev. B 1, 327 (1970).
17M. Tinkham, Introduction to Superconductivity (McGraw-Hill,

New York, 1996).
18D. R. Niven and R. A. Smith, Phys. Rev. B 66, 214505 (2002).
19S. Wolf and B. S. Chandrasekhar, Phys. Rev. B 4, 3014 (1971).
20J. L. Cohn, E. F. Skelton, S. A. Wolf, J. Z. Liu, and R. N. Shelton,

Phys. Rev. B 45, 13144 (1992).
21M. Houssa, H. B. Bougrine, S. Stassen, R. Cloots, and M. Ausloos,

Phys. Rev. B 54, R6885 (1996).
22M. Houssa, M. Ausloos, R. Cloots, and H. Bougrine, Phys. Rev. B

56, 802 (1997).

064510-11

http://dx.doi.org/10.1007/BF00117427
http://dx.doi.org/10.1007/BF00117427
http://dx.doi.org/10.1103/PhysRevB.47.7979
http://dx.doi.org/10.1016/0375-9601(68)90623-3
http://dx.doi.org/10.1016/0375-9601(68)90623-3
http://dx.doi.org/10.1143/PTP.39.897
http://dx.doi.org/10.1080/00018730902850504
http://dx.doi.org/10.1209/0295-5075/88/47001
http://dx.doi.org/10.1209/0295-5075/88/47001
http://dx.doi.org/10.1103/PhysRevLett.105.187003
http://dx.doi.org/10.1103/PhysRevB.62.14439
http://dx.doi.org/10.1103/PhysRevB.61.12361
http://dx.doi.org/10.1103/PhysRevB.61.12361
http://dx.doi.org/10.1103/PhysRevB.1.327
http://dx.doi.org/10.1103/PhysRevB.66.214505
http://dx.doi.org/10.1103/PhysRevB.4.3014
http://dx.doi.org/10.1103/PhysRevB.45.13144
http://dx.doi.org/10.1103/PhysRevB.54.R6885
http://dx.doi.org/10.1103/PhysRevB.56.802
http://dx.doi.org/10.1103/PhysRevB.56.802

